IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Use a EFI configuration table to pass the initrd to the core kernel,
instead of per-arch methods. This cleans up the code considerably, and
should make it easier for architectures to get rid of their reliance on
DT for doing EFI boot in the future.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move the fiddly bits of the efivar layer into its only remaining user,
efivarfs, and confine its use to that particular module. All other uses
of the EFI variable store have no need for this additional layer of
complexity, given that they either only read variables, or read and
write variables into a separate GUIDed namespace, and cannot be used to
manipulate EFI variables that are covered by the EFI spec and/or affect
the boot flow.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The efivars intermediate variable access layer provides an abstraction
that permits the EFI variable store to be replaced by something else
that implements a compatible interface, and caches all variables in the
variable store for fast access via the efivarfs pseudo-filesystem.
The SSDT override feature does not take advantage of either feature, as
it is only used when the generic EFI implementation of efivars is used,
and it traverses all variables only once to find the ones it is
interested in, and frees all data structures that the efivars layer
keeps right after.
So in this case, let's just call EFI's code directly, using the function
pointers in struct efi.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit b05b9f5f9dcf ("x86, mirror: x86 enabling - find mirrored memory
ranges") introduce the efi_find_mirror() function on x86. In order to reuse
the API we make it public.
Arm64 can support mirrored memory too, so function efi_find_mirror() is added to
efi_init() to this support for arm64.
Since efi_init() is shared by ARM, arm64 and riscv, this patch will bring
mirror memory support for these architectures, but this support is only tested
in arm64.
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Link: https://lore.kernel.org/r/20220614092156.1972846-2-mawupeng1@huawei.com
[ardb: fix subject to better reflect the payload]
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
During efi initialization, check if coco_secret is defined in the EFI
configuration table; in such case, register platform device
"efi_secret". This allows udev to automatically load the efi_secret
module (platform driver), which in turn will populate the
<securityfs>/secrets/coco directory in guests into which secrets were
injected.
Note that a declared address of an EFI secret area doesn't mean that
secrets where indeed injected to that area; if the secret area is not
populated, the driver will not load (but the platform device will still
be registered).
Signed-off-by: Dov Murik <dovmurik@linux.ibm.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Link: https://lore.kernel.org/r/20220412212127.154182-4-dovmurik@linux.ibm.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Confidential computing (coco) hardware such as AMD SEV (Secure Encrypted
Virtualization) allows a guest owner to inject secrets into the VMs
memory without the host/hypervisor being able to read them.
Firmware support for secret injection is available in OVMF, which
reserves a memory area for secret injection and includes a pointer to it
the in EFI config table entry LINUX_EFI_COCO_SECRET_TABLE_GUID.
If EFI exposes such a table entry, uefi_init() will keep a pointer to
the EFI config table entry in efi.coco_secret, so it can be used later
by the kernel (specifically drivers/virt/coco/efi_secret). It will also
appear in the kernel log as "CocoSecret=ADDRESS"; for example:
[ 0.000000] efi: EFI v2.70 by EDK II
[ 0.000000] efi: CocoSecret=0x7f22e680 SMBIOS=0x7f541000 ACPI=0x7f77e000 ACPI 2.0=0x7f77e014 MEMATTR=0x7ea0c018
The new functionality can be enabled with CONFIG_EFI_COCO_SECRET=y.
Signed-off-by: Dov Murik <dovmurik@linux.ibm.com>
Reviewed-by: Gerd Hoffmann <kraxel@redhat.com>
Link: https://lore.kernel.org/r/20220412212127.154182-2-dovmurik@linux.ibm.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit d9f283ae71af ("efi: Disable runtime services on RT") disabled EFI
runtime services by default when the CONFIG_PREEMPT_RT option is enabled.
The rationale for that commit is that some EFI calls could take too much
time, leading to large latencies which is an issue for Real-Time kernels.
