IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
KVM performs the VMSAVE to the host save area for both regular and SEV-ES
guests, so hoist it up to svm_prepare_guest_switch. And because
sev_es_prepare_guest_switch does not really need to know the details
of struct svm_cpu_data *, just pass it the pointer to the host save area
inside the HSAVE page.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
asm/svm.h is the correct place for all values that are defined in
the SVM spec, and that includes AVIC.
Also add some values from the spec that were not defined before
and will be soon useful.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220207155447.840194-10-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Forcibly leave nested virtualization operation if userspace toggles SMM
state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace
forces the vCPU out of SMM while it's post-VMXON and then injects an SMI,
vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both
vmxon=false and smm.vmxon=false, but all other nVMX state allocated.
Don't attempt to gracefully handle the transition as (a) most transitions
are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't
sufficient information to handle all transitions, e.g. SVM wants access
to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede
KVM_SET_NESTED_STATE during state restore as the latter disallows putting
the vCPU into L2 if SMM is active, and disallows tagging the vCPU as
being post-VMXON in SMM if SMM is not active.
Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX
due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond
just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU
in an architecturally impossible state.
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Modules linked in:
CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00
Call Trace:
<TASK>
kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123
kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline]
kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460
kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline]
kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline]
kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250
kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273
__fput+0x286/0x9f0 fs/file_table.c:311
task_work_run+0xdd/0x1a0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0xb29/0x2a30 kernel/exit.c:806
do_group_exit+0xd2/0x2f0 kernel/exit.c:935
get_signal+0x4b0/0x28c0 kernel/signal.c:2862
arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Cc: stable@vger.kernel.org
Reported-by: syzbot+8112db3ab20e70d50c31@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220125220358.2091737-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 3fa5e8fd0a0e4 ("KVM: SVM: delay svm_vcpu_init_msrpm after
svm->vmcb is initialized") re-arranged svm_vcpu_init_msrpm() call in
svm_create_vcpu(), thus making the comment about vmcb being NULL
obsolete. Drop it.
While on it, drop superfluous vmcb_is_clean() check: vmcb_mark_dirty()
is a bit flip, an extra check is unlikely to bring any performance gain.
Drop now-unneeded vmcb_is_clean() helper as well.
Fixes: 3fa5e8fd0a0e4 ("KVM: SVM: delay svm_vcpu_init_msrpm after svm->vmcb is initialized")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211220152139.418372-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nullify svm_x86_ops.vcpu_(un)blocking if AVIC/APICv is disabled as the
hooks are necessary only to clear the vCPU's IsRunning entry in the
Physical APIC and to update IRTE entries if the VM has a pass-through
device attached.
Opportunistically rename the helpers to clarify their AVIC relationship.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_is_blocking() to determine whether or not the vCPU should be
marked running during avic_vcpu_load(). Drop avic_is_running, which
really should have been named "vcpu_is_not_blocking", as it tracked if
the vCPU was blocking, not if it was actually running, e.g. it was set
during svm_create_vcpu() when the vCPU was obviously not running.
This is technically a teeny tiny functional change, as the vCPU will be
marked IsRunning=1 on being reloaded if the vCPU is preempted between
svm_vcpu_blocking() and prepare_to_rcuwait(). But that's a benign change
as the vCPU will be marked IsRunning=0 when KVM voluntarily schedules out
the vCPU.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the avic_vcpu_is_running() check when waking vCPUs in response to a
VM-Exit due to incomplete IPI delivery. The check isn't wrong per se, but
it's not 100% accurate in the sense that it doesn't guarantee that the vCPU
was one of the vCPUs that didn't receive the IPI.
The check isn't required for correctness as blocking == !running in this
context.
From a performance perspective, waking a live task is not expensive as the
only moderately costly operation is a locked operation to temporarily
disable preemption. And if that is indeed a performance issue,
kvm_vcpu_is_blocking() would be a better check than poking into the AVIC.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new module parameter to control PMU virtualization should apply
to Intel as well as AMD, for situations where userspace is not trusted.
If the module parameter allows PMU virtualization, there could be a
new KVM_CAP or guest CPUID bits whereby userspace can enable/disable
PMU virtualization on a per-VM basis.
If the module parameter does not allow PMU virtualization, there
should be no userspace override, since we have no precedent for
authorizing that kind of override. If it's false, other counter-based
profiling features (such as LBR including the associated CPUID bits
if any) will not be exposed.
