IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The code under the groups mark_mutex in fanotify_add_inode_mark() and
fanotify_add_vfsmount_mark() is almost identical. So put it into a
seperate function.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Cc: Eric Paris <eparis@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For both adding an event to an existing mark and destroying a mark we
first have to find it via fsnotify_find_[inode|vfsmount]_mark(). But
getting the mark and adding an event (or destroying it) is not done
atomically. This opens a race where a thread is about to destroy a mark
while another thread still finds the same mark and adds an event to its
mask although it will be destroyed.
Another race exists concerning the excess of a groups number of marks
limit: When a mark is added the number of group marks is checked against
the max number of marks per group and increased afterwards. Since check
and increment is also not done atomically, this may result in 2 or more
processes passing the check at the same time and increasing the number
of group marks above the allowed limit.
With this patch both races are avoided by doing the concerning
operations with the groups mark mutex locked.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Cc: Eric Paris <eparis@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ->reserved field isn't cleared so we leak one byte of stack
information to userspace.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
... especially since there's no way to get that sucker
on the list fsnotify_fasync() works with - the only thing
adding to it is fsnotify_fasync() itself and it's never
called for fanotify files while they are opened.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and convert a bunch of SYSCALL_DEFINE ones to SYSCALL_DEFINE<n>,
killing the boilerplate crap around them.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull filesystem notification updates from Eric Paris:
"This pull mostly is about locking changes in the fsnotify system. By
switching the group lock from a spin_lock() to a mutex() we can now
hold the lock across things like iput(). This fixes a problem
involving unmounting a fs and having inodes be busy, first pointed out
by FAT, but reproducible with tmpfs.
This also restores signal driven I/O for inotify, which has been
broken since about 2.6.32."
Ugh. I *hate* the timing of this. It was rebased after the merge
window opened, and then left to sit with the pull request coming the day
before the merge window closes. That's just crap. But apparently the
patches themselves have been around for over a year, just gathering
dust, so now it's suddenly critical.
Fixed up semantic conflict in fs/notify/fdinfo.c as per Stephen
Rothwell's fixes from -next.
* 'for-next' of git://git.infradead.org/users/eparis/notify:
inotify: automatically restart syscalls
inotify: dont skip removal of watch descriptor if creation of ignored event failed
fanotify: dont merge permission events
fsnotify: make fasync generic for both inotify and fanotify
fsnotify: change locking order
fsnotify: dont put marks on temporary list when clearing marks by group
fsnotify: introduce locked versions of fsnotify_add_mark() and fsnotify_remove_mark()
fsnotify: pass group to fsnotify_destroy_mark()
fsnotify: use a mutex instead of a spinlock to protect a groups mark list
fanotify: add an extra flag to mark_remove_from_mask that indicates wheather a mark should be destroyed
fsnotify: take groups mark_lock before mark lock
fsnotify: use reference counting for groups
fsnotify: introduce fsnotify_get_group()
inotify, fanotify: replace fsnotify_put_group() with fsnotify_destroy_group()
Pull trivial branch from Jiri Kosina:
"Usual stuff -- comment/printk typo fixes, documentation updates, dead
code elimination."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
HOWTO: fix double words typo
x86 mtrr: fix comment typo in mtrr_bp_init
propagate name change to comments in kernel source
doc: Update the name of profiling based on sysfs
treewide: Fix typos in various drivers
treewide: Fix typos in various Kconfig
wireless: mwifiex: Fix typo in wireless/mwifiex driver
messages: i2o: Fix typo in messages/i2o
scripts/kernel-doc: check that non-void fcts describe their return value
Kernel-doc: Convention: Use a "Return" section to describe return values
radeon: Fix typo and copy/paste error in comments
doc: Remove unnecessary declarations from Documentation/accounting/getdelays.c
various: Fix spelling of "asynchronous" in comments.
Fix misspellings of "whether" in comments.
eisa: Fix spelling of "asynchronous".
various: Fix spelling of "registered" in comments.
doc: fix quite a few typos within Documentation
target: iscsi: fix comment typos in target/iscsi drivers
treewide: fix typo of "suport" in various comments and Kconfig
treewide: fix typo of "suppport" in various comments
...
Boyd Yang reported a problem for the case that multiple threads of the same
thread group are waiting for a reponse for a permission event.