But a side effect of that change was that now is not possible anymore to
enable the EFI runtime services by default when CONFIG_PREEMPT_RT is set,
without passing an efi=runtime command line parameter to the kernel.
Instead, let's add a new EFI_DISABLE_RUNTIME boolean Kconfig option, that
would be set to n by default but to y if CONFIG_PREEMPT_RT is enabled.
That way, the current behaviour is preserved but gives users a mechanism
to enable the EFI runtimes services in their kernels if that is required.
For example, if the firmware could guarantee bounded time for EFI calls.
Also, having a separate boolean config could allow users to disable the
EFI runtime services by default even when CONFIG_PREEMPT_RT is not set.
Reported-by: Alexander Larsson <alexl@redhat.com>
Fixes: d9f283ae71af ("efi: Disable runtime services on RT")
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Link: https://lore.kernel.org/r/20220331151654.184433-1-javierm@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When "dump_apple_properties" is used on the kernel boot command line,
it causes an Unknown parameter message and the string is added to init's
argument strings:
Unknown kernel command line parameters "dump_apple_properties
BOOT_IMAGE=/boot/bzImage-517rc6 efivar_ssdt=newcpu_ssdt", will be
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
dump_apple_properties
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc6
efivar_ssdt=newcpu_ssdt
Similarly when "efivar_ssdt=somestring" is used, it is added to the
Unknown parameter message and to init's environment strings, polluting
them (see examples above).
Change the return value of the __setup functions to 1 to indicate
that the __setup options have been handled.
Fixes: 58c5475aba67 ("x86/efi: Retrieve and assign Apple device properties")
Fixes: 475fb4e8b2f4 ("efi / ACPI: load SSTDs from EFI variables")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Octavian Purdila <octavian.purdila@intel.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Link: https://lore.kernel.org/r/20220301041851.12459-1-rdunlap@infradead.org
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Aditya reports [0] that his recent MacbookPro crashes in the firmware
when using the variable services at runtime. The culprit appears to be a
call to QueryVariableInfo(), which we did not use to call on Apple x86
machines in the past as they only upgraded from EFI v1.10 to EFI v2.40
firmware fairly recently, and QueryVariableInfo() (along with
UpdateCapsule() et al) was added in EFI v2.00.
The only runtime service introduced in EFI v2.00 that we actually use in
Linux is QueryVariableInfo(), as the capsule based ones are optional,
generally not used at runtime (all the LVFS/fwupd firmware update
infrastructure uses helper EFI programs that invoke capsule update at
boot time, not runtime), and not implemented by Apple machines in the
first place. QueryVariableInfo() is used to 'safely' set variables,
i.e., only when there is enough space. This prevents machines with buggy
firmwares from corrupting their NVRAMs when they run out of space.
Given that Apple machines have been using EFI v1.10 services only for
the longest time (the EFI v2.0 spec was released in 2006, and Linux
support for the newly introduced runtime services was added in 2011, but
the MacbookPro12,1 released in 2015 still claims to be EFI v1.10 only),
let's avoid the EFI v2.0 ones on all Apple x86 machines.
[0] https://lore.kernel.org/all/6D757C75-65B1-468B-842D-10410081A8E4@live.com/
Cc: <stable@vger.kernel.org>
Cc: Jeremy Kerr <jk@ozlabs.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Reported-by: Aditya Garg <gargaditya08@live.com>
Tested-by: Orlando Chamberlain <redecorating@protonmail.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Aditya Garg <gargaditya08@live.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215277
In case the command line option "efi=noruntime" is default at built-time, the user
could overwrite its state by `efi=runtime' and allow it again.
This is useful on PREEMPT_RT where "efi=noruntime" is default and the
user might need to alter the boot order for instance.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Based on measurements the EFI functions get_variable /
get_next_variable take up to 2us which looks okay.
The functions get_time, set_time take around 10ms. These 10ms are too
much. Even one ms would be too much.
Ard mentioned that SetVariable might even trigger larger latencies if
the firmware will erase flash blocks on NOR.
