IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA
6dVh26uchcEQLN/XqUDt
=x306
-----END PGP SIGNATURE-----
Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When calling keyctl_read() on a key of type "trusted", if the
user-supplied buffer was too small, the kernel ignored the buffer length
and just wrote past the end of the buffer, potentially corrupting
userspace memory. Fix it by instead returning the size required, as per
the documentation for keyctl_read().
We also don't even fill the buffer at all in this case, as this is
slightly easier to implement than doing a short read, and either
behavior appears to be permitted. It also makes it match the behavior
of the "encrypted" key type.
Fixes: d00a1c72f7f4 ("keys: add new trusted key-type")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: <stable@vger.kernel.org> # v2.6.38+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Commit e645016abc80 ("KEYS: fix writing past end of user-supplied buffer
in keyring_read()") made keyring_read() stop corrupting userspace memory
when the user-supplied buffer is too small. However it also made the
return value in that case be the short buffer size rather than the size
required, yet keyctl_read() is actually documented to return the size
required. Therefore, switch it over to the documented behavior.
Note that for now we continue to have it fill the short buffer, since it
did that before (pre-v3.13) and dump_key_tree_aux() in keyutils arguably
relies on it.
Fixes: e645016abc80 ("KEYS: fix writing past end of user-supplied buffer in keyring_read()")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: <stable@vger.kernel.org> # v3.13+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
In proc_keys_show(), the key semaphore is not held, so the key ->flags
and ->expiry can be changed concurrently. We therefore should read them
atomically just once.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Similar to the case for key_validate(), we should load the key ->expiry
once atomically in keyring_search_iterator(), since it can be changed
concurrently with the flags whenever the key semaphore isn't held.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
In key_validate(), load the flags and expiry time once atomically, since
these can change concurrently if key_validate() is called without the
key semaphore held. And we don't want to get inconsistent results if a
variable is referenced multiple times. For example, key->expiry was
referenced in both 'if (key->expiry)' and in 'if (now.tv_sec >=
key->expiry)', making it theoretically possible to see a spurious
EKEYEXPIRED while the expiration time was being removed, i.e. set to 0.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Currently, when passed a key that already exists, add_key() will call the
key's ->update() method if such exists. But this is heavily broken in the
case where the key is uninstantiated because it doesn't call
__key_instantiate_and_link(). Consequently, it doesn't do most of the
things that are supposed to happen when the key is instantiated, such as
setting the instantiation state, clearing KEY_FLAG_USER_CONSTRUCT and
awakening tasks waiting on it, and incrementing key->user->nikeys.
It also never takes key_construction_mutex, which means that
->instantiate() can run concurrently with ->update() on the same key. In
the case of the "user" and "logon" key types this causes a memory leak, at
best. Maybe even worse, the ->update() methods of the "encrypted" and
"trusted" key types actually just dereference a NULL pointer when passed an
uninstantiated key.
Change key_create_or_update() to wait interruptibly for the key to finish
construction before continuing.
This patch only affects *uninstantiated* keys. For now we still allow a
negatively instantiated key to be updated (thereby positively
instantiating it), although that's broken too (the next patch fixes it)
and I'm not sure that anyone actually uses that functionality either.
