IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The second and (last) optimized XOR syndrome calculation. This version
supports right and left side optimization. All CPUs with architecture
older than Haswell will benefit from it.
It should be noted that SSE2 movntdq kills performance for memory areas
that are read and written simultaneously in chunks smaller than cache
line size. So use movdqa instead for P/Q writes in sse21 and sse22 XOR
functions.
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
v3: s-o-b comment, explanation of performance and descision for
the start/stop implementation
Implementing rmw functionality for RAID6 requires optimized syndrome
calculation. Up to now we can only generate a complete syndrome. The
target P/Q pages are always overwritten. With this patch we provide
a framework for inplace P/Q modification. In the first place simply
fill those functions with NULL values.
xor_syndrome() has two additional parameters: start & stop. These
will indicate the first and last page that are changing during a
rmw run. That makes it possible to avoid several unneccessary loops
and speed up calculation. The caller needs to implement the following
logic to make the functions work.
1) xor_syndrome(disks, start, stop, ...): "Remove" all data of source
blocks inside P/Q between (and including) start and end.
2) modify any block with start <= block <= stop
3) xor_syndrome(disks, start, stop, ...): "Reinsert" all data of
source blocks into P/Q between (and including) start and end.
Pages between start and stop that won't be changed should be filled
with a pointer to the kernel zero page. The reasons for not taking NULL
pages are:
1) Algorithms cross the whole source data line by line. Thus avoid
additional branches.
2) Having a NULL page avoids calculating the XOR P parity but still
need calulation steps for the Q parity. Depending on the algorithm
unrolling that might be only a difference of 2 instructions per loop.
The benchmark numbers of the gen_syndrome() functions are displayed in
the kernel log. Do the same for the xor_syndrome() functions. This
will help to analyze performance problems and give an rough estimate
how well the algorithm works. The choice of the fastest algorithm will
still depend on the gen_syndrome() performance.
With the start/stop page implementation the speed can vary a lot in real
life. E.g. a change of page 0 & page 15 on a stripe will be harder to
compute than the case where page 0 & page 1 are XOR candidates. To be not
to enthusiatic about the expected speeds we will run a worse case test
that simulates a change on the upper half of the stripe. So we do:
1) calculation of P/Q for the upper pages
2) continuation of Q for the lower (empty) pages
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
sse and avx2 stuff only exist on x86 arch, and we don't need to build
altivec on x86. And we can do that at lib/raid6/Makefile.
Proposed-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>