The time-functions are used by efi-rtc and can be triggered during
run-time (either via explicit read/write or ntp sync).
The variable write could be used by pstore.
These functions can be disabled without much of a loss. The poweroff /
reboot hooks may be provided by PSCI.
Disable EFI's runtime wrappers on PREEMPT_RT.
This was observed on "EFI v2.60 by SoftIron Overdrive 1000".
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
kexec_load_file() relies on the memblock infrastructure to avoid
stamping over regions of memory that are essential to the survival
of the system.
However, nobody seems to agree how to flag these regions as reserved,
and (for example) EFI only publishes its reservations in /proc/iomem
for the benefit of the traditional, userspace based kexec tool.
On arm64 platforms with GICv3, this can result in the payload being
placed at the location of the LPI tables. Shock, horror!
Let's augment the EFI reservation code with a memblock_reserve() call,
protecting our dear tables from the secondary kernel invasion.
Reported-by: Moritz Fischer <mdf@kernel.org>
Tested-by: Moritz Fischer <mdf@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In the for loop in efi_mem_reserve_persistent(), prsv = rsv->next
use the unmapped rsv. Use the unmapped pages will cause segment
fault.
Fixes: 18df7577adae6 ("efi/memreserve: deal with memreserve entries in unmapped memory")
Signed-off-by: Lv Yunlong <lyl2019@mail.ustc.edu.cn>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Since commit 70e806e4e645 ("mm: Do early cow for pinned pages during
fork() for ptes") pages under a FOLL_PIN will not be write protected
during COW for fork. This means that pages returned from
pin_user_pages(FOLL_WRITE) should not become write protected while the pin
is active.
However, there is a small race where get_user_pages_fast(FOLL_PIN) can
establish a FOLL_PIN at the same time copy_present_page() is write
protecting it:
CPU 0 CPU 1
get_user_pages_fast()
internal_get_user_pages_fast()
copy_page_range()
pte_alloc_map_lock()
copy_present_page()
atomic_read(has_pinned) == 0
page_maybe_dma_pinned() == false
atomic_set(has_pinned, 1);
gup_pgd_range()
gup_pte_range()
pte_t pte = gup_get_pte(ptep)
pte_access_permitted(pte)
try_grab_compound_head()
pte = pte_wrprotect(pte)
set_pte_at();
pte_unmap_unlock()
// GUP now returns with a write protected page
The first attempt to resolve this by using the write protect caused
problems (and was missing a barrrier), see commit f3c64eda3e50 ("mm: avoid
early COW write protect games during fork()")
Instead wrap copy_p4d_range() with the write side of a seqcount and check
the read side around gup_pgd_range(). If there is a collision then
get_user_pages_fast() fails and falls back to slow GUP.
Slow GUP is safe against this race because copy_page_range() is only
called while holding the exclusive side of the mmap_lock on the src
mm_struct.
[akpm@linux-foundation.org: coding style fixes]
Link: https://lore.kernel.org/r/CAHk-=wi=iCnYCARbPGjkVJu9eyYeZ13N64tZYLdOB8CP5Q_PLw@mail.gmail.com
Link: https://lkml.kernel.org/r/2-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com
Fixes: f3c64eda3e50 ("mm: avoid early COW write protect games during fork()")
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: "Ahmed S. Darwish" <a.darwish@linutronix.de> [seqcount_t parts]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Leon Romanovsky <leonro@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Efivars allows for overriding of SSDT tables, however starting with
commit
bf67fad19e493b ("efi: Use more granular check for availability for variable services")
this use case is broken. When loading SSDT generic ops should be set
first, however mentioned commit reversed order of operations. Fix this
by restoring original order of operations.