Here is a simple reproducer for the bug using the "encrypted" key type
(requires CONFIG_ENCRYPTED_KEYS=y), though as noted above the bug
pertained to more than just the "encrypted" key type:
#include <stdlib.h>
#include <unistd.h>
#include <keyutils.h>
int main(void)
{
int ringid = keyctl_join_session_keyring(NULL);
if (fork()) {
for (;;) {
const char payload[] = "update user:foo 32";
usleep(rand() % 10000);
add_key("encrypted", "desc", payload, sizeof(payload), ringid);
keyctl_clear(ringid);
}
} else {
for (;;)
request_key("encrypted", "desc", "callout_info", ringid);
}
}
It causes:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: encrypted_update+0xb0/0x170
PGD 7a178067 P4D 7a178067 PUD 77269067 PMD 0
PREEMPT SMP
CPU: 0 PID: 340 Comm: reproduce Tainted: G D 4.14.0-rc1-00025-g428490e38b2e #796
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
task: ffff8a467a39a340 task.stack: ffffb15c40770000
RIP: 0010:encrypted_update+0xb0/0x170
RSP: 0018:ffffb15c40773de8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8a467a275b00 RCX: 0000000000000000
RDX: 0000000000000005 RSI: ffff8a467a275b14 RDI: ffffffffb742f303
RBP: ffffb15c40773e20 R08: 0000000000000000 R09: ffff8a467a275b17
R10: 0000000000000020 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff8a4677057180 R15: ffff8a467a275b0f
FS: 00007f5d7fb08700(0000) GS:ffff8a467f200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 0000000077262005 CR4: 00000000001606f0
Call Trace:
key_create_or_update+0x2bc/0x460
SyS_add_key+0x10c/0x1d0
entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x7f5d7f211259
RSP: 002b:00007ffed03904c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000f8
RAX: ffffffffffffffda RBX: 000000003b2a7955 RCX: 00007f5d7f211259
RDX: 00000000004009e4 RSI: 00000000004009ff RDI: 0000000000400a04
RBP: 0000000068db8bad R08: 000000003b2a7955 R09: 0000000000000004
R10: 000000000000001a R11: 0000000000000246 R12: 0000000000400868
R13: 00007ffed03905d0 R14: 0000000000000000 R15: 0000000000000000
Code: 77 28 e8 64 34 1f 00 45 31 c0 31 c9 48 8d 55 c8 48 89 df 48 8d 75 d0 e8 ff f9 ff ff 85 c0 41 89 c4 0f 88 84 00 00 00 4c 8b 7d c8 <49> 8b 75 18 4c 89 ff e8 24 f8 ff ff 85 c0 41 89 c4 78 6d 49 8b
RIP: encrypted_update+0xb0/0x170 RSP: ffffb15c40773de8
CR2: 0000000000000018
Cc: <stable@vger.kernel.org> # v2.6.12+
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Biggers <ebiggers@google.com>
Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection
error into one field such that:
(1) The instantiation state can be modified/read atomically.
(2) The error can be accessed atomically with the state.
(3) The error isn't stored unioned with the payload pointers.
This deals with the problem that the state is spread over three different
objects (two bits and a separate variable) and reading or updating them
atomically isn't practical, given that not only can uninstantiated keys
change into instantiated or rejected keys, but rejected keys can also turn
into instantiated keys - and someone accessing the key might not be using
any locking.
The main side effect of this problem is that what was held in the payload
may change, depending on the state. For instance, you might observe the
key to be in the rejected state. You then read the cached error, but if
the key semaphore wasn't locked, the key might've become instantiated
between the two reads - and you might now have something in hand that isn't
actually an error code.
The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error
code if the key is negatively instantiated. The key_is_instantiated()
function is replaced with key_is_positive() to avoid confusion as negative
keys are also 'instantiated'.
Additionally, barriering is included:
(1) Order payload-set before state-set during instantiation.
(2) Order state-read before payload-read when using the key.
Further separate barriering is necessary if RCU is being used to access the
payload content after reading the payload pointers.
Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data")
Cc: stable@vger.kernel.org # v4.4+
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
The recent rework introduced a possible randconfig build failure
when CONFIG_CRYPTO configured to only allow modules:
security/keys/big_key.o: In function `big_key_crypt':
big_key.c:(.text+0x29f): undefined reference to `crypto_aead_setkey'
security/keys/big_key.o: In function `big_key_init':
big_key.c:(.init.text+0x1a): undefined reference to `crypto_alloc_aead'
big_key.c:(.init.text+0x45): undefined reference to `crypto_aead_setauthsize'
big_key.c:(.init.text+0x77): undefined reference to `crypto_destroy_tfm'
crypto/gcm.o: In function `gcm_hash_crypt_remain_continue':
gcm.c:(.text+0x167): undefined reference to `crypto_ahash_finup'
crypto/gcm.o: In function `crypto_gcm_exit_tfm':
gcm.c:(.text+0x847): undefined reference to `crypto_destroy_tfm'
When we 'select CRYPTO' like the other users, we always get a
configuration that builds.
Fixes: 428490e38b2e ("security/keys: rewrite all of big_key crypto")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
A key of type "encrypted" references a "master key" which is used to
encrypt and decrypt the encrypted key's payload. However, when we
accessed the master key's payload, we failed to handle the case where
the master key has been revoked, which sets the payload pointer to NULL.
Note that request_key() *does* skip revoked keys, but there is still a
window where the key can be revoked before we acquire its semaphore.
