IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When an oom killing occurs, almost all processes are getting stuck at the
following two points.
1) __alloc_pages_nodemask
2) __lock_page_or_retry
1) is not very problematic because TIF_MEMDIE leads to an allocation
failure and getting out from page allocator.
2) is more problematic. In an OOM situation, zones typically don't have
page cache at all and memory starvation might lead to greatly reduced IO
performance. When a fork bomb occurs, TIF_MEMDIE tasks don't die quickly,
meaning that a fork bomb may create new process quickly rather than the
oom-killer killing it. Then, the system may become livelocked.
This patch makes the pagefault interruptible by SIGKILL.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Eliminate various 'set but not used' warnings
x86, SMEP: Fix section mismatch warnings
x86, amd: Use _safe() msr access for GartTlbWlk disable code
Commit e66eed651f ("list: remove prefetching from regular list
iterators") removed the include of prefetch.h from list.h, which
uncovered several cases that had apparently relied on that rather
obscure header file dependency.
So this fixes things up a bit, using
grep -L linux/prefetch.h $(git grep -l '[^a-z_]prefetchw*(' -- '*.[ch]')
grep -L 'prefetchw*(' $(git grep -l 'linux/prefetch.h' -- '*.[ch]')
to guide us in finding files that either need <linux/prefetch.h>
inclusion, or have it despite not needing it.
There are more of them around (mostly network drivers), but this gets
many core ones.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (50 commits)
x86, mm: Allow ZONE_DMA to be configurable
x86, NUMA: Trim numa meminfo with max_pfn in a separate loop
x86, NUMA: Rename setup_node_bootmem() to setup_node_data()
x86, NUMA: Enable emulation on 32bit too
x86, NUMA: Enable CONFIG_AMD_NUMA on 32bit too
x86, NUMA: Rename amdtopology_64.c to amdtopology.c
x86, NUMA: Make numa_init_array() static
x86, NUMA: Make 32bit use common NUMA init path
x86, NUMA: Initialize and use remap allocator from setup_node_bootmem()
x86-32, NUMA: Add @start and @end to init_alloc_remap()
x86, NUMA: Remove long 64bit assumption from numa.c
x86, NUMA: Enable build of generic NUMA init code on 32bit
x86, NUMA: Move NUMA init logic from numa_64.c to numa.c
x86-32, NUMA: Update numaq to use new NUMA init protocol
x86-32, NUMA: Replace srat_32.c with srat.c
x86-32, NUMA: implement temporary NUMA init shims
x86, NUMA: Move numa_nodes_parsed to numa.[hc]
x86-32, NUMA: Move get_memcfg_numa() into numa_32.c
x86, NUMA: make srat.c 32bit safe
x86, NUMA: rename srat_64.c to srat.c
...
ZONE_DMA is unnecessary for a large number of machines that do not
require less than 32-bit DMA addressing, e.g. ISA legacy DMA or PCI
cards with a restricted DMA address mask.
This patch allows users to disable ZONE_DMA for x86 if they know they
will not be using such devices with their kernel.
This prevents the VM from unnecessarily reserving a ratio of memory
(defaulting to 1/256th of system capacity) with lowmem_reserve_ratio
for such allocations when it will never be used.
Signed-off-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.00.1105161353560.4353@chino.kir.corp.google.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
With CONFIG_DEBUG_SECTION_MISMATCH=y I see these warnings in next-20110415:
LD vmlinux.o
MODPOST vmlinux.o
WARNING: vmlinux.o(.text+0x1ba48): Section mismatch in reference from the function native_pagetable_reserve() to the function .init.text:memblock_x86_reserve_range()
The function native_pagetable_reserve() references
the function __init memblock_x86_reserve_range().
This is often because native_pagetable_reserve lacks a __init
annotation or the annotation of memblock_x86_reserve_range is wrong.
This patch fixes the issue.
Thanks to pipacs from PaX project for help on IRC.
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Introduce a new x86_init hook called pagetable_reserve that at the end
of init_memory_mapping is used to reserve a range of memory addresses for
the kernel pagetable pages we used and free the other ones.
On native it just calls memblock_x86_reserve_range while on xen it also
takes care of setting the spare memory previously allocated
for kernel pagetable pages from RO to RW, so that it can be used for
other purposes.
A detailed explanation of the reason why this hook is needed follows.
As a consequence of the commit:
commit 4b239f458c
Author: Yinghai Lu <yinghai@kernel.org>
Date: Fri Dec 17 16:58:28 2010 -0800
x86-64, mm: Put early page table high
at some point init_memory_mapping is going to reach the pagetable pages
area and map those pages too (mapping them as normal memory that falls
in the range of addresses passed to init_memory_mapping as argument).
Some of those pages are already pagetable pages (they are in the range
pgt_buf_start-pgt_buf_end) therefore they are going to be mapped RO and
everything is fine.
Some of these pages are not pagetable pages yet (they fall in the range
pgt_buf_end-pgt_buf_top; for example the page at pgt_buf_end) so they
are going to be mapped RW. When these pages become pagetable pages and
are hooked into the pagetable, xen will find that the guest has already
a RW mapping of them somewhere and fail the operation.
The reason Xen requires pagetables to be RO is that the hypervisor needs
to verify that the pagetables are valid before using them. The validation
operations are called "pinning" (more details in arch/x86/xen/mmu.c).
In order to fix the issue we mark all the pages in the entire range
pgt_buf_start-pgt_buf_top as RO, however when the pagetable allocation
is completed only the range pgt_buf_start-pgt_buf_end is reserved by
init_memory_mapping. Hence the kernel is going to crash as soon as one
of the pages in the range pgt_buf_end-pgt_buf_top is reused (b/c those
ranges are RO).
For this reason we need a hook to reserve the kernel pagetable pages we
used and free the other ones so that they can be reused for other
purposes.
On native it just means calling memblock_x86_reserve_range, on Xen it
also means marking RW the pagetable pages that we allocated before but
that haven't been used before.
Another way to fix this is without using the hook is by adding a 'if
(xen_pv_domain)' in the 'init_memory_mapping' code and calling the Xen
counterpart, but that is just nasty.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
During testing 32bit numa unifying code from tj, found one system with
more than 64g fails to use numa. It turns out we do not trim numa
meminfo correctly against max_pfn in case start address of a node is
higher than 64GiB. Bug fix made it to tip tree.
This patch moves the checking and trimming to a separate loop. So we
don't need to compare low/high in following merge loops. It makes the
code more readable.
Also it makes the node merge printouts less strange. On a 512GiB numa
system with 32bit,
before:
> NUMA: Node 0 [0,a0000) + [100000,80000000) -> [0,80000000)
> NUMA: Node 0 [0,80000000) + [100000000,1080000000) -> [0,1000000000)
after:
> NUMA: Node 0 [0,a0000) + [100000,80000000) -> [0,80000000)
> NUMA: Node 0 [0,80000000) + [100000000,1000000000) -> [0,1000000000)
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[Updated patch description and comment slightly.]
Signed-off-by: Tejun Heo <tj@kernel.org>
After using memblock to replace bootmem, that function only sets up
node_data now.