Fixes: bf67fad19e493b ("efi: Use more granular check for availability for variable services")
Signed-off-by: Amadeusz Sławiński <amadeuszx.slawinski@linux.intel.com>
Link: https://lore.kernel.org/r/20201123172817.124146-1-amadeuszx.slawinski@linux.intel.com
Tested-by: Cezary Rojewski <cezary.rojewski@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Incorporate the definition of EFI_MEMORY_CPU_CRYPTO from the UEFI
specification v2.8, and wire it into our memory map dumping routine
as well.
To make a bit of space in the output buffer, which is provided by
the various callers, shorten the descriptive names of the memory
types.
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Because of system-specific EFI firmware limitations, EFI volatile
variables may not be capable of holding the required contents of
the Machine Owner Key (MOK) certificate store when the certificate
list grows above some size. Therefore, an EFI boot loader may pass
the MOK certs via a EFI configuration table created specifically for
this purpose to avoid this firmware limitation.
An EFI configuration table is a much more primitive mechanism
compared to EFI variables and is well suited for one-way passage
of static information from a pre-OS environment to the kernel.
This patch adds initial kernel support to recognize, parse,
and validate the EFI MOK configuration table, where named
entries contain the same data that would otherwise be provided
in similarly named EFI variables.
Additionally, this patch creates a sysfs binary file for each
EFI MOK configuration table entry found. These files are read-only
to root and are provided for use by user space utilities such as
mokutil.
A subsequent patch will load MOK certs into the trusted platform
key ring using this infrastructure.
Signed-off-by: Lenny Szubowicz <lszubowi@redhat.com>
Link: https://lore.kernel.org/r/20200905013107.10457-2-lszubowi@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
destroy_workqueue() should be called to destroy efi_rts_wq
when efisubsys_init() init resources fails.
Cc: <stable@vger.kernel.org>
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Li Heng <liheng40@huawei.com>
Link: https://lore.kernel.org/r/1595229738-10087-1-git-send-email-liheng40@huawei.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit
bf67fad19e493b ("efi: Use more granular check for availability for variable services")
introduced a check into the efivarfs, efi-pstore and other drivers that
aborts loading of the module if not all three variable runtime services
(GetVariable, SetVariable and GetNextVariable) are supported. However, this
results in efivarfs being unavailable entirely if only SetVariable support
is missing, which is only needed if you want to make any modifications.
Also, efi-pstore and the sysfs EFI variable interface could be backed by
another implementation of the 'efivars' abstraction, in which case it is
completely irrelevant which services are supported by the EFI firmware.
So make the generic 'efivars' abstraction dependent on the availibility of
the GetVariable and GetNextVariable EFI runtime services, and add a helper
'efivar_supports_writes()' to find out whether the currently active efivars
abstraction supports writes (and wire it up to the availability of
SetVariable for the generic one).
Then, use the efivar_supports_writes() helper to decide whether to permit
efivarfs to be mounted read-write, and whether to enable efi-pstore or the
sysfs EFI variable interface altogether.
Fixes: bf67fad19e493b ("efi: Use more granular check for availability for variable services")
Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Tested-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In most cases, such as CONFIG_ACPI_CUSTOM_DSDT and
CONFIG_ACPI_TABLE_UPGRADE, boot-time modifications to firmware tables
are tied to specific Kconfig options. Currently this is not the case
for modifying the ACPI SSDT via the efivar_ssdt kernel command line
option and associated EFI variable.
This patch adds CONFIG_EFI_CUSTOM_SSDT_OVERLAYS, which defaults
disabled, in order to allow enabling or disabling that feature during
the build.
Cc: <stable@vger.kernel.org>
Signed-off-by: Peter Jones <pjones@redhat.com>
Link: https://lore.kernel.org/r/20200615202408.2242614-1-pjones@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
Lastly, make use of the sizeof_field() helper instead of an open-coded
version.
This issue was found with the help of Coccinelle and audited _manually_.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200527171425.GA4053@embeddedor
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Define a new initializer for the mmap locking api. Initially this just
evaluates to __RWSEM_INITIALIZER as the API is defined as wrappers around
rwsem.