Fix it by checking for a NULL payload, treating it like a key which was
already revoked at the time it was requested.
This was an issue for master keys of type "user" only. Master keys can
also be of type "trusted", but those cannot be revoked.
Fixes: 7e70cb497850 ("keys: add new key-type encrypted")
Reviewed-by: James Morris <james.l.morris@oracle.com>
Cc: <stable@vger.kernel.org> [v2.6.38+]
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
This started out as just replacing the use of crypto/rng with
get_random_bytes_wait, so that we wouldn't use bad randomness at boot
time. But, upon looking further, it appears that there were even deeper
underlying cryptographic problems, and that this seems to have been
committed with very little crypto review. So, I rewrote the whole thing,
trying to keep to the conventions introduced by the previous author, to
fix these cryptographic flaws.
It makes no sense to seed crypto/rng at boot time and then keep
using it like this, when in fact there's already get_random_bytes_wait,
which can ensure there's enough entropy and be a much more standard way
of generating keys. Since this sensitive material is being stored
untrusted, using ECB and no authentication is simply not okay at all. I
find it surprising and a bit horrifying that this code even made it past
basic crypto review, which perhaps points to some larger issues. This
patch moves from using AES-ECB to using AES-GCM. Since keys are uniquely
generated each time, we can set the nonce to zero. There was also a race
condition in which the same key would be reused at the same time in
different threads. A mutex fixes this issue now.
So, to summarize, this commit fixes the following vulnerabilities:
* Low entropy key generation, allowing an attacker to potentially
guess or predict keys.
* Unauthenticated encryption, allowing an attacker to modify the
cipher text in particular ways in order to manipulate the plaintext,
which is is even more frightening considering the next point.
* Use of ECB mode, allowing an attacker to trivially swap blocks or
compare identical plaintext blocks.
* Key re-use.
* Faulty memory zeroing.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Kirill Marinushkin <k.marinushkin@gmail.com>
Cc: security@kernel.org
Cc: stable@vger.kernel.org
Error paths forgot to zero out sensitive material, so this patch changes
some kfrees into a kzfrees.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers3@gmail.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Kirill Marinushkin <k.marinushkin@gmail.com>
Cc: security@kernel.org
Cc: stable@vger.kernel.org
kmemdup() is preferred to kmalloc() followed by memcpy().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
When checking for permission to view keys whilst reading from
/proc/keys, we should use the credentials with which the /proc/keys file
was opened. This is because, in a classic type of exploit, it can be
possible to bypass checks for the *current* credentials by passing the
file descriptor to a suid program.
Following commit 34dbbcdbf633 ("Make file credentials available to the
seqfile interfaces") we can finally fix it. So let's do it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
In key_user_lookup(), if there is no key_user for the given uid, we drop
key_user_lock, allocate a new key_user, and search the tree again. But
we failed to set 'parent' to NULL at the beginning of the second search.
If the tree were to be empty for the second search, the insertion would
be done with an invalid 'parent', scribbling over freed memory.
Fortunately this can't actually happen currently because the tree always
contains at least the root_key_user. But it still should be fixed to
make the code more robust.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
It was possible for an unprivileged user to create the user and user
session keyrings for another user. For example:
sudo -u '#3000' sh -c 'keyctl add keyring _uid.4000 "" @u
keyctl add keyring _uid_ses.4000 "" @u
sleep 15' &
sleep 1
sudo -u '#4000' keyctl describe @u
sudo -u '#4000' keyctl describe @us
This is problematic because these "fake" keyrings won't have the right
permissions. In particular, the user who created them first will own
them and will have full access to them via the possessor permissions,
which can be used to compromise the security of a user's keys:
-4: alswrv-----v------------ 3000 0 keyring: _uid.4000
-5: alswrv-----v------------ 3000 0 keyring: _uid_ses.4000
Fix it by marking user and user session keyrings with a flag
KEY_FLAG_UID_KEYRING. Then, when searching for a user or user session
keyring by name, skip all keyrings that don't have the flag set.
Fixes: 69664cf16af4 ("keys: don't generate user and user session keyrings unless they're accessed")
Cc: <stable@vger.kernel.org> [v2.6.26+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Userspace can call keyctl_read() on a keyring to get the list of IDs of
keys in the keyring. But if the user-supplied buffer is too small, the
kernel would write the full list anyway --- which will corrupt whatever
userspace memory happened to be past the end of the buffer. Fix it by
only filling the space that is available.