Change its name from "pmu" to "enable_pmu" as we have temporary
variables with the same name in our code like "struct kvm_pmu *pmu".
Fixes: b1d66dad65dc ("KVM: x86/svm: Add module param to control PMU virtualization")
Suggested-by : Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220111073823.21885-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document the meaning of the three combinations of regs_avail and
regs_dirty. Update regs_dirty just after writeback instead of
doing it later after vmexit. After vmexit, instead, we clear the
regs_avail bits corresponding to lazily-loaded registers.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For Intel, the guest PMU can be disabled via clearing the PMU CPUID.
For AMD, all hw implementations support the base set of four
performance counters, with current mainstream hardware indicating
the presence of two additional counters via X86_FEATURE_PERFCTR_CORE.
In the virtualized world, the AMD guest driver may detect
the presence of at least one counter MSR. Most hypervisor
vendors would introduce a module param (like lbrv for svm)
to disable PMU for all guests.
Another control proposal per-VM is to pass PMU disable information
via MSR_IA32_PERF_CAPABILITIES or one bit in CPUID Fn4000_00[FF:00].
Both of methods require some guest-side changes, so a module
parameter may not be sufficiently granular, but practical enough.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211117080304.38989-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This structure will replace vmcb_control_area in
svm_nested_state, providing only the fields that are actually
used by the nested state. This avoids having and copying around
uninitialized fields. The cost of this, however, is that all
functions (in this case vmcb_is_intercept) expect the old
structure, so they need to be duplicated.
In addition, in svm_get_nested_state() user space expects a
vmcb_control_area struct, so we need to copy back all fields
in a temporary structure before copying it to userspace.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211103140527.752797-7-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Following the same naming convention of the previous patch,
rename nested_load_control_from_vmcb12.
In addition, inline copy_vmcb_control_area as it is only called
by this function.
__nested_copy_vmcb_control_to_cache() works with vmcb_control_area
parameters and it will be useful in next patches, when we use
local variables instead of svm cached state.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20211103140527.752797-4-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is useful in the next patch, to keep a saved copy
of vmcb12 registers and pass it around more easily.
Instead of blindly copying everything, we just copy EFER, CR0, CR3, CR4,
DR6 and DR7 which are needed by the VMRUN checks. If more fields will
need to be checked, it will be quite obvious to see that they must be added
in struct vmcb_save_area_cached and in nested_copy_vmcb_save_to_cache().
__nested_copy_vmcb_save_to_cache() takes a vmcb_save_area_cached
parameter, which is useful in order to save the state to a local
variable.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20211103140527.752797-3-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMs that mirror an encryption context rely on the owner to keep the
ASID allocated. Performing a KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
would cause a dangling ASID:
1. copy context from A to B (gets ref to A)
2. move context from A to L (moves ASID from A to L)
3. close L (releases ASID from L, B still references it)
The right way to do the handoff instead is to create a fresh mirror VM
on the destination first:
1. copy context from A to B (gets ref to A)
[later] 2. close B (releases ref to A)
3. move context from A to L (moves ASID from A to L)
4. copy context from L to M
So, catch the situation by adding a count of how many VMs are
mirroring this one's encryption context.
Fixes: 0b020f5af092 ("KVM: SEV: Add support for SEV-ES intra host migration")
Message-Id: <20211123005036.2954379-11-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fixes for Xen emulation
* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache
* Fixes for migration of 32-bit nested guests on 64-bit hypervisor
* Compilation fixes
* More SEV cleanups
WARN if the VM is tagged as SEV-ES but not SEV. KVM relies on SEV and
SEV-ES being set atomically, and guards common flows with "is SEV", i.e.
observing SEV-ES without SEV means KVM has a fatal bug.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for AMD SEV and SEV-ES intra-host migration support. Intra
host migration provides a low-cost mechanism for userspace VMM upgrades.
In the common case for intra host migration, we can rely on the normal
ioctls for passing data from one VMM to the next. SEV, SEV-ES, and other
confidential compute environments make most of this information opaque, and
render KVM ioctls such as "KVM_GET_REGS" irrelevant. As a result, we need
the ability to pass this opaque metadata from one VMM to the next. The
easiest way to do this is to leave this data in the kernel, and transfer
ownership of the metadata from one KVM VM (or vCPU) to the next. In-kernel
hand off makes it possible to move any data that would be
unsafe/impossible for the kernel to hand directly to userspace, and
cannot be reproduced using data that can be handed to userspace.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For SEV to work with intra host migration, contents of the SEV info struct
such as the ASID (used to index the encryption key in the AMD SP) and
the list of memory regions need to be transferred to the target VM.