Change the name to reflect what it actually does.
tj: Minor adjustment to the patch description.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that NUMA init path is unified, NUMA emulation can be enabled on
32bit. Make numa_emluation.c safe on 32bit by doing the followings.
* Define MAX_DMA32_PFN on 32bit too.
* Include bootmem.h for max_pfn declaration.
* Use u64 explicitly and always use PFN_PHYS() when converting page
number to address.
* Avoid __udivdi3() generation on 32bit by doing number of pages
calculation instead in split_nodes_interleave().
And drop X86_64 dependency from Kconfig.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Now that NUMA init path is unified, amdtopology can be enabled on
32bit. Make amdtopology.c safe on 32bit by explicitly using u64 and
drop X86_64 dependency from Kconfig.
Inclusion of bootmem.h is added for max_pfn declaration.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
amdtopology is going to be used by 32bit too drop _64 suffix. This is
pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
numa_init_array() no longer has users outside of numa.c. Make it
static.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
With both _numa_init() methods converted and the rest of init code
adjusted, numa_32.c now can switch from the 32bit only init code to
the common one in numa.c.
* Shim get_memcfg_*()'s are dropped and initmem_init() calls
x86_numa_init(), which is updated to handle NUMAQ.
* All boilerplate operations including node range limiting, pgdat
alloc/init are handled by numa_init(). 32bit only implementation is
removed.
* 32bit numa_add_memblk(), numa_set_distance() and
memory_add_physaddr_to_nid() removed and common versions in
numa_32.c enabled for 32bit.
This change causes the following behavior changes.
* NODE_DATA()->node_start_pfn/node_spanned_pages properly initialized
for 32bit too.
* Much more sanity checks and configuration cleanups.
* Proper handling of node distances.
* The same NUMA init messages as 64bit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
setup_node_bootmem() is taken from 64bit and doesn't use remap
allocator. It's about to be shared with 32bit so add support for it.
If NODE_DATA is remapped, it's noted in the debug message and node
locality check is skipped as the __pa() of the remapped address
doesn't reflect the actual physical address.
On 64bit, remap allocator becomes noop and doesn't affect the
behavior.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Instead of dereferencing node_start/end_pfn[] directly, make
init_alloc_remap() take @start and @end and let the caller be
responsible for making sure the range is sane. This is to prepare for
use from unified NUMA init code.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Code moved from numa_64.c has assumption that long is 64bit in several
places. This patch removes the assumption by using {s|u}64_t
explicity, using PFN_PHYS() for page number -> addr conversions and
adjusting printf formats.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Generic NUMA init code was moved to numa.c from numa_64.c but is still
guaraded by CONFIG_X86_64. This patch removes the compile guard and
enables compiling on 32bit.
* numa_add_memblk() and numa_set_distance() clash with the shim
implementation in numa_32.c and are left out.
* memory_add_physaddr_to_nid() clashes with 32bit implementation and
is left out.
* MAX_DMA_PFN definition in dma.h moved out of !CONFIG_X86_32.
* node_data definition in numa_32.c removed in favor of the one in
numa.c.
There are places where ulong is assumed to be 64bit. The next patch
will fix them up. Note that although the code is compiled it isn't
used yet and this patch doesn't cause any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Move the generic 64bit NUMA init machinery from numa_64.c to numa.c.
* node_data[], numa_mem_info and numa_distance
* numa_add_memblk[_to](), numa_remove_memblk[_from]()
* numa_set_distance() and friends
* numa_init() and all the numa_meminfo handling helpers called from it
* dummy_numa_init()
* memory_add_physaddr_to_nid()
A new function x86_numa_init() is added and the content of
numa_64.c::initmem_init() is moved into it. initmem_init() now simply
calls x86_numa_init().
Constants and numa_off declaration are moved from numa_{32|64}.h to
numa.h.
This is code reorganization and doesn't involve any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Update numaq such that it calls numa_add_memblk() and sets
numa_nodes_parsed instead of directly diddling with NUMA states. The
original get_memcfg_numaq() is renamed to numaq_numa_init() and new
get_memcfg_numaq() is created in numa_32.c.
The shim numa_add_memblk() implementation handles node_start/end_pfn[]
and node_set_online() for nodes with memory. The new
get_memcfg_numaq() exactly the same with get_memcfg_from_srat() other
than calling the numaq init function. Things get_memcfgs_numaq() do
are not strictly necessary for numaq but added for consistency and to
help unifying NUMA init handling.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
SRAT support implementation in srat_32.c and srat.c are generally
similar; however, there are some differences.
First of all, 64bit implementation supports more types of SRAT
entries. 64bit supports x2apic, affinity, memory and SLIT. 32bit
only supports processor and memory.
Most other differences stem from different initialization protocols
employed by 64bit and 32bit NUMA init paths.
On 64bit,
* Mappings among PXM, node and apicid are directly done in each SRAT
entry callback.
* Memory affinity information is passed to numa_add_memblk() which
takes care of all interfacing with NUMA init.
* Doesn't directly initialize NUMA configurations. All the
information is recorded in numa_nodes_parsed and memblks.
On 32bit,
* Checks numa_off.
* Things go through one more level of indirection via private tables
but eventually end up initializing the same mappings.
* node_start/end_pfn[] are initialized and
memblock_x86_register_active_regions() is called for each memory
chunk.
* node_set_online() is called for each online node.
* sort_node_map() is called.
There are also other minor differences in sanity checking and messages
but taking 64bit version should be good enough.
This patch drops the 32bit specific implementation and makes the 64bit
implementation common for both 32 and 64bit.
The init protocol differences are dealt with in two places - the
numa_add_memblk() shim added in the previous patch and new temporary
numa_32.c:get_memcfg_from_srat() which wraps invocation of
x86_acpi_numa_init().
The shim numa_add_memblk() handles the folowings.
* node_start/end_pfn[] initialization.
* node_set_online() for memory nodes.
* Invocation of memblock_x86_register_active_regions().
The shim get_memcfg_from_srat() handles the followings.
* numa_off check.
* node_set_online() for CPU nodes.
* sort_node_map() invocation.
* Clearing of numa_nodes_parsed and active_ranges on failure.
The shims are temporary and will be removed as the generic NUMA init
path in 32bit is replaced with 64bit one.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
To help transition to common NUMA init, implement temporary 32bit
shims for numa_add_memblk() and numa_set_distance().
numa_add_memblk() registers the memblk and adjusts
node_start/end_pfn[]. numa_set_distance() is noop.
These shims will allow using 64bit NUMA init functions on 32bit and
gradual transition to common NUMA init path.
For detailed description, please read description of commits which
make use of the shim functions.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Move numa_nodes_parsed from numa_64.[hc] to numa.[hc] to prepare for
NUMA init path unification.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
There's no reason get_memcfg_numa() to be implemented inline in
mmzone_32.h. Move it to numa_32.c and also make
get_memcfg_numa_flag() static.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Make srat.c 32bit safe by removing the assumption that unsigned long
is 64bit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Rename srat_64.c to srat.c. This is to prepare for unification of
NUMA init paths between 32 and 64bit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
* Kill no longer used struct bootnode.