Fixes: b2a4df200d57 ("KEYS: Expand the capacity of a keyring")
Cc: <stable@vger.kernel.org> [v3.13+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
In keyctl_read_key(), if key_permission() were to return an error code
other than EACCES, we would leak a the reference to the key. This can't
actually happen currently because key_permission() can only return an
error code other than EACCES if security_key_permission() does, only
SELinux and Smack implement that hook, and neither can return an error
code other than EACCES. But it should still be fixed, as it is a bug
waiting to happen.
Fixes: 29db91906340 ("[PATCH] Keys: Add LSM hooks for key management [try #3]")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
In keyctl_assume_authority(), if keyctl_change_reqkey_auth() were to
fail, we would leak the reference to the 'authkey'. Currently this can
only happen if prepare_creds() fails to allocate memory. But it still
should be fixed, as it is a more severe bug waiting to happen.
This patch also moves the read of 'authkey->serial' to before the
reference to the authkey is dropped. Doing the read after dropping the
reference is very fragile because it assumes we still hold another
reference to the key. (Which we do, in current->cred->request_key_auth,
but there's no reason not to write it in the "obviously correct" way.)
Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
If key_instantiate_and_link() were to fail (which fortunately isn't
possible currently), the call to key_revoke(authkey) would crash with a
NULL pointer dereference in request_key_auth_revoke() because the key
has not yet been instantiated.
Fix this by removing the call to key_revoke(). key_put() is sufficient,
as it's not possible for an uninstantiated authkey to have been used for
anything yet.
Fixes: b5f545c880a2 ("[PATCH] keys: Permit running process to instantiate keys")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
In request_key_auth_new(), if key_alloc() or key_instantiate_and_link()
were to fail, we would leak a reference to the 'struct cred'. Currently
this can only happen if key_alloc() fails to allocate memory. But it
still should be fixed, as it is a more severe bug waiting to happen.
Fix it by cleaning things up to use a helper function which frees a
'struct request_key_auth' correctly.
Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Make the position an in/out argument like all the other read/write
helpers and and make the buf argument a void pointer.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Use proper ssize_t and size_t types for the return value and count
argument, move the offset last and make it an in/out argument like
all other read/write helpers, and make the buf argument a void pointer
to get rid of lots of casts in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
randstruct plugin, including the task_struct.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJZbRgGAAoJEIly9N/cbcAmk2AQAIL60aQ+9RIcFAXriFhnd7Z2
x9Jqi9JNc8NgPFXx8GhE4J4eTZ5PwcjgXBpNRWY/laBkRyoBHn24ku09YxrJjmHz
ZSUsP+/iO9lVeEfbmU9Tnk50afkfwx6bHXBwkiVGQWHtybNVUqA19JbqkHeg8ubx
myKLGeUv5PPCodRIcBDD0+HaAANcsqtgbDpgmWU8s+IXWwvWCE2p7PuBw7v3HHgH
qzlPDHYQCRDw+LWsSqPaHj+9mbRO18P/ydMoZHGH4Hl3YYNtty8ZbxnraI3A7zBL
6mLUVcZ+/l88DqHc5I05T8MmLU1yl2VRxi8/jpMAkg9wkvZ5iNAtlEKIWU6eqsvk
vaImNOkViLKlWKF+oUD1YdG16d8Segrc6m4MGdI021tb+LoGuUbkY7Tl4ee+3dl/
9FM+jPv95HjJnyfRNGidh2TKTa9KJkh6DYM9aUnktMFy3ca1h/LuszOiN0LTDiHt
k5xoFURk98XslJJyXM8FPwXCXiRivrXMZbg5ixNoS4aYSBLv7Cn1M6cPnSOs7UPh
FqdNPXLRZ+vabSxvEg5+41Ioe0SHqACQIfaSsV5BfF2rrRRdaAxK4h7DBcI6owV2
7ziBN1nBBq2onYGbARN6ApyCqLcchsKtQfiZ0iFsvW7ZawnkVOOObDTCgPl3tdkr
403YXzphQVzJtpT5eRV6
=ngAW
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull structure randomization updates from Kees Cook:
"Now that IPC and other changes have landed, enable manual markings for
randstruct plugin, including the task_struct.