In this case it is possible that some of the threads are never woken up, even
if the response for the event has been received
(see http://marc.info/?l=linux-kernel&m=131822913806350&w=2).
The reason is that we are currently merging permission events if they belong to
the same thread group. But we are not prepared to wake up more than one waiter
for each event. We do
wait_event(group->fanotify_data.access_waitq, event->response ||
atomic_read(&group->fanotify_data.bypass_perm));
and after that
event->response = 0;
which is the reason that even if we woke up all waiters for the same event
some of them may see event->response being already set 0 again, then go back to
sleep and block forever.
With this patch we avoid that more than one thread is waiting for a response
by not merging permission events for the same thread group any more.
Reported-by: Boyd Yang <boyd.yang@gmail.com>
Signed-off-by: Lino Sanfilippo <LinoSanfilipp@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
inotify is supposed to support async signal notification when information
is available on the inotify fd. This patch moves that support to generic
fsnotify functions so it can be used by all notification mechanisms.
Signed-off-by: Eric Paris <eparis@redhat.com>
In fsnotify_destroy_mark() dont get the group from the passed mark anymore,
but pass the group itself as an additional parameter to the function.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
This patch adds an extra flag to mark_remove_from_mask() to inform the caller if
the mark should be destroyed.
With this we dont destroy the mark implicitly in the function itself any more
but let the caller handle it.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
Currently in fsnotify_put_group() the ref count of a group is decremented and if
it becomes 0 fsnotify_destroy_group() is called. Since a groups ref count is only
at group creation set to 1 and never increased after that a call to fsnotify_put_group()
always results in a call to fsnotify_destroy_group().
With this patch fsnotify_destroy_group() is called directly.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
If the FAN_Q_OVERFLOW bit set in event->mask, the fanotify event
metadata will not contain a valid file descriptor, but
copy_event_to_user() didn't check for that, and unconditionally does a
fd_install() on the file descriptor.
Which in turn will cause a BUG_ON() in __fd_install().
Introduced by commit 352e3b2492 ("fanotify: sanitize failure exits in
copy_event_to_user()")
Mea culpa - missed that path ;-/
Reported-by: Alex Shi <lkml.alex@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Anders Blomdell noted in 2010 that Fanotify lost events and provided a
test case. Eric Paris confirmed it was a bug and posted a fix to the
list
https://groups.google.com/forum/?fromgroups=#!topic/linux.kernel/RrJfTfyW2BE
but never applied it. Repeated attempts over time to actually get him
to apply it have never had a reply from anyone who has raised it
So apply it anyway
Signed-off-by: Alan Cox <alan@linux.intel.com>
Reported-by: Anders Blomdell <anders.blomdell@control.lth.se>
Cc: Eric Paris <eparis@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* do copy_to_user() before prepare_for_access_response(); that kills
the need in remove_access_response().
* don't do fd_install() until we are past the last possible failure
exit. Don't use sys_close() on cleanup side - just put_unused_fd()
and fput(). Less racy that way...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Conflicts:
MAINTAINERS
arch/arm/mach-omap2/pm24xx.c
drivers/scsi/bfa/bfa_fcpim.c
Needed to update to apply fixes for which the old branch was too
outdated.
The fanotify_event_metadata now has a field which is supposed to
indicate the length of the metadata portion of the event. Fill in that
field as well.
Based-in-part-on-patch-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
We should not try to open a file descriptor for the overflow event since this
will always fail.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
If fanotify_init is unable to allocate a new fsnotify group it will
return but will not drop its reference on the associated user struct.
Drop that reference on error.
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
When fanotify_release() is called, there may still be processes waiting for
access permission. Currently only processes for which an event has already been
queued into the groups access list will be woken up. Processes for which no
event has been queued will continue to sleep and thus cause a deadlock when
fsnotify_put_group() is called.
Furthermore there is a race allowing further processes to be waiting on the
access wait queue after wake_up (if they arrive before clear_marks_by_group()
is called).
This patch corrects this by setting a flag to inform processes that the group
is about to be destroyed and thus not to wait for access permission.
[additional changelog from eparis]
Lets think about the 4 relevant code paths from the PoV of the
'operator' 'listener' 'responder' and 'closer'. Where operator is the
process doing an action (like open/read) which could require permission.