* Kill dangling declaration of pxm_to_nid() in numa_32.h.
* Make setup_node_bootmem() static.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Instead of calling memory_present() for each region from NUMA init,
call sparse_memory_present_with_active_regions() from paging_init()
similarly to x86-64.
For flat and numaq, this results in exactly the same memory_present()
calls. For srat, if there are multiple memory chunks for a node,
after this change, memory_present() will be called separately for each
chunk instead of being called once to encompass the whole range, which
doesn't cause any harm and actually is the better behavior.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Currently, the only meaningful user of apic->x86_32_numa_cpu_node() is
NUMAQ which returns valid mapping only after CPU is initialized during
SMP bringup; thus, the previous patch to set apicid -> node in
setup_local_APIC() makes __apicid_to_node[] always contain the correct
mapping whether custom apic->x86_32_numa_cpu_node() is used or not.
So, there is no reason to keep separate 32bit implementation. We can
always consult __apicid_to_node[]. Move 64bit implementation from
numa_64.c to numa.c and remove 32bit implementation from numa_32.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
With top-down memblock allocation, the allocation range limits in
ealry_node_mem() can be simplified - try node-local first, then any
node but in any case don't allocate below DMA limit.
Remove early_node_mem() and implement simplified allocation directly
in setup_node_bootmem().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Make the following trivial changes in preparation for further updates.
* nodeid -> nid, nid -> tnid
* use nd_ prefix for nodedata related variables
* remove start/end_pfn and use start/end directly
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
The only special handling NUMA needs to do for hotadd memory is
determining the node for the hotadd memory given the address of it and
there's nothing specific to specific config method used.
srat_64.c does somewhat elaborate error checking on
ACPI_SRAT_MEM_HOT_PLUGGABLE regions, remembers them and implements
memory_add_physaddr_to_nid() which determines the node for given
hotadd address.
This is almost completely redundant. All the information is already
available to the generic NUMA code which already performs all the
sanity checking and merging. All that's necessary is not using
__initdata from numa_meminfo and providing a function which uses it to
map address to node.
Drop the specific implementation from srat_64.c and add generic
memory_add_physaddr_to_nid() in numa_64.c, which is enabled if
CONFIG_MEMORY_HOTPLUG is set. Other than dropping the code, srat_64.c
doesn't need any change as it already calls numa_add_memblk() for hot
pluggable regions which is enough.
While at it, change CONFIG_MEMORY_HOTPLUG_SPARSE in srat_64.c to
CONFIG_MEMORY_HOTPLUG, for NUMA on x86-64, the two are always the
same.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Merge reason: Pick up the following two fix commits.
2be19102b7: x86, NUMA: Fix empty memblk detection in numa_cleanup_meminfo()
765af22da8: x86-32, NUMA: Fix ACPI NUMA init broken by recent x86-64 change
Scheduled NUMA init 32/64bit unification changes depend on these.
Signed-off-by: Tejun Heo <tj@kernel.org>
numa_cleanup_meminfo() trims each memblk between low (0) and
high (max_pfn) limits and discards empty ones. However, the
emptiness detection incorrectly used equality test. If the
start of a memblk is higher than max_pfn, it is empty but fails
the equality test and doesn't get discarded.
The condition triggers when max_pfn is lower than start of a
NUMA node and results in memory misconfiguration - leading to
WARN_ON()s and other funnies. The bug was discovered in devel
branch where 32bit too uses this code path for NUMA init. If a
node is above the addressing limit, max_pfn ends up lower than
the node triggering this problem.
The failure hasn't been observed on x86-64 but is still possible
with broken hardware e820/NUMA info. As the fix is very low
risk, it would be better to apply it even for 64bit.
Fix it by using >= instead of ==.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[ Extracted the actual fix from the original patch and rewrote patch description. ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110501171204.GO29280@htj.dyndns.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While tracking down the reason for an ioremap() failure I was
distracted by the WARN_ONCE() in __ioremap_caller().
Performing a WARN_ONCE() sanity check before the mapping
is successful seems pointless if the caller sends bad values.
A case in point is when the BIOS provides erroneous screen_info
values causing vesafb_probe() to request an outrageuous size.
The WARN_ONCE is then wasted on bogosity. Move the warning to a
point where the mapping has been successfully allocated.
Addresses:
http://bugs.launchpad.net/bugs/772042
Reviewed-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Tim Gardner <tim.gardner@canonical.com>
Link: http://lkml.kernel.org/r/4DB99D2E.9080106@canonical.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The cpu<->node mappings under CONFIG_DEBUG_PER_CPU_MAPS=y
when NUMA emulation is enabled is currently broken because it does
not iterate through every emulated node and bind cpus that have
affinity to it.
NUMA emulation should bind each cpu to every local node to
accurately represent the true NUMA topology of the underlying
machine.
debug_cpumask_set_cpu() needs to be fixed at the same time so
that the debugging information that it emits shows the new
cpumask of the node being assigned when the cpu is being added
or removed.
It can now take responsibility of setting or clearing the cpu
itself to remove the need for duplicate code.
Also change its last parameter, "enable", to have the correct bool
type since it can only be true or false.
-v2: Fix the return statements, by Kosaki Motohiro
Acked-and-Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andreas Herrmann <herrmann.der.user@googlemail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.00.1104201918470.12634@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that remap allocator is cleaned up, update comments such that they
are in docbook function description format and reflect the actual
implementation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-15-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Remap area size can be determined from node_remap_start_vaddr[] and
node_remap_end_vaddr[] making node_remap_size[] redundant. Remove it.
While at it, make resume_map_numa_kva() use @nr_pages for number of
pages instead of @size.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-14-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
With lowmem address reservation moved into init_alloc_remap(),
node_remap_offset[] is no longer useful. Remove it and related offset
handling code.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-13-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
pgdat allocation is handled differnetly from other remap allocations -
it's reserved during initialization. There's no reason to handle this
any differnetly. Remap allocator is initialized for every node and if
init failed the allocation will fail and pgdat allocation can fall
back to generic code like anyone else.
Remove special init-time pgdat reservation and make allocate_pgdat()
use alloc_remap() like everyone else.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-12-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
There's no reason to perform the actual remapping separately.
Collapse remap_numa_kva() into init_alloc_remap() and, while at it,
make it less verbose.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-11-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Remap alloc init is done in the following stages.
1. init_alloc_remap() calculates how much memory is necessary for each
node and reserves node local memory.
2. initmem_init() collects how much each node needs and reserves a
single contiguous lowmem area which can contain all.
3. init_remap_allocator() initializes allocator parameters from the
determined lowmem address and per-node offsets.
4. Actual remap happens.
There is no reason for the lowmem remap area to be reserved as a
single contiguous area at one go. They don't interact with each other
and the memblock allocator will put them side-by-side anyway.
This patch breaks up the single lowmem address reservation and put
per-node lowmem address reservation into init_alloc_remap() and
initializes allocator parameters directly in the function as all the
addresses are determined there. This merges steps 2 and 3 into 1.
While at it, remove now largely irrelevant comments in
init_alloc_remap().