This is the rest of what was staged in -next for the gcc-plugins, and
comes in three patches, largest first:
- mark "easy" structs with __randomize_layout
- mark task_struct with an optional anonymous struct to isolate the
__randomize_layout section
- mark structs to opt _out_ of automated marking (which will come
later)
And, FWIW, this continues to pass allmodconfig (normal and patched to
enable gcc-plugins) builds of x86_64, i386, arm64, arm, powerpc, and
s390 for me"
* tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
randstruct: opt-out externally exposed function pointer structs
task_struct: Allow randomized layout
randstruct: Mark various structs for randomization
Syscalls must validate that their reserved arguments are zero and return
EINVAL otherwise. Otherwise, it will be impossible to actually use them
for anything in the future because existing programs may be passing
garbage in. This is standard practice when adding new APIs.
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
around. Highlights include:
- Conversion of a bunch of security documentation into RST
- The conversion of the remaining DocBook templates by The Amazing
Mauro Machine. We can now drop the entire DocBook build chain.
- The usual collection of fixes and minor updates.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZWkGAAAoJEI3ONVYwIuV6rf0P/0B3JTiVPKS/WUx53+jzbAi4
1BN7dmmuMxE1bWpgdEq+ac4aKxm07iAojuntuMj0qz/ZB1WARcmvEqqzI5i4wfq9
5MrLduLkyuWfr4MOPseKJ2VK83p8nkMOiO7jmnBsilu7fE4nF+5YY9j4cVaArfMy
cCQvAGjQzvej2eiWMGUSLHn4QFKh00aD7cwKyBVsJ08b27C9xL0J2LQyCDZ4yDgf
37/MH3puEd3HX/4qAwLonIxT3xrIrrbDturqLU7OSKcWTtGZNrYyTFbwR3RQtqWd
H8YZVg2Uyhzg9MYhkbQ2E5dEjUP4mkegcp6/JTINH++OOPpTbdTJgirTx7VTkSf1
+kL8t7+Ayxd0FH3+77GJ5RMj8LUK6rj5cZfU5nClFQKWXP9UL3IelQ3Nl+SpdM8v
ZAbR2KjKgH9KS6+cbIhgFYlvY+JgPkOVruwbIAc7wXVM3ibk1sWoBOFEujcbueWh
yDpQv3l1UX0CKr3jnevJoW26LtEbGFtC7gSKZ+3btyeSBpWFGlii42KNycEGwUW0
ezlwryDVHzyTUiKllNmkdK4v73mvPsZHEjgmme4afKAIiUilmcUF4XcqD86hISFT
t+UJLA/zEU+0sJe26o2nK6GNJzmo4oCtVyxfhRe26Ojs1n80xlYgnZRfuIYdd31Z
nwLBnwDCHAOyX91WXp9G
=cVjZ
-----END PGP SIGNATURE-----
Merge tag 'docs-4.13' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"There has been a fair amount of activity in the docs tree this time
around. Highlights include:
- Conversion of a bunch of security documentation into RST
- The conversion of the remaining DocBook templates by The Amazing
Mauro Machine. We can now drop the entire DocBook build chain.
- The usual collection of fixes and minor updates"
* tag 'docs-4.13' of git://git.lwn.net/linux: (90 commits)
scripts/kernel-doc: handle DECLARE_HASHTABLE
Documentation: atomic_ops.txt is core-api/atomic_ops.rst
Docs: clean up some DocBook loose ends
Make the main documentation title less Geocities
Docs: Use kernel-figure in vidioc-g-selection.rst
Docs: fix table problems in ras.rst
Docs: Fix breakage with Sphinx 1.5 and upper
Docs: Include the Latex "ifthen" package
doc/kokr/howto: Only send regression fixes after -rc1
docs-rst: fix broken links to dynamic-debug-howto in kernel-parameters
doc: Document suitability of IBM Verse for kernel development
Doc: fix a markup error in coding-style.rst
docs: driver-api: i2c: remove some outdated information
Documentation: DMA API: fix a typo in a function name
Docs: Insert missing space to separate link from text
doc/ko_KR/memory-barriers: Update control-dependencies example
Documentation, kbuild: fix typo "minimun" -> "minimum"
docs: Fix some formatting issues in request-key.rst
doc: ReSTify keys-trusted-encrypted.txt
doc: ReSTify keys-request-key.txt
...