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-9-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull up arch-specific prototype efi_systab_show_arch() in order to
fix a -Wmissing-prototypes warning:
arch/x86/platform/efi/efi.c:957:7: warning: no previous prototype for
‘efi_systab_show_arch’ [-Wmissing-prototypes]
char *efi_systab_show_arch(char *str)
Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Link: https://lore.kernel.org/r/20200516132647.14568-1-b.thiel@posteo.de
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of making match_config_table() test its table_types pointer for
NULL-ness, omit the call entirely if no arch_tables pointer was provided
to efi_config_parse_tables().
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Increase legibility by adding whitespace to the efi_config_table_type_t
arrays that describe which EFI config tables we look for when going over
the firmware provided list. While at it, replace the 'name' char pointer
with a char array, which is more space efficient on relocatable 64-bit
kernels, as it avoids a 8 byte pointer and the associated relocation
data (24 bytes when using RELA format)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit:
3a6b6c6fb23667fa ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE initialization common across all architectures")
moved the call to efi_memattr_init() from ARM specific to the generic
EFI init code, in order to be able to apply the restricted permissions
described in that table on x86 as well.
We never enabled this feature fully on i386, and so mapping and
reserving this table is pointless. However, due to the early call to
memblock_reserve(), the memory bookkeeping gets confused to the point
where it produces the splat below when we try to map the memory later
on:
------------[ cut here ]------------
ioremap on RAM at 0x3f251000 - 0x3fa1afff
WARNING: CPU: 0 PID: 0 at arch/x86/mm/ioremap.c:166 __ioremap_caller ...
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.20.0 #48
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
EIP: __ioremap_caller.constprop.0+0x249/0x260
Code: 90 0f b7 05 4e 38 40 de 09 45 e0 e9 09 ff ff ff 90 8d 45 ec c6 05 ...
EAX: 00000029 EBX: 00000000 ECX: de59c228 EDX: 00000001
ESI: 3f250fff EDI: 00000000 EBP: de3edf20 ESP: de3edee0
DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00200296
CR0: 80050033 CR2: ffd17000 CR3: 1e58c000 CR4: 00040690
Call Trace:
ioremap_cache+0xd/0x10
? old_map_region+0x72/0x9d
old_map_region+0x72/0x9d
efi_map_region+0x8/0xa
efi_enter_virtual_mode+0x260/0x43b
start_kernel+0x329/0x3aa
i386_start_kernel+0xa7/0xab
startup_32_smp+0x164/0x168
---[ end trace e15ccf6b9f356833 ]---
Let's work around this by disregarding the memory attributes table
altogether on i386, which does not result in a loss of functionality
or protection, given that we never consumed the contents.
Fixes: 3a6b6c6fb23667fa ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE ... ")
Tested-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200304165917.5893-1-ardb@kernel.org
Link: https://lore.kernel.org/r/20200308080859.21568-21-ardb@kernel.org
More EFI updates for v5.7
- Incorporate a stable branch with the EFI pieces of Hans's work on
loading device firmware from EFI boot service memory regions
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes it is useful to be able to dump the efi boot-services code and
data. This commit adds these as debugfs-blobs to /sys/kernel/debug/efi,
but only if efi=debug is passed on the kernel-commandline as this requires
not freeing those memory-regions, which costs 20+ MB of RAM.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-2-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Recent changes to the way we deal with EFI runtime services that
are marked as unsupported by the firmware resulted in a regression
for non-EFI boot. The problem is that all EFI runtime services are
marked as available by default, and any non-NULL checks on the EFI
service function pointers (which will be non-NULL even for runtime
services that are unsupported on an EFI boot) were replaced with
checks against the mask stored in efi.runtime_supported_mask.
When doing a non-EFI boot, this check against the mask will return
a false positive, given the fact that all runtime services are
marked as enabled by default. Since we dropped the non-NULL check
of the runtime service function pointer in favor of the mask check,
we will now unconditionally dereference the function pointer, even
if it is NULL, and go boom.