This change causes the following behavior changes.
* Remap lowmem areas are allocated in smaller per-node chunks.
* Remap lowmem area reservation failure fail future remap allocations
instead of panicking.
* Remap allocator initialization is less verbose.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-10-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Remap allocator failure isn't fatal. The callers are required to fall
back to regular early memory allocation mechanisms on failure anyway,
so there's no reason to panic on remap init failure. Whining and
returning are enough.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-9-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Only pgdat and memmap use remap area and there isn't much benefit in
allowing per-node override. In addition, the use of node_remap_size[]
is confusing in that it contains number of bytes before remap
initialization and then number of pages afterwards.
Move remap size calculation for memap from specific NUMA config
implementations to init_alloc_remap() and make node_remap_size[]
static.
The only behavior difference is that, before this patch, numaq_32
didn't consider max_pfn when calculating the memmap size but it's
enforced after this patch, which is the right thing to do.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-8-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
@size variable in init_alloc_remap() is confusing in that it starts as
number of bytes as its name implies and then becomes number of pages.
Make it consistently represent bytes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-7-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
init_alloc_remap() is about to do more and using _kva suffix for
physical address becomes confusing because the function will be
handling both physical and virtual addresses. Rename @node_kva to
@node_pa.
This is trivial rename and doesn't cause any behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-6-git-send-email-tj@kernel.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Separate the outer node walking loop and per-node logic from
calculate_numa_remap_pages(). The outer loop is collapsed into
initmem_init() and the per-node logic is moved into a new function -
init_alloc_remap().
The new function name is confusing with the existing
init_remap_allocator() and the behavior is the function isn't very
clean either at this point, but this is to prepare for further
cleanups and it will become prettier.
This function doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-5-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
memblock_find_in_range() now does top-down allocation by default, so
there's no reason for its callers to explicitly implement it by
gradually lowering the start address.
Remove redundant top-down allocation logic from init_meminit() and
calculate_numa_remap_pages().
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-4-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
When pgdat is reserved in init_remap_allocator(), PAGE_SIZE aligned
size will be used. Match the size alignment in initialization to
avoid allocation failure down the road.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-3-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
node_remap_{start|end}_vaddr[] describe [start, end) ranges; however,
alloc_remap() incorrectly failed when the current allocation + size
equaled the end but it should fail only when it goes over. Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-2-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Commit d8fc3afc49 (x86, NUMA: Move *_numa_init() invocations
into initmem_init()) moved acpi_numa_init() call into NUMA
initmem_init() but forgot to update 32bit NUMA init breaking ACPI
NUMA configuration for 32bit.
acpi_numa_init() call was later moved again to srat_64.c. Match
it by adding the call to get_memcfg_from_srat() in srat_32.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: H. Peter Anvin <hpa@linux.intel.com>
LKML-Reference: <20110404100645.GE1420@mtj.dyndns.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In case !CONFIG_ACPI_NUMA and !CONFIG_AMD_NUMA gcc emits a warning
about the unused variable ret.
As that variable is in fact not needed I choose to remove it.
Signed-off-by: Florian Mickler <florian@mickler.org>
LKML-Reference: <1301843624-22364-1-git-send-email-florian@mickler.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
phys_to_nid() maps physical address to NUMA node id. This is
implemented by building perfect hash in compute_hash_shift() during
initialization.
However, with SPARSE memory model, the nid is encoded in page flags.
The perfect hash implementation was for DISCONTIG memory model which
got removed years ago by b263295dbf (x86: 64-bit, make sparsemem
vmemmap the only memory model).
So, the perfect hash ends up being used only during initialization
when the core SPARSE code already provides perfectly acceptable
generic early_pfn_to_nid() implementation.
Drop phys_to_nid() and use the generic ealry_pfn_to_nid() instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
deal with races in /proc/*/{syscall,stack,personality}
proc: enable writing to /proc/pid/mem
proc: make check_mem_permission() return an mm_struct on success
proc: hold cred_guard_mutex in check_mem_permission()
proc: disable mem_write after exec
mm: implement access_remote_vm
mm: factor out main logic of access_process_vm
mm: use mm_struct to resolve gate vma's in __get_user_pages
mm: arch: rename in_gate_area_no_task to in_gate_area_no_mm
mm: arch: make in_gate_area take an mm_struct instead of a task_struct
mm: arch: make get_gate_vma take an mm_struct instead of a task_struct
x86: mark associated mm when running a task in 32 bit compatibility mode
x86: add context tag to mark mm when running a task in 32-bit compatibility mode
auxv: require the target to be tracable (or yourself)
close race in /proc/*/environ
report errors in /proc/*/*map* sanely
pagemap: close races with suid execve
make sessionid permissions in /proc/*/task/* match those in /proc/*
fix leaks in path_lookupat()
Fix up trivial conflicts in fs/proc/base.c
Now that gate vma's are referenced with respect to a particular mm and not a
particular task it only makes sense to propagate the change to this predicate as
well.
Signed-off-by: Stephen Wilson <wilsons@start.ca>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Morally, the question of whether an address lies in a gate vma should be asked
with respect to an mm, not a particular task. Moreover, dropping the dependency
on task_struct will help make existing and future operations on mm's more
flexible and convenient.
Signed-off-by: Stephen Wilson <wilsons@start.ca>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Morally, the presence of a gate vma is more an attribute of a particular mm than
a particular task. Moreover, dropping the dependency on task_struct will help
make both existing and future operations on mm's more flexible and convenient.
Signed-off-by: Stephen Wilson <wilsons@start.ca>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
xen: update mask_rw_pte after kernel page tables init changes
xen: set max_pfn_mapped to the last pfn mapped
x86: Cleanup highmap after brk is concluded
Fix up trivial onflict (added header file includes) in
arch/x86/mm/init_64.c
Now cleanup_highmap actually is in two steps: one is early in head64.c
and only clears above _end; a second one is in init_memory_mapping() and
tries to clean from _brk_end to _end.
It should check if those boundaries are PMD_SIZE aligned but currently
does not.
Also init_memory_mapping() is called several times for numa or memory
hotplug, so we really should not handle initial kernel mappings there.
This patch moves cleanup_highmap() down after _brk_end is settled so
we can do everything in one step.
Also we honor max_pfn_mapped in the implementation of cleanup_highmap.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
LKML-Reference: <alpine.DEB.2.00.1103171739050.3382@kaball-desktop>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Flush TLB if PGD entry is changed in i386 PAE mode
x86, dumpstack: Correct stack dump info when frame pointer is available
x86: Clean up csum-copy_64.S a bit
x86: Fix common misspellings
x86: Fix misspelling and align params
x86: Use PentiumPro-optimized partial_csum() on VIA C7
According to intel CPU manual, every time PGD entry is changed in i386 PAE
mode, we need do a full TLB flush. Current code follows this and there is
comment for this too in the code.
But current code misses the multi-threaded case. A changed page table
might be used by several CPUs, every such CPU should flush TLB. Usually
this isn't a problem, because we prepopulate all PGD entries at process
fork. But when the process does munmap and follows new mmap, this issue
will be triggered.