This marks many critical kernel structures for randomization. These are
structures that have been targeted in the past in security exploits, or
contain functions pointers, pointers to function pointer tables, lists,
workqueues, ref-counters, credentials, permissions, or are otherwise
sensitive. This initial list was extracted from Brad Spengler/PaX Team's
code in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.
Left out of this list is task_struct, which requires special handling
and will be covered in a subsequent patch.
Signed-off-by: Kees Cook <keescook@chromium.org>
The wait_bit*() types and APIs are mixed into wait.h, but they
are a pretty orthogonal extension of wait-queues.
Furthermore, only about 50 kernel files use these APIs, while
over 1000 use the regular wait-queue functionality.
So clean up the main wait.h by moving the wait-bit functionality
out of it, into a separate .h and .c file:
include/linux/wait_bit.h for types and APIs
kernel/sched/wait_bit.c for the implementation
Update all header dependencies.
This reduces the size of wait.h rather significantly, by about 30%.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a key's refcount is dropped to zero between key_lookup() peeking at
the refcount and subsequently attempting to increment it, refcount_inc()
will see a zero refcount. Here, refcount_inc() will WARN_ONCE(), and
will *not* increment the refcount, which will remain zero.
Once key_lookup() drops key_serial_lock, it is possible for the key to
be freed behind our back.
This patch uses refcount_inc_not_zero() to perform the peek and increment
atomically.
Fixes: fff292914d3a2f1e ("security, keys: convert key.usage from atomic_t to refcount_t")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: David Windsor <dwindsor@gmail.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Hans Liljestrand <ishkamiel@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: James Morris <james.l.morris@oracle.com>
The initial Diffie-Hellman computation made direct use of the MPI
library because the crypto module did not support DH at the time. Now
that KPP is implemented, KEYCTL_DH_COMPUTE should use it to get rid of
duplicate code and leverage possible hardware acceleration.
This fixes an issue whereby the input to the KDF computation would
include additional uninitialized memory when the result of the
Diffie-Hellman computation was shorter than the input prime number.
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Accessing a 'u8[4]' through a '__be32 *' violates alignment rules. Just
make the counter a __be32 instead.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
If userspace called KEYCTL_DH_COMPUTE with kdf_params containing NULL
otherinfo but nonzero otherinfolen, the kernel would allocate a buffer
for the otherinfo, then feed it into the KDF without initializing it.
Fix this by always doing the copy from userspace (which will fail with
EFAULT in this scenario).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Requesting "digest_null" in the keyctl_kdf_params caused an infinite
loop in kdf_ctr() because the "null" hash has a digest size of 0. Fix
it by rejecting hash algorithms with a digest size of 0.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
While a 'struct key' itself normally does not contain sensitive
information, Documentation/security/keys.txt actually encourages this:
"Having a payload is not required; and the payload can, in fact,
just be a value stored in the struct key itself."
In case someone has taken this advice, or will take this advice in the
future, zero the key structure before freeing it. We might as well, and
as a bonus this could make it a bit more difficult for an adversary to
determine which keys have recently been in use.
This is safe because the key_jar cache does not use a constructor.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
As the previous patch did for encrypted-keys, zero sensitive any
potentially sensitive data related to the "trusted" key type before it
is freed. Notably, we were not zeroing the tpm_buf structures in which
the actual key is stored for TPM seal and unseal, nor were we zeroing
the trusted_key_payload in certain error paths.
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
For keys of type "encrypted", consistently zero sensitive key material
before freeing it. This was already being done for the decrypted
payloads of encrypted keys, but not for the master key and the keys
derived from the master key.
Out of an abundance of caution and because it is trivial to do so, also
zero buffers containing the key payload in encrypted form, although
depending on how the encrypted-keys feature is used such information
does not necessarily need to be kept secret.
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Zero the payloads of user and logon keys before freeing them. This
prevents sensitive key material from being kept around in the slab
caches after a key is released.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Before returning from add_key() or one of the keyctl() commands that
takes in a key payload, zero the temporary buffer that was allocated to
hold the key payload copied from userspace. This may contain sensitive
key material that should not be kept around in the slab caches.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
sys_add_key() and the KEYCTL_UPDATE operation of sys_keyctl() allowed a
NULL payload with nonzero length to be passed to the key type's
->preparse(), ->instantiate(), and/or ->update() methods. Various key
types including asymmetric, cifs.idmap, cifs.spnego, and pkcs7_test did
not handle this case, allowing an unprivileged user to trivially cause a
NULL pointer dereference (kernel oops) if one of these key types was
present. Fix it by doing the copy_from_user() when 'plen' is nonzero
rather than when '_payload' is non-NULL, causing the syscall to fail
with EFAULT as expected when an invalid buffer is specified.
