IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The __assign_str macro has an unusual ending semicolon but the vast
majority of uses of the macro already have semicolon termination.
$ git grep -P '\b__assign_str\b' | wc -l
551
$ git grep -P '\b__assign_str\b.*;' | wc -l
480
Add semicolons to the __assign_str() uses without semicolon termination
and all the other uses without semicolon termination via additional defines
that are equivalent to __assign_str() with the eventual goal of removing
the semicolon from the __assign_str() macro definition.
Link: https://lore.kernel.org/lkml/1e068d21106bb6db05b735b4916bb420e6c9842a.camel@perches.com/
Link: https://lkml.kernel.org/r/48a056adabd8f70444475352f617914cef504a45.camel@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Rework event_create_dir() to use an array of static data instead of
function pointers where possible.
The problem is that it would call the function pointer on module load
before parse_args(), possibly even before jump_labels were initialized.
Luckily the generated functions don't use jump_labels but it still seems
fragile. It also gets in the way of changing when we make the module map
executable.
The generated function are basically calling trace_define_field() with a
bunch of static arguments. So instead of a function, capture these
arguments in a static array, avoiding the function call.
Now there are a number of cases where the fields are dynamic (syscall
arguments, kprobes and uprobes), in which case a static array does not
work, for these we preserve the function call. Luckily all these cases
are not related to modules and so we can retain the function call for
them.
Also fix up all broken tracepoint definitions that now generate a
compile error.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132458.342979914@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds traces to debug packet loss and retry for TID RDMA READ
protocol.
Link: https://lore.kernel.org/r/20190911113041.126040.64541.stgit@awfm-01.aw.intel.com
Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Signed-off-by: Kaike Wan <kaike.wan@intel.com>
Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
For expected packet receiving, the hfi1 hardware checks the KDETH PSN
automatically. However, when sequence error occurs, the hfi1 driver can
check the sequence instead until the hardware flow generation is reloaded.
TID RDMA READ and WRITE protocols implement similar software checking
mechanisms, but with different flags and different local variables to
store next expected PSN.
Unify the handling by using only one set of flag and local variable for
both TID RDMA READ and WRITE protocols.
Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com>
Signed-off-by: Kaike Wan <kaike.wan@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This patch makes the following changes to the static trace:
1. Adds the decoding of TID RDMA WRITE packets in IB header trace;
2. Adds trace events for various stages of the TID RDMA WRITE
protocol. These events provide a fine-grained control for monitoring
and debugging the hfi1 driver in the filed.
Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Signed-off-by: Kaike Wan <kaike.wan@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
This patch adds a function to receive TID RDMA ACK packet, which could
be an acknowledge to either a TID RDMA WRITE DATA packet or an TID
RDMA RESYNC packet. For an ACK to TID RDMA WRITE DATA packet, the
request segments are completed appropriately. For an ACK to a TID
RDMA RESYNC packet, any pending segment flow information is updated
accordingly.
Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com>
Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com>
Signed-off-by: Kaike Wan <kaike.wan@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The s_ack_queue is managed by two pointers into the ring:
r_head_ack_queue and s_tail_ack_queue. r_head_ack_queue is the index of
where the next received request is going to be placed and s_tail_ack_queue
is the entry of the request currently being processed. This works
perfectly fine for normal Verbs as the requests are processed one at a
time and the s_tail_ack_queue is not moved until the request that it
points to is fully completed.
In this fashion, s_tail_ack_queue constantly chases r_head_ack_queue and
the two pointers can easily be used to determine "queue full" and "queue
empty" conditions.
The detection of these two conditions are imported in determining when an
old entry can safely be overwritten with a new received request and the
resources associated with the old request be safely released.
When pipelined TID RDMA WRITE is introduced into this mix, things look
very different. r_head_ack_queue is still the point at which a newly
received request will be inserted, s_tail_ack_queue is still the
currently processed request. However, with pipelined TID RDMA WRITE
requests, s_tail_ack_queue moves to the next request once all TID RDMA
WRITE responses for that request have been sent. The rest of the protocol
for a particular request is managed by other pointers specific to TID RDMA
- r_tid_tail and r_tid_ack - which point to the entries for which the next
TID RDMA DATA packets are going to arrive and the request for which
the next TID RDMA ACK packets are to be generated, respectively.
What this means is that entries in the ring, which are "behind"
s_tail_ack_queue (entries which s_tail_ack_queue has gone past) are no
longer considered complete. This is where the problem is - a newly
received request could potentially overwrite a still active TID RDMA WRITE
request.
The reason why the TID RDMA pointers trail s_tail_ack_queue is that the
normal Verbs send engine uses s_tail_ack_queue as the pointer for the next
response. Since TID RDMA WRITE responses are processed by the normal Verbs
send engine, s_tail_ack_queue had to be moved to the next entry once all
TID RDMA WRITE response packets were sent to get the desired pipelining
between requests. Doing otherwise would mean that the normal Verbs send
engine would not be able to send the TID RDMA WRITE responses for the next
TID RDMA request until the current one is fully completed.
This patch introduces the s_acked_ack_queue index to point to the next
request to complete on the responder side. For requests other than TID
RDMA WRITE, s_acked_ack_queue should always be kept in sync with
s_tail_ack_queue. For TID RDMA WRITE request, it may fall behind
s_tail_ack_queue.
Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com>
Signed-off-by: Kaike Wan <kaike.wan@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
This patch makes the following changes to the static trace:
1. Adds the decoding of TID RDMA READ packets in IB header trace;
2. Tracks qpriv->s_flags and iow_flags in qpsleepwakeup trace;
3. Adds a new event to track RC ACK receiving;
4. Adds trace events for various stages of the TID RDMA READ
protocol. These events provide a fine-grained control for monitoring
and debugging the hfi1 driver in the filed.
Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Signed-off-by: Kaike Wan <kaike.wan@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
This patch adds the static trace for the flow and TID management
functions to help debugging in the filed.
Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Signed-off-by: Kaike Wan <kaike.wan@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
This patch adds the static trace to the OPFN code and moves tid related
static trace code into a new header file.
Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Signed-off-by: Kaike Wan <kaike.wan@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>