When it happens, some CPUs keep doing page faults:
http://marc.info/?l=linux-kernel&m=129915020508238&w=2
Reported-by: Yasunori Goto<y-goto@jp.fujitsu.com>
Tested-by: Yasunori Goto<y-goto@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Shaohua Li<shaohua.li@intel.com>
Cc: Mallick Asit K <asit.k.mallick@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm <linux-mm@kvack.org>
Cc: stable <stable@kernel.org>
LKML-Reference: <1300246649.2337.95.camel@sli10-conroe>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
They were generated by 'codespell' and then manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Cc: trivial@kernel.org
LKML-Reference: <1300389856-1099-3-git-send-email-lucas.demarchi@profusion.mobi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
native_flush_tlb_others() is called from:
flush_tlb_current_task()
flush_tlb_mm()
flush_tlb_page()
All these functions disable preemption explicitly, so we can use
smp_processor_id() instead of get_cpu() and put_cpu().
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Cc: Cliff Wickman <cpw@sgi.com>
LKML-Reference: <4D7EC791.4040003@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The distance transforming in numa_emulation() used to call
numa_set_distance() for all MAX_NUMNODES * MAX_NUMNODES node
combinations regardless of which are enabled. As numa_set_distance()
ignores all out-of-bound distance settings, this doesn't cause any
problem other than looping unnecessarily many times during boot.
However, as MAX_NUMNODES * MAX_NUMNODES can be pretty high, update the
code such that it iterates through only the enabled combinations.
Yinghai Lu identified the issue and provided an initial patch to
address the issue; however, the patch was incorrect in that it didn't
build emulated distance table when there's no physical distance table
and unnecessarily complex.
http://thread.gmane.org/gmane.linux.kernel/1107986/focus=1107988
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
It's forbidden to take the page_table_lock with the irq disabled
or if there's contention the IPIs (for tlb flushes) sent with
the page_table_lock held will never run leading to a deadlock.
Nobody takes the pgd_lock from irq context so the _irqsave can be
removed.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
LKML-Reference: <201102162345.p1GNjMjm021738@imap1.linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
mm_fault_error() should not execute oom-killer, if page fault
occurs in kernel space. E.g. in copy_from_user()/copy_to_user().
This would happen if we find ourselves in OOM on a
copy_to_user(), or a copy_from_user() which faults.
Without this patch, the kernels hangs up in copy_from_user(),
because OOM killer sends SIG_KILL to current process, but it
can't handle a signal while in syscall, then the kernel returns
to copy_from_user(), reexcute current command and provokes
page_fault again.
With this patch the kernel return -EFAULT from copy_from_user().
The code, which checks that page fault occurred in kernel space,
has been copied from do_sigbus().
This situation is handled by the same way on powerpc, xtensa,
tile, ...
Signed-off-by: Andrey Vagin <avagin@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
LKML-Reference: <201103092322.p29NMNPH001682@imap1.linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Undetermined entries in emu_nid_to_phys[] are filled with zero
assuming that physical node 0 is always online; however, this might
not be true depending on hardware configuration. Find a physical node
which is actually online and use it instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: David Rientjes <rientjes@google.com>
LKML-Reference: <alpine.DEB.2.00.1103020628210.31626@chino.kir.corp.google.com>
This crash happens on a system that does not have RAM on node0.
When numa_emulation is compiled in, and:
1. we boot the system without numa=fake...
2. or we boot the system with numa=fake=128 to make emulation fail
we will get:
[ 0.076025] ------------[ cut here ]------------
[ 0.080004] kernel BUG at arch/x86/mm/numa_64.c:788!
[ 0.080004] invalid opcode: 0000 [#1] SMP
[...]
need to use early_cpu_to_node() directly, because cpu_to_apicid
and apicid_to_node will return node0 that is not onlined.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
LKML-Reference: <4D6ECF72.5010308@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch cleans initmem_init() so that it is more readable and doesn't
use an unnecessary array of function pointers to convolute the flow of
the code. It also makes it obvious that dummy_numa_init() will always
succeed (and documents that requirement) so that the existing BUG() is
never actually reached.
No functional change.
-tj: Updated comment for dummy_numa_init() slightly.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This patch reverts NUMA affine page table allocation added by commit
1411e0ec31 (x86-64, numa: Put pgtable to local node memory).
The commit made an undocumented change where the kernel linear mapping
strictly follows intersection of e820 memory map and NUMA
configuration. If the physical memory configuration has holes or NUMA
nodes are not properly aligned, this leads to using unnecessarily
smaller mapping size which leads to increased TLB pressure. For
details,
http://thread.gmane.org/gmane.linux.kernel/1104672
Patches to fix the problem have been proposed but the underlying code
needs more cleanup and the approach itself seems a bit heavy handed
and it has been determined to revert the feature for now and come back
to it in the next developement cycle.
http://thread.gmane.org/gmane.linux.kernel/1105959
As init_memory_mapping_high() callsites have been consolidated since
the commit, reverting is done manually. Also, the RED-PEN comment in
arch/x86/mm/init.c is not restored as the problem no longer exists
with memblock based top-down early memory allocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Handling of out-of-bounds distances and allocation failure can use
better documentation. Add it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
NUMA distance table handling has the following problems.
* numa_reset_distance() uses numa_distance * sizeof(numa_distance[0])
as the table size when it should be using the square of
numa_distance.
* The same size miscalculation when allocation space for phys_dist in
numa_emulation().
* In numa_emulation(), phys_dist must be reserved; otherwise, the new
emulated distance table may overlap it.
Fix them and, while at it, take numa_distance_cnt resetting in
numa_reset_distance() out of the if block to simplify the code a bit.
David Rientjes reported incorrect handling of distance table during
emulation.
-tj: Edited out numa_alloc_distance() related changes which weren't
necessary and rewrote patch description.
-v2: Ingo was unhappy with 80-column limit induced linebreaks. Let
lines run over 80-column.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: David Rientjes <rientjes@google.com>
numa_distance should be sized like the SLIT, an NxN matrix where N is
the highest node id + 1. This patch fixes the calculation to avoid
overflowing the array on the subsequent iteration.
-tj: The original patch used last index to calculate size. Yinghai
pointed out it should be incremented so it is the number of
elements instead of the last index to calculate the size of the
table. Updated accordingly.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
e820_table_{start|end|top}, which are used to buffer page table
allocation during early boot, are now derived from memblock and don't
have much to do with e820. Change the names so that they reflect what
they're used for.
This patch doesn't introduce any behavior change.
-v2: Ingo found that earlier patch "x86: Use early pre-allocated page
table buffer top-down" caused crash on 32bit and needed to be
dropped. This patch was updated to reflect the change.
-tj: Updated commit description.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Alloc code is much bigger the distance setting. Separate it out into
numa_alloc_distance() for readability.
-v2: Let alloc_numa_distance to return -ENOMEM on failing path,
requested by tj.