Cc: stable@vger.kernel.org # 2.6.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
MACs should, in general, be compared using crypto_memneq() to prevent
timing attacks.
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
The encrypted-keys module was using a single global HMAC transform,
which could be rekeyed by multiple threads concurrently operating on
different keys, causing incorrect HMAC values to be calculated. Fix
this by allocating a new HMAC transform whenever we need to calculate a
HMAC. Also simplify things a bit by allocating the shash_desc's using
SHASH_DESC_ON_STACK() for both the HMAC and unkeyed hashes.
The following script reproduces the bug:
keyctl new_session
keyctl add user master "abcdefghijklmnop" @s
for i in $(seq 2); do
(
set -e
for j in $(seq 1000); do
keyid=$(keyctl add encrypted desc$i "new user:master 25" @s)
datablob="$(keyctl pipe $keyid)"
keyctl unlink $keyid > /dev/null
keyid=$(keyctl add encrypted desc$i "load $datablob" @s)
keyctl unlink $keyid > /dev/null
done
) &
done
Output with bug:
[ 439.691094] encrypted_key: bad hmac (-22)
add_key: Invalid argument
add_key: Invalid argument
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
With the 'encrypted' key type it was possible for userspace to provide a
data blob ending with a master key description shorter than expected,
e.g. 'keyctl add encrypted desc "new x" @s'. When validating such a
master key description, validate_master_desc() could read beyond the end
of the buffer. Fix this by using strncmp() instead of memcmp(). [Also
clean up the code to deduplicate some logic.]
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Since v4.9, the crypto API cannot (normally) be used to encrypt/decrypt
stack buffers because the stack may be virtually mapped. Fix this for
the padding buffers in encrypted-keys by using ZERO_PAGE for the
encryption padding and by allocating a temporary heap buffer for the
decryption padding.
Tested with CONFIG_DEBUG_SG=y:
keyctl new_session
keyctl add user master "abcdefghijklmnop" @s
keyid=$(keyctl add encrypted desc "new user:master 25" @s)
datablob="$(keyctl pipe $keyid)"
keyctl unlink $keyid
keyid=$(keyctl add encrypted desc "load $datablob" @s)
datablob2="$(keyctl pipe $keyid)"
[ "$datablob" = "$datablob2" ] && echo "Success!"
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org # 4.9+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
In join_session_keyring(), if install_session_keyring_to_cred() were to
fail, we would leak the keyring reference, just like in the bug fixed by
commit 23567fd052a9 ("KEYS: Fix keyring ref leak in
join_session_keyring()"). Fortunately this cannot happen currently, but
we really should be more careful. Do this by adding and using a new
error label at which the keyring reference is dropped.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Omit an extra message for a memory allocation failure in this function.
This issue was detected by using the Coccinelle software.
Link: http://events.linuxfoundation.org/sites/events/files/slides/LCJ16-Refactor_Strings-WSang_0.pdf
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
With the new standardized functions, we can replace all ACCESS_ONCE()
calls across relevant security/keyrings/.
ACCESS_ONCE() does not work reliably on non-scalar types. For example
gcc 4.6 and 4.7 might remove the volatile tag for such accesses during
the SRA (scalar replacement of aggregates) step:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145
Update the new calls regardless of if it is a scalar type, this is
cleaner than having three alternatives.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
CONFIG_KEYS_COMPAT is defined in arch-specific Kconfigs and is missing for
several 64-bit architectures : mips, parisc, tile.
At the moment and for those architectures, calling in 32-bit userspace the
keyctl syscall would return an ENOSYS error.
This patch moves the CONFIG_KEYS_COMPAT option to security/keys/Kconfig, to
make sure the compatibility wrapper is registered by default for any 64-bit
architecture as long as it is configured with CONFIG_COMPAT.
[DH: Modified to remove arm64 compat enablement also as requested by Eric
Biggers]
Signed-off-by: Bilal Amarni <bilal.amarni@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
cc: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>