This change adds a commands for a target VMM to get a source SEV VM's sev
info.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-3-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move SEV-ES vCPU metadata into new sev_es_state struct from vcpu_svm.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-2-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
* Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
* Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
* More memcg accounting of the memory allocated on behalf of a guest
* Timer and vgic selftests
* Workarounds for the Apple M1 broken vgic implementation
* KConfig cleanups
* New kvmarm.mode=none option, for those who really dislike us
RISC-V:
* New KVM port.
x86:
* New API to control TSC offset from userspace
* TSC scaling for nested hypervisors on SVM
* Switch masterclock protection from raw_spin_lock to seqcount
* Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
* Convey the exit reason to userspace on emulation failure
* Configure time between NX page recovery iterations
* Expose Predictive Store Forwarding Disable CPUID leaf
* Allocate page tracking data structures lazily (if the i915
KVM-GT functionality is not compiled in)
* Cleanups, fixes and optimizations for the shadow MMU code
s390:
* SIGP Fixes
* initial preparations for lazy destroy of secure VMs
* storage key improvements/fixes
* Log the guest CPNC
Starting from this release, KVM-PPC patches will come from
Michael Ellerman's PPC tree.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
=UxKM
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- More progress on the protected VM front, now with the full fixed
feature set as well as the limitation of some hypercalls after
initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
RISC-V:
- New KVM port.
x86:
- New API to control TSC offset from userspace
- TSC scaling for nested hypervisors on SVM
- Switch masterclock protection from raw_spin_lock to seqcount
- Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
- Convey the exit reason to userspace on emulation failure
- Configure time between NX page recovery iterations
- Expose Predictive Store Forwarding Disable CPUID leaf
- Allocate page tracking data structures lazily (if the i915 KVM-GT
functionality is not compiled in)
- Cleanups, fixes and optimizations for the shadow MMU code
s390:
- SIGP Fixes
- initial preparations for lazy destroy of secure VMs
- storage key improvements/fixes
- Log the guest CPNC
Starting from this release, KVM-PPC patches will come from Michael
Ellerman's PPC tree"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
RISC-V: KVM: fix boolreturn.cocci warnings
RISC-V: KVM: remove unneeded semicolon
RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
RISC-V: KVM: Factor-out FP virtualization into separate sources
KVM: s390: add debug statement for diag 318 CPNC data
KVM: s390: pv: properly handle page flags for protected guests
KVM: s390: Fix handle_sske page fault handling
KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
KVM: x86: Clarify the kvm_run.emulation_failure structure layout
KVM: s390: Add a routine for setting userspace CPU state
KVM: s390: Simplify SIGP Set Arch handling
KVM: s390: pv: avoid stalls when making pages secure
KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
KVM: s390: pv: avoid double free of sida page
KVM: s390: pv: add macros for UVC CC values
s390/mm: optimize reset_guest_reference_bit()
s390/mm: optimize set_guest_storage_key()
s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
...
- Improve retpoline code patching by separating it from alternatives which
reduces memory footprint and allows to do better optimizations in the
actual runtime patching.
- Add proper retpoline support for x86/BPF
- Address noinstr warnings in x86/kvm, lockdep and paravirtualization code
- Add support to handle pv_opsindirect calls in the noinstr analysis
- Classify symbols upfront and cache the result to avoid redundant
str*cmp() invocations.