-tj: Description update. Minor tweaks including function name,
location and return value check.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Create numa_emulation.c and move all NUMA emulation code there. The
definitions of struct numa_memblk and numa_meminfo are moved to
numa_64.h. Also, numa_remove_memblk_from(), numa_cleanup_meminfo(),
numa_reset_distance() along with numa_emulation() are made global.
- v2: Internal declarations moved to numa_internal.h as suggested by
Yinghai.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Update numa_emulation() such that, it
- takes @numa_meminfo and @numa_dist_cnt instead of directly
referencing the global variables.
- copies the distance table by iterating each distance with
node_distance() instead of memcpy'ing the distance table.
- tests emu_cmdline to determine whether emulation is requested and
fills emu_nid_to_phys[] with identity mapping if emulation is not
used. This allows the caller to call numa_emulation()
unconditionally and makes return value unncessary.
- defines dummy version if CONFIG_NUMA_EMU is disabled.
This patch doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
By the time setup_node_bootmem() is called, all the memblocks are
already registered. As node_data is allocated from these memblocks,
calling it more than once doesn't make any difference. Drop the loop.
tj: Dropped comment referencing to the old behavior as suggested by
David and rephrased the description.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
dummy_numa_init() is used only during system boot. Put it in .init
like other NUMA init functions.
- tj: Description update.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Do not call __pa(numa_distance) if it was not allocated before.
Calling with invalid address triggers VIRTUAL_BUG_ON() in
__phys_addr() if CONFIG_DEBUG_VIRTUAL.
Also reported by Ingo.
http://thread.gmane.org/gmane.linux.kernel/1101306/focus=1101785
- v2: Change to check existing path as tj requested.
- tj: Description update.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Ingo Molnar <mingo@elte.hu>
NUMA emulation needs to update node distance information. It did it
by remapping apicid to PXM mapping, even when amdtopology is being
used. There is no reason to go through such convolution. The generic
code has all the information necessary to transform the distance table
to the emulated nid space.
Implement generic distance table transformation in numa_emulation()
and drop private implementations in srat_64 and amdtopology_64. This
makes find_node_by_addr() and fake_physnodes() and related functions
unnecessary, drop them.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
NUMA emulation changes node mappings and thus apicid -> node mapping
needs to be updated accordingly. srat_64 and amdtopology_64 did this
separately; however, all the necessary information is the mapping from
emulated nodes to physical nodes which is available in
emu_nid_to_phys[].
Implement common __apicid_to_node[] transformation in numa_emulation()
and drop duplicate implementations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
NUMA emulation built physnodes[] array which could only represent
configurations from the physical meminfo and emulated nodes using the
information. There's no reason to take this extra level of
indirection. Update emulation functions so that they operate directly
on numa_meminfo. This simplifies the code and makes emulation layout
behave better with interleaved physical nodes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Both emulation layout functions - split_nodes[_size]_interleave() -
didn't wrap emulated nid while laying out the fake nodes and tried to
avoid interating over the specified number of nodes, which is fragile.
Now that the emulation code generates numa_meminfo, the node memblks
don't need to be consecutive and emulated node IDs can simply wrap.
This makes the code more robust and is necessary for updates to better
handle the cases where the physical nodes are interleaved.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
NUMA emulation code built nodes[] array and had its own registration
path to set up the emulated nodes. Update it such that it generates
emulated numa_meminfo and returns control to initmem_init() and shares
the same registration path with non-emulated cases.
Because {acpi|amd}_fake_nodes() expect nodes[] parameter,
fake_physnodes() now generates nodes[] from numa_meminfo. This will
go away with further updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
NUMA emulation copied physical NUMA configuration into physnodes[] and
used it to reverse-map emulated nodes to physical nodes, which is
unnecessarily convoluted. Build emu_nid_to_phys[] array to map
emulated nids directly to the matching physical nids and use it in
numa_add_cpu().
physnodes[] will be removed with further patches.
- v2: Build failure when CONFIG_DEBUG_PER_CPU_MAPS due to missing
local variable definition fixed. Reported by Ingo.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
* Separate out numa_add_memblk_to() from numa_add_memblk() so that
different numa_meminfo can be used.
* Rename cmdline to emu_cmdline.
* Drop @start/last_pfn from numa_emulation() and use max_pfn directly.
This patch doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Node distance either used direct node comparison, ACPI PXM comparison
or ACPI SLIT table lookup. This patch implements generic node
distance handling. NUMA init methods can call numa_set_distance() to
set distance between nodes and the common __node_distance()
implementation will report the set distance.
Due to the way NUMA emulation is implemented, the generic node
distance handling is used only when emulation is not used. Later
patches will update NUMA emulation to use the generic distance
mechanism.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
With all memory configuration information now carried in numa_meminfo,
there's no need to keep mem_nodes_parsed separate. Drop it and use
numa_nodes_parsed for CPU / memory-less nodes.
A new helper numa_nodemask_from_meminfo() is added to calculate
memnode mask on the fly which is currently used to set
node_possible_map.
This simplifies NUMA init methods a bit and removes a source of
possible inconsistencies.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
It's no longer necessary to keep both cpu_nodes_parsed and
mem_nodes_parsed. In preparation for merge, rename cpu_nodes_parsed
to numa_nodes_parsed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
numa_nodes[] doesn't carry any information which isn't present in
numa_meminfo. Each entry is simply min/max range of all the memblks
for the node. This is not only redundant but also inaccurate when
memblks for different nodes interleave - for example,
find_node_by_addr() can return the wrong nodeid.
Kill numa_nodes[] and always use numa_meminfo instead.
* nodes_cover_memory() is renamed to numa_meminfo_cover_memory() and
now operations on numa_meminfo and returns bool.
* setup_node_bootmem() needs min/max range. Compute the range on the
fly. setup_node_bootmem() invocation is restructured to use outer
loop instead of hardcoding the double invocations.
* find_node_by_addr() now operates on numa_meminfo.
* setup_physnodes() builds physnodes[] from memblks. This will go
away when emulation code is updated to use struct numa_meminfo.
This patch also makes the following misc changes.
* Clearing of nodes_add[] clearing is converted to memset().
* numa_add_memblk() in amd_numa_init() is moved down a bit for
consistency.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
srat_64.c and amdtopology_64.c had their own versions of
find_node_by_addr() which were basically the same. Add common one in
numa_64.c and remove the duplicates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
memblk sanity check was scattered around and incomplete. Consolidate
and improve.
* Confliction detection and cutoff_node() logic are moved to
numa_cleanup_meminfo().
* numa_cleanup_meminfo() clears the unused memblks before returning.
* Check and warn about invalid input parameters in numa_add_memblk().
* Check the maximum number of memblk isn't exceeded in
numa_add_memblk().
* numa_cleanup_meminfo() is now called before numa_emulation() so that
the emulation code also uses the cleaned up version.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
* Factor out numa_remove_memblk_from().
* Hole detection doesn't need separate start/end. Calculate start/end
once.
* Relocate comment.
* Define iterators at the top and remove unnecessary prefix
increments.
This prepares for further improvements to the function.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Separate out numa_cleanup_meminfo() from numa_register_memblks().
node_possible_map initialization is moved to the top of the split
numa_register_memblks().