Listener is the task (or in this case thread) slated with reading from
the fanotify file descriptor. The 'responder' is the thread responsible
for responding to access requests. 'Closer' is the thread attempting to
close the fanotify file descriptor.
The 'operator' is going to end up in:
fanotify_handle_event()
get_response_from_access()
(THIS BLOCKS WAITING ON USERSPACE)
The 'listener' interesting code path
fanotify_read()
copy_event_to_user()
prepare_for_access_response()
(THIS CREATES AN fanotify_response_event)
The 'responder' code path:
fanotify_write()
process_access_response()
(REMOVE A fanotify_response_event, SET RESPONSE, WAKE UP 'operator')
The 'closer':
fanotify_release()
(SUPPOSED TO CLEAN UP THE REST OF THIS MESS)
What we have today is that in the closer we remove all of the
fanotify_response_events and set a bit so no more response events are
ever created in prepare_for_access_response().
The bug is that we never wake all of the operators up and tell them to
move along. You fix that in fanotify_get_response_from_access(). You
also fix other operators which haven't gotten there yet. So I agree
that's a good fix.
[/additional changelog from eparis]
[remove additional changes to minimize patch size]
[move initialization so it was inside CONFIG_FANOTIFY_PERMISSION]
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
In mark_remove_from_mask() we destroy marks that have their event mask cleared.
Thus we should not allow the creation of those marks in the first place.
With this patch we check if the mask given from user is 0 in case of FAN_MARK_ADD.
If so we return an error. Same for FAN_MARK_REMOVE since this does not have any
effect.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
If adding a mount or inode mark failed fanotify_free_mark() is called explicitly.
But at this time the mark has already been put into the destroy list of the
fsnotify_mark kernel thread. If the thread is too slow it will try to decrease
the reference of a mark, that has already been freed by fanotify_free_mark().
(If its fast enough it will only decrease the marks ref counter from 2 to 1 - note
that the counter has been increased to 2 in add_mark() - which has practically no
effect.)
This patch fixes the ref counting by not calling free_mark() explicitly, but
decreasing the ref counter and rely on the fsnotify_mark thread to cleanup in
case adding the mark has failed.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
If no event was sent to userspace we cannot expect userspace to respond to
permissions requests. Today such requests just hang forever. This patch will
deny any permissions event which was unable to be sent to userspace.
Reported-by: Tvrtko Ursulin <tvrtko.ursulin@sophos.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
In fanotify_read() return -ERESTARTSYS instead of -EINTR to
make read() restartable across signals (BSD semantic).
Signed-off-by: Eric Paris <eparis@redhat.com>
fs/notify/fanotify/fanotify_user.c: In function 'fanotify_release':
fs/notify/fanotify/fanotify_user.c:375: warning: unused variable 'lre'
fs/notify/fanotify/fanotify_user.c:375: warning: unused variable 're'
this is really ugly.
Cc: Eric Paris <eparis@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Eric Paris <eparis@redhat.com>
If fanotify sets a new bit in the ignored mask it will cause the generic
fsnotify layer to recalculate the real mask. This is stupid since we
didn't change that part.
Signed-off-by: Eric Paris <eparis@redhat.com>
fanotify has a very limited number of events it sends on directories. The
usefulness of these events is yet to be seen and still we send them. This
is particularly painful for mount marks where one might receive many of
these useless events. As such this patch will drop events on IS_DIR()
inodes unless they were explictly requested with FAN_ON_DIR.
This means that a mark on a directory without FAN_EVENT_ON_CHILD or
FAN_ON_DIR is meaningless and will result in no events ever (although it
will still be allowed since detecting it is hard)
Signed-off-by: Eric Paris <eparis@redhat.com>
fanotify_should_send_event has a test to see if an object is a file or
directory and does not send an event otherwise. The problem is that the
test is actually checking if the object with a mark is a file or directory,
not if the object the event happened on is a file or directory. We should
check the latter.