So let's ensure that the mask reflects reality on a non-EFI boot,
which is that all EFI runtime services are unsupported.
Reported-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20200228121408.9075-7-ardb@kernel.org
This function is consistent with using size instead of seed->size
(except for one place that this patch fixes), but it reads seed->size
without using READ_ONCE, which means the compiler might still do
something unwanted. So, this commit simply adds the READ_ONCE
wrapper.
Fixes: 636259880a7e ("efi: Add support for seeding the RNG from a UEFI ...")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200217123354.21140-1-Jason@zx2c4.com
Link: https://lore.kernel.org/r/20200221084849.26878-5-ardb@kernel.org
Drop the separate driver that registers the EFI rtc on all EFI
systems that have runtime services available, and instead, move
the registration into the core EFI code, and make it conditional
on whether the actual time related services are available.
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The UEFI spec rev 2.8 permits firmware implementations to support only
a subset of EFI runtime services at OS runtime (i.e., after the call to
ExitBootServices()), so let's take this into account in the drivers that
rely specifically on the availability of the EFI variable services.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Take the newly introduced EFI_RT_PROPERTIES_TABLE configuration table
into account, which carries a mask of which EFI runtime services are
still functional after ExitBootServices() has been called by the OS.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Revision 2.8 of the UEFI spec introduces provisions for firmware to
advertise lack of support for certain runtime services at OS runtime.
Let's store this mask in struct efi for easy access.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
On ARM systems, we discover the UEFI system table address and memory
map address from the /chosen node in the device tree, or in the Xen
case, from a similar node under /hypervisor.
Before making some functional changes to that code, move it into its
own file that only gets built if CONFIG_EFI_PARAMS_FROM_FDT=y.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
There is some code that exposes physical addresses of certain parts of
the EFI firmware implementation via sysfs nodes. These nodes are only
used on x86, and are of dubious value to begin with, so let's move
their handling into the x86 arch code.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
config_parse_tables() is a jumble of pointer arithmetic, due to the
fact that on x86, we may be dealing with firmware whose native word
size differs from the kernel's.
This is not a concern on other architectures, and doesn't quite
justify the state of the code, so let's clean it up by adding a
non-x86 code path, constifying statically allocated tables and
replacing preprocessor conditionals with IS_ENABLED() checks.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The efi_config_init() routine is no longer shared with ia64 so let's
move it into the x86 arch code before making further x86 specific
changes to it.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We have three different versions of the code that checks the EFI system
table revision and copies the firmware vendor string, and they are
mostly equivalent, with the exception of the use of early_memremap_ro
vs. __va() and the lowest major revision to warn about. Let's move this
into common code and factor out the commonalities.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
There is no need for struct efi to carry the address of the memreserve
table and share it with the world. So move it out and make it
__initdata as well.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The memory attributes table is only used at init time by the core EFI
code, so there is no need to carry its address in struct efi that is
shared with the world. So move it out, and make it __ro_after_init as
well, considering that the value is set during early boot.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move the rng_seed table address from struct efi into a static global
variable in efi.c, which is the only place we ever refer to it anyway.
This reduces the footprint of struct efi, which is a r/w data structure
that is shared with the world.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The UGA table is x86 specific (its handling was introduced when the
EFI support code was modified to accommodate IA32), so there is no
need to handle it in generic code.
The EFI properties table is not strictly x86 specific, but it was
deprecated almost immediately after having been introduced, due to
implementation difficulties. Only x86 takes it into account today,
and this is not going to change, so make this table x86 only as well.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The HCDP and MPS tables are Itanium specific EFI config tables, so
move their handling to ia64 arch code.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Some plumbing exists to handle a UEFI configuration table of type
BOOT_INFO but since we never match it to a GUID anywhere, we never
actually register such a table, or access it, for that matter. So
simply drop all mentions of it.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>