- Add a CFI hash to reduce memory consumption which also reduces runtime
on a allyesconfig by ~50%
- Adjust XEN code to make objtool handling more robust and as a side
effect to prevent text fragmentation due to placement of the hypercall
page.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/GFgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoc1JD/0Sz6seP2OUMxbMT3gCcFo9sMvYTdsM
7WuGFbBbnCIo7g8JH7k0zRRBigptMp2eUtQXKkgaaIbWN4JbuVKf8KxN5/qXxLi4
fJ12QnNTGH9N2jtzl5wKmpjaKJnnJMD9D10XwoR+T6gn6NHd+AgLEs7GxxuQUlgo
eC9oEXhNHC8uNhiZc38EwfwmItI1bRgaLrnZWIL4rYGSMxfCK1/cEOpWrFfX9wmj
/diB6oqMyPXZXMCtgpX7TniUr5XOTCcUkeO9mQv5bmyq/YM/8hrTbcVSJlsVYLvP
EsBnUSHAcfLFiHXwa1RNiIGdbiPjbN+UYeXGAvqF58f3e5dTIHtN/UmWo7OH93If
9rLMVNcMpsfPx7QRk2IxEPumLCkyfwjzfKrVDM6P6TKEIUzD1og4IK9gTlfykVsh
56G5XiCOC/X2x8IMxKTLGuBiAVLFHXK/rSwoqhvNEWBFKDbP13QWs0LurBcW09Sa
/kQI9pIBT1xFA/R+OY5Xy1cqNVVK1Gxmk8/bllCijA9pCFSCFM4hLZE5CevdrBCV
h5SdqEK5hIlzFyypXfsCik/4p/+rfvlGfUKtFsPctxx29SPe+T0orx+l61jiWQok
rZOflwMawK5lDuASHrvNHGJcWaTwoo3VcXMQDnQY0Wulc43J5IFBaPxkZzgyd+S1
4lktHxatrCMUgw==
=pfZi
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Thomas Gleixner:
- Improve retpoline code patching by separating it from alternatives
which reduces memory footprint and allows to do better optimizations
in the actual runtime patching.
- Add proper retpoline support for x86/BPF
- Address noinstr warnings in x86/kvm, lockdep and paravirtualization
code
- Add support to handle pv_opsindirect calls in the noinstr analysis
- Classify symbols upfront and cache the result to avoid redundant
str*cmp() invocations.
- Add a CFI hash to reduce memory consumption which also reduces
runtime on a allyesconfig by ~50%
- Adjust XEN code to make objtool handling more robust and as a side
effect to prevent text fragmentation due to placement of the
hypercall page.
* tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
bpf,x86: Respect X86_FEATURE_RETPOLINE*
bpf,x86: Simplify computing label offsets
x86,bugs: Unconditionally allow spectre_v2=retpoline,amd
x86/alternative: Add debug prints to apply_retpolines()
x86/alternative: Try inline spectre_v2=retpoline,amd
x86/alternative: Handle Jcc __x86_indirect_thunk_\reg
x86/alternative: Implement .retpoline_sites support
x86/retpoline: Create a retpoline thunk array
x86/retpoline: Move the retpoline thunk declarations to nospec-branch.h
x86/asm: Fixup odd GEN-for-each-reg.h usage
x86/asm: Fix register order
x86/retpoline: Remove unused replacement symbols
objtool,x86: Replace alternatives with .retpoline_sites
objtool: Shrink struct instruction
objtool: Explicitly avoid self modifying code in .altinstr_replacement
objtool: Classify symbols
objtool: Support pv_opsindirect calls for noinstr
x86/xen: Rework the xen_{cpu,irq,mmu}_opsarrays
x86/xen: Mark xen_force_evtchn_callback() noinstr
x86/xen: Make irq_disable() noinstr
...
The size of the GHCB scratch area is limited to 16 KiB (GHCB_SCRATCH_AREA_LIMIT),
so there is no need for it to be a u64. This fixes a build error on 32-bit
systems:
i686-linux-gnu-ld: arch/x86/kvm/svm/sev.o: in function `sev_es_string_io:
sev.c:(.text+0x110f): undefined reference to `__udivdi3'
Cc: stable@vger.kernel.org
Fixes: 019057bd73d1 ("KVM: SEV-ES: fix length of string I/O")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This was tested by booting a nested guest with TSC=1Ghz,
observing the clocks, and doing about 100 cycles of migration.
Note that qemu patch is needed to support migration because
of a new MSR that needs to be placed in the migration state.
The patch will be sent to the qemu mailing list soon.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-14-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move RESET emulation for SVM vCPUs to svm_vcpu_reset(), and drop an extra
init_vmcb() from svm_create_vcpu() in the process. Hopefully KVM will
someday expose a dedicated RESET ioctl(), and in the meantime separating
"create" from "RESET" is a nice cleanup.
Keep the call to svm_switch_vmcb() so that misuse of svm->vmcb at worst
breaks the guest, e.g. premature accesses doesn't cause a NULL pointer
dereference.
Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently the KVM_REQ_GET_NESTED_STATE_PAGES on SVM only reloads PDPTRs,
and MSR bitmap, with former not really needed for SMM as SMM exit code
reloads them again from SMRAM'S CR3, and later happens to work
since MSR bitmap isn't modified while in SMM.
Still it is better to be consistient with VMX.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APIC base relocation is not supported anyway and won't work
correctly so just drop the code that handles it and keep AVIC
MMIO bar at the default APIC base.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-17-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that kvm_request_apicv_update doesn't need to drop the kvm->srcu lock,
we can call kvm_request_apicv_update directly.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-13-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Thanks to the former patches, it is now possible to keep the APICv
memslot always enabled, and it will be invisible to the guest
when it is inhibited
This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make svm_copy_vmrun_state()/svm_copy_vmloadsave_state() interface match
'memcpy(dest, src)' to avoid any confusion.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210719090322.625277-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To match svm_copy_vmrun_state(), rename nested_svm_vmloadsave() to
svm_copy_vmloadsave_state().
Opportunistically add missing braces to 'else' branch in
vmload_vmsave_interception().
No functional change intended.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210716144104.465269-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the VM was migrated while in SMM, no nested state was saved/restored,
and therefore svm_leave_smm has to load both save and control area
of the vmcb12. Save area is already loaded from HSAVE area,
so now load the control area as well from the vmcb12.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the code setting non-VMLOAD-VMSAVE state from
svm_set_nested_state() into its own function. This is going to be
re-used from svm_enter_smm()/svm_leave_smm().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In theory there are no side effects of not intercepting #SMI,
because then #SMI becomes transparent to the OS and the KVM.
Plus an observation on recent Zen2 CPUs reveals that these
CPUs ignore #SMI interception and never deliver #SMI VMexits.
This is also useful to test nested KVM to see that L1
handles #SMIs correctly in case when L1 doesn't intercept #SMI.
Finally the default remains the same, the SMI are intercepted
by default thus this patch doesn't have any effect unless
non default module param value is used.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enlightened MSR-Bitmap as per TLFS:
"The L1 hypervisor may collaborate with the L0 hypervisor to make MSR
accesses more efficient. It can enable enlightened MSR bitmaps by setting
the corresponding field in the enlightened VMCS to 1. When enabled, L0
hypervisor does not monitor the MSR bitmaps for changes. Instead, the L1
hypervisor must invalidate the corresponding clean field after making
changes to one of the MSR bitmaps."
Enable this for SVM.
Related VMX changes:
commit ceef7d10dfb6 ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support")
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <87df0710f95d28b91cc4ea014fc4d71056eebbee.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SVM added support for certain reserved fields to be used by
software or hypervisor. Add the following reserved fields:
- VMCB offset 0x3e0 - 0x3ff
- Clean bit 31
- SVM intercept exit code 0xf0000000
Later patches will make use of this for supporting Hyper-V
nested virtualization enhancements.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <a1f17a43a8e9e751a1a9cc0281649d71bdbf721b.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unify VMX and SVM code by moving APICv/AVIC enablement tracking to common
'enable_apicv' variable. Note: unlike APICv, AVIC is disabled by default.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210609150911.1471882-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make it consistent with kvm_intel.enable_apicv.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Reorganize SEV code to streamline and simplify future development
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCg1XQACgkQEsHwGGHe
VUpRKA//dwzDD1QU16JucfhgFlv/9OTm48ukSwAb9lZjDEy4H1CtVL3xEHFd7L3G
LJp0LTW+OQf0/0aGlQp/cP6sBF6G9Bf4mydx70Id4SyCQt8eZDodB+ZOOWbeteWq
p92fJPbX8CzAglutbE+3v/MD8CCAllTiLZnJZPVj4Kux2/wF6EryDgF1+rb5q8jp
ObTT9817mHVwWVUYzbgceZtd43IocOlKZRmF1qivwScMGylQTe1wfMjunpD5pVt8
Zg4UDNknNfYduqpaG546E6e1zerGNaJK7SHnsuzHRUVU5icNqtgBk061CehP9Ksq
DvYXLUl4xF16j6xJAqIZPNrBkJGdQf4q1g5x2FiBm7rSQU5owzqh5rkVk4EBFFzn
UtzeXpqbStbsZHXycyxBNdq2HXxkFPf2NXZ+bkripPg+DifOGots1uwvAft+6iAE
GudK6qxAvr8phR1cRyy6BahGtgOStXbZYEz0ZdU6t7qFfZMz+DomD5Jimj0kAe6B
s6ras5xm8q3/Py87N/KNjKtSEpgsHv/7F+idde7ODtHhpRL5HCBqhkZOSRkMMZqI
ptX1oSTvBXwRKyi5x9YhkKHUFqfFSUTfJhiRFCWK+IEAv3Y7SipJtfkqxRbI6fEV
FfCeueKDDdViBtseaRceVLJ8Tlr6Qjy27fkPPTqJpthqPpCdoZ0=
=ENfF
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"The three SEV commits are not really urgent material. But we figured
since getting them in now will avoid a huge amount of conflicts
between future SEV changes touching tip, the kvm and probably other
trees, sending them to you now would be best.