Signed-off-by: Eric Paris <eparis@redhat.com>
fanotify currently has no limit on the number of listeners a given user can
have open. This patch limits the total number of listeners per user to
128. This is the same as the inotify default limit.
Signed-off-by: Eric Paris <eparis@redhat.com>
Some fanotify groups, especially those like AV scanners, will need to place
lots of marks, particularly ignore marks. Since ignore marks do not pin
inodes in cache and are cleared if the inode is removed from core (usually
under memory pressure) we expose an interface for listeners, with
CAP_SYS_ADMIN, to override the maximum number of marks and be allowed to
set and 'unlimited' number of marks. Programs which make use of this
feature will be able to OOM a machine.
Signed-off-by: Eric Paris <eparis@redhat.com>
There is currently no limit on the number of marks a given fanotify group
can have. Since fanotify is gated on CAP_SYS_ADMIN this was not seen as
a serious DoS threat. This patch implements a default of 8192, the same as
inotify to work towards removing the CAP_SYS_ADMIN gating and eliminating
the default DoS'able status.
Signed-off-by: Eric Paris <eparis@redhat.com>
fanotify has a defualt max queue depth. This patch allows processes which
explicitly request it to have an 'unlimited' queue depth. These processes
need to be very careful to make sure they cannot fall far enough behind
that they OOM the box. Thus this flag is gated on CAP_SYS_ADMIN.
Signed-off-by: Eric Paris <eparis@redhat.com>
Currently fanotify has no maximum queue depth. Since fanotify is
CAP_SYS_ADMIN only this does not pose a normal user DoS issue, but it
certianly is possible that an fanotify listener which can't keep up could
OOM the box. This patch implements a default 16k depth. This is the same
default depth used by inotify, but given fanotify's better queue merging in
many situations this queue will contain many additional useful events by
comparison.
Signed-off-by: Eric Paris <eparis@redhat.com>
fanotify will clear ignore marks if a task changes the contents of an
inode. The problem is with the races around when userspace finishes
checking a file and when that result is actually attached to the inode.
This race was described as such:
Consider the following scenario with hostile processes A and B, and
victim process C:
1. Process A opens new file for writing. File check request is generated.
2. File check is performed in userspace. Check result is "file has no malware".
3. The "permit" response is delivered to kernel space.
4. File ignored mark set.
5. Process A writes dummy bytes to the file. File ignored flags are cleared.
6. Process B opens the same file for reading. File check request is generated.
7. File check is performed in userspace. Check result is "file has no malware".
8. Process A writes malware bytes to the file. There is no cached response yet.
9. The "permit" response is delivered to kernel space and is cached in fanotify.
10. File ignored mark set.
11. Now any process C will be permitted to open the malware file.
There is a race between steps 8 and 10
While fanotify makes no strong guarantees about systems with hostile
processes there is no reason we cannot harden against this race. We do
that by simply ignoring any ignore marks if the inode has open writers (aka
i_writecount > 0). (We actually do not ignore ignore marks if the
FAN_MARK_SURV_MODIFY flag is set)
Reported-by: Vasily Novikov <vasily.novikov@kaspersky.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
The fanotify listeners needs to be able to specify what types of operations
they are going to perform so they can be ordered appropriately between other
listeners doing other types of operations. They need this to be able to make
sure that things like hierarchichal storage managers will get access to inodes
before processes which need the data. This patch defines 3 possible uses
which groups must indicate in the fanotify_init() flags.
FAN_CLASS_PRE_CONTENT
FAN_CLASS_CONTENT
FAN_CLASS_NOTIF
Groups will receive notification in that order. The order between 2 groups in
the same class is undeterministic.
FAN_CLASS_PRE_CONTENT is intended to be used by listeners which need access to
the inode before they are certain that the inode contains it's final data. A
hierarchical storage manager should choose to use this class.
FAN_CLASS_CONTENT is intended to be used by listeners which need access to the
inode after it contains its intended contents. This would be the appropriate
level for an AV solution or document control system.
FAN_CLASS_NOTIF is intended for normal async notification about access, much the
same as inotify and dnotify. Syncronous permissions events are not permitted
at this class.
Signed-off-by: Eric Paris <eparis@redhat.com>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
The appropriate error code when privileged operations are denied is
EPERM, not EACCES.
Signed-off-by: Andreas Gruenbacher <agruen@suse.de>
Signed-off-by: Eric Paris <paris@paris.rdu.redhat.com>
This reminded me... you have two pr_debugs in fanotify_should_