This patch doesn't cause behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Arrays for memblks and nodeids and their length lived in separate
variables making things unnecessarily cumbersome. Introduce struct
numa_meminfo which contains all memory configuration info. This patch
doesn't cause any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
numa_emulation() called compute_hash_shift() with %NULL @nodeids which
meant identity mapping between index and nodeid. Make
numa_emulation() build identity array and drop %NULL @nodeids handling
from populate_memnodemap() and thus from compute_hash_shift(). This
is to prepare for transition to using memblks instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Move the remaining memblk registration logic from acpi_scan_nodes() to
numa_register_memblks() and initmem_init().
This applies nodes_cover_memory() sanity check, memory node sorting
and node_online() checking, which were only applied to acpi, to all
init methods.
As all memblk registration is moved to common code, active range
clearing is moved to initmem_init() too and removed from bad_srat().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Make both amd and dummy use numa_add_memblk() to describe the detected
memory blocks. This allows initmem_init() to call
numa_register_memblk() regardless of init method in use. Drop custom
memory registration codes from amd and dummy.
After this change, memblk merge/cleanup in numa_register_memblks() is
applied to all init methods.
As this makes compute_hash_shift() and numa_register_memblks() used
only inside numa_64.c, make them static.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Factor out memblk handling from srat_64.c into two functions in
numa_64.c. This patch doesn't introduce any behavior change. The
next patch will make all init methods use these functions.
- v2: Fixed build failure on 32bit due to misplaced NR_NODE_MEMBLKS.
Reported by Ingo.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
With common numa_nodes[], common code in numa_64.c can access it
directly. Copy directly and kill {acpi|amd}_get_nodes().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
ACPI and amd are using separate nodes[] array. Add numa_nodes[] and
use them in all NUMA init methods. cutoff_node() cleanup is moved
from srat_64.c to numa_64.c and applied in initmem_init() regardless
of init methods.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
This brings amd initialization behavior closer to that of acpi.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
ACPI and amd are using separate nodes_parsed masks. Add
{cpu|mem}_nodes_parsed and use them in all NUMA init methods.
Initialization of the masks and building node_possible_map are now
handled commonly by initmem_init().
dummy_numa_init() is updated to set node 0 on both masks. While at
it, move the info messages from scan to init.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Reorganize initmem_init() such that,
* Different NUMA init methods are iterated in a consistent way.
* Each iteration re-initializes all the parameters and different
method can be tried after a failure.
* Dummy init is handled the same as other methods.
Apart from how retry after failure, this patch doesn't change the
behavior. The call sequences are kept equivalent across the
conversion.
After the change, bad_srat() doesn't need to clear apic to node
mapping or worry about numa_off. Simplified accordingly.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
There's no reason for these to live in setup_arch(). Move them inside
initmem_init().
- v2: x86-32 initmem_init() weren't updated breaking 32bit builds.
Fixed. Found by Ankita.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ankita Garg <ankita@in.ibm.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Because of the way ACPI tables are parsed, the generic
acpi_numa_init() couldn't return failure when error was detected by
arch hooks. Instead, the failure state was recorded and later arch
dependent init hook - acpi_scan_nodes() - would fail.
Wrap acpi_numa_init() with x86_acpi_numa_init() so that failure can be
indicated as return value immediately. This is in preparation for
further NUMA init cleanups.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
The functions used during NUMA initialization - *_numa_init() and
*_scan_nodes() - have different arguments and return values. Unify
them such that they all take no argument and return 0 on success and
-errno on failure. This is in preparation for further NUMA init
cleanups.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
initmem_init() extensively accesses and modifies global data
structures and the parameters aren't even followed depending on which
path is being used. Drop @start/last_pfn and let it deal with
@max_pfn directly. This is in preparation for further NUMA init
cleanups.
- v2: x86-32 initmem_init() weren't updated breaking 32bit builds.
Fixed. Found by Yinghai.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Hotplug node handling in acpi_numa_memory_affinity_init() was
unnecessarily complicated with storing the original nodes[] entry and
restoring it afterwards. Simplify it by not modifying the nodes[]
entry for hotplug nodes from the beginning.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Dummy node initialization in initmem_init() didn't initialize apicid
to node mapping and set cpu to node mapping directly by caling
numa_set_node(), which is different from non-dummy init paths.
Update it such that they behave similarly. Initialize apicid to node
mapping and call numa_init_array(). The actual cpu to node mapping is
handled by init_cpu_to_node() later.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
CONFIG_DEBUG_PER_CPU_MAPS may return NUMA_NO_NODE when an
early_cpu_to_node() mapping hasn't been initialized. In such a
case, it emits a warning and continues without an issue but
callers may try to use the return value to index into an array.
We can catch those errors and fail silently since a warning has
already been emitted. No current user of numa_add_cpu()
requires this error checking to avoid a crash, but it's better
to be proactive in case a future user happens to have a bug and
a user tries to diagnose it with CONFIG_DEBUG_PER_CPU_MAPS.
Reported-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
LKML-Reference: <alpine.DEB.2.00.1102071407250.7812@chino.kir.corp.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This one isn't related to previous patch. If online cpus are
below NUM_INVALIDATE_TLB_VECTORS, we don't need the lock. The
comments in the code declares we don't need the check, but a hot
lock still needs an atomic operation and expensive, so add the
check here.
Uses nr_cpu_ids here as suggested by Eric Dumazet.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
LKML-Reference: <1295232730.1949.710.camel@sli10-conroe>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts:
arch/x86/mm/numa_64.c
Merge reason: fix the conflict, update to latest -rc and pick up this
dependent fix from Yinghai:
e6d2e2b2b1: memblock: don't adjust size in memblock_find_base()
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Define a version of memory_block_size_bytes for x86_64 when CONFIG_X86_UV is
set.
Signed-off-by: Robin Holt <holt@sgi.com>
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Xen want page table pages read only.
But the initial page table (from head_*.S) live in .data or .bss.
That was broken by 64edc8ed5f. There is
absolutely no reason to force these pages RW after they have already
been marked RO.
Signed-off-by: Matthieu CASTET <castet.matthieu@free.fr>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Now that everything else is unified, NUMA initialization can be
unified too.
* numa_init_array() and init_cpu_to_node() are moved from
numa_64 to numa.
* numa_32::initmem_init() is updated to call numa_init_array()
and setup_arch() to call init_cpu_to_node() on 32bit too.
* x86_cpu_to_node_map is now initialized to NUMA_NO_NODE on
32bit too. This is safe now as numa_init_array() will initialize
it early during boot.
This makes NUMA mapping fully initialized before
setup_per_cpu_areas() on 32bit too and thus makes the first
percpu chunk which contains all the static variables and some of
dynamic area allocated with NUMA affinity correctly considered.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-17-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
x86_32 has been managing node_to_cpumask_map explicitly from
map_cpu_to_node() and friends in a rather ugly way. With
previous changes, it's now possible to share the code with
64bit.
* When CONFIG_NUMA_EMU is disabled, numa_add/remove_cpu() are
implemented in numa.c and shared by 32 and 64bit. CONFIG_NUMA_EMU
versions still live in numa_64.c.