The idea is that the tip, kvm etc branches for 5.14 will all base
ontop of -rc2 and thus everything will be peachy. What is more, those
changes are purely mechanical and defines movement so they should be
fine to go now (famous last words).
Summary:
- Enable -Wundef for the compressed kernel build stage
- Reorganize SEV code to streamline and simplify future development"
* tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Enable -Wundef
x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFG
x86/sev: Move GHCB MSR protocol and NAE definitions in a common header
x86/sev-es: Rename sev-es.{ch} to sev.{ch}
The guest and the hypervisor contain separate macros to get and set
the GHCB MSR protocol and NAE event fields. Consolidate the GHCB
protocol definitions and helper macros in one place.
Leave the supported protocol version define in separate files to keep
the guest and hypervisor flexibility to support different GHCB version
in the same release.
There is no functional change intended.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-3-brijesh.singh@amd.com
When an SEV-ES guest is running, the GHCB is unmapped as part of the
vCPU run support. However, kvm_vcpu_unmap() triggers an RCU dereference
warning with CONFIG_PROVE_LOCKING=y because the SRCU lock is released
before invoking the vCPU run support.
Move the GHCB unmapping into the prepare_guest_switch callback, which is
invoked while still holding the SRCU lock, eliminating the RCU dereference
warning.
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <b2f9b79d15166f2c3e4375c0d9bc3268b7696455.1620332081.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace calls to svm_sev_enabled() with direct checks on sev_enabled, or
in the case of svm_mem_enc_op, simply drop the call to svm_sev_enabled().
This effectively replaces checks against a valid max_sev_asid with checks
against sev_enabled. sev_enabled is forced off by sev_hardware_setup()
if max_sev_asid is invalid, all call sites are guaranteed to run after
sev_hardware_setup(), and all of the checks care about SEV being fully
enabled (as opposed to intentionally handling the scenario where
max_sev_asid is valid but SEV enabling fails due to OOM).
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the allocation of the SEV VMCB array to sev.c to help pave the way
toward encapsulating SEV enabling wholly within sev.c.
No functional change intended.
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a reverse-CPUID entry for the memory encryption word, 0x8000001F.EAX,
and use it to override the supported CPUID flags reported to userspace.
Masking the reported CPUID flags avoids over-reporting KVM support, e.g.
without the mask a SEV-SNP capable CPU may incorrectly advertise SNP
support to userspace.
Clear SEV/SEV-ES if their corresponding module parameters are disabled,
and clear the memory encryption leaf completely if SEV is not fully
supported in KVM. Advertise SME_COHERENT in addition to SEV and SEV-ES,
as the guest can use SME_COHERENT to avoid CLFLUSH operations.
Explicitly omit SME and VM_PAGE_FLUSH from the reporting. These features
are used by KVM, but are not exposed to the guest, e.g. guest access to
related MSRs will fault.
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally invoke sev_hardware_setup() when configuring SVM and
handle clearing the module params/variable 'sev' and 'sev_es' in
sev_hardware_setup(). This allows making said variables static within
sev.c and reduces the odds of a collision with guest code, e.g. the guest
side of things has already laid claim to 'sev_enabled'.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KVM's "user return MSRs" framework to defer restoring the host's
MSR_TSC_AUX until the CPU returns to userspace. Add/improve comments to
clarify why MSR_TSC_AUX is intercepted on both RDMSR and WRMSR, and why
it's safe for KVM to keep the guest's value loaded even if KVM is
scheduled out.
Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210423223404.3860547-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>