NUMA_EMU's dependency on 64bit is planned to be removed and the
above should go away together.
* identify_cpu() now calls numa_add_cpu() for 32bit too. This
makes the explicit mask management from map_cpu_to_node() unnecessary.
* The whole x86_32 specific map_cpu_to_node() chunk is no longer
necessary. Dropped.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-16-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Unlike 64bit, 32bit has been using its own cpu_to_node_map[] for
CPU -> NUMA node mapping. Replace it with early_percpu variable
x86_cpu_to_node_map and share the mapping code with 64bit.
* USE_PERCPU_NUMA_NODE_ID is now enabled for 32bit too.
* x86_cpu_to_node_map and numa_set/clear_node() are moved from
numa_64 to numa. For now, on 32bit, x86_cpu_to_node_map is initialized
with 0 instead of NUMA_NO_NODE. This is to avoid introducing unexpected
behavior change and will be updated once init path is unified.
* srat_detect_node() is now enabled for x86_32 too. It calls
numa_set_node() and initializes the mapping making explicit
cpu_to_node_map[] updates from map/unmap_cpu_to_node() unnecessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-15-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
The mapping between cpu/apicid and node is done via
apicid_to_node[] on 64bit and apicid_2_node[] +
apic->x86_32_numa_cpu_node() on 32bit. This difference makes it
difficult to further unify 32 and 64bit NUMA handling.
This patch unifies it by replacing both apicid_to_node[] and
apicid_2_node[] with __apicid_to_node[] array, which is accessed
by two accessors - set_apicid_to_node() and numa_cpu_node(). On
64bit, numa_cpu_node() always consults __apicid_to_node[]
directly while 32bit goes through apic->numa_cpu_node() method
to allow apic implementations to override it.
srat_detect_node() for amd cpus contains workaround for broken
NUMA configuration which assumes relationship between APIC ID,
HT node ID and NUMA topology. Leave it to access
__apicid_to_node[] directly as mapping through CPU might result
in undesirable behavior change. The comment is reformatted and
updated to note the ugliness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-14-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
In order to be able to suppress the use of SRAT tables that
32-bit Linux can't deal with (in one case known to lead to a
non-bootable system, unless disabling ACPI altogether), move the
"numa=" option handling to common code.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Reviewed-by: Thomas Renninger <trenn@suse.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Renninger <trenn@suse.de>
LKML-Reference: <4D36B581020000780002D0FF@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For GRU and EPT, we need gup-fast to set referenced bit too (this is why
it's correct to return 0 when shadow_access_mask is zero, it requires
gup-fast to set the referenced bit). qemu-kvm access already sets the
young bit in the pte if it isn't zero-copy, if it's zero copy or a shadow
paging EPT minor fault we relay on gup-fast to signal the page is in
use...
We also need to check the young bits on the secondary pagetables for NPT
and not nested shadow mmu as the data may never get accessed again by the
primary pte.
Without this closer accuracy, we'd have to remove the heuristic that
avoids collapsing hugepages in hugepage virtual regions that have not even
a single subpage in use.
->test_young is full backwards compatible with GRU and other usages that
don't have young bits in pagetables set by the hardware and that should
nuke the secondary mmu mappings when ->clear_flush_young runs just like
EPT does.
Removing the heuristic that checks the young bit in
khugepaged/collapse_huge_page completely isn't so bad either probably but
I thought it was worth it and this makes it reliable.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for transparent hugepages to x86 32bit.
Share the same VM_ bitflag for VM_MAPPED_COPY. mm/nommu.c will never
support transparent hugepages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Force gup_fast to take the slow path and block if the pmd is splitting,
not only if it's none.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add needed pmd mangling functions with symmetry with their pte
counterparts. pmdp_splitting_flush() is the only new addition on the pmd_
methods and it's needed to serialize the VM against split_huge_page. It
simply atomically sets the splitting bit in a similar way
pmdp_clear_flush_young atomically clears the accessed bit.
pmdp_splitting_flush() also has to flush the tlb to make it effective
against gup_fast, but it wouldn't really require to flush the tlb too.
Just the tlb flush is the simplest operation we can invoke to serialize
pmdp_splitting_flush() against gup_fast.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Alter compound get_page/put_page to keep references on subpages too, in
order to allow __split_huge_page_refcount to split an hugepage even while
subpages have been pinned by one of the get_user_pages() variants.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-olpc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, olpc: Speed up device tree creation during boot
x86, olpc: Add OLPC device-tree support
x86, of: Define irq functions to allow drivers/of/* to build on x86
Conflicts:
arch/x86/include/asm/io_apic.h
Merge reason: Resolve the conflict, update to a more recent -rc base
Signed-off-by: Ingo Molnar <mingo@elte.hu>
"x86, numa: Fake node-to-cpumask for NUMA emulation" broke the
build when CONFIG_DEBUG_PER_CPU_MAPS is set and CONFIG_NUMA_EMU
is not. This is because it is possible to map a cpu to multiple
nodes when NUMA emulation is used; the patch required a physical
node address table to find those nodes that was only available
when CONFIG_NUMA_EMU was enabled.
This extracts the common debug functionality to its own function
for CONFIG_DEBUG_PER_CPU_MAPS and uses it regardless of whether
CONFIG_NUMA_EMU is set or not.
NUMA emulation will now iterate over the set of possible nodes
for each cpu and call the new debug function whereas only the
cpu's node will be used without NUMA emulation enabled.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <alpine.DEB.2.00.1012301053590.12995@chino.kir.corp.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-security-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
module: Move RO/NX module protection to after ftrace module update
x86: Resume trampoline must be executable
x86: Add RO/NX protection for loadable kernel modules
x86: Add NX protection for kernel data
x86: Fix improper large page preservation
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix included-by file reference comments
x86, cpu: Only CPU features determine NX capabilities
x86, cpu: Call verify_cpu during 32bit CPU startup
x86, cpu: Clear XD_DISABLED flag on Intel to regain NX
x86, cpu: Rename verify_cpu_64.S to verify_cpu.S
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix APIC ID sizing bug on larger systems, clean up MAX_APICS confusion
x86, acpi: Parse all SRAT cpu entries even above the cpu number limitation
x86, acpi: Add MAX_LOCAL_APIC for 32bit
x86: io_apic: Split setup_ioapic_ids_from_mpc()
x86: io_apic: Fix CONFIG_X86_IO_APIC=n breakage
x86: apic: Move probe_nr_irqs_gsi() into ioapic_init_mappings()
x86: Allow platforms to force enable apic
* 'x86-amd-nb-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, cacheinfo: Cleanup L3 cache index disable support
x86, amd-nb: Cleanup AMD northbridge caching code
x86, amd-nb: Complete the rename of AMD NB and related code
It is not related to init_memory_mapping(), and init_memory_mapping() is
getting more bigger.
So make it as seperated function and call it from reserve_brk() and that is
point when _brk_end is concluded.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4D1933E0.7090305@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We need to access it right way, so make sure that it is mapped already.
Prepare to put page table on local node, and nodemap is used before that.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4D1933C8.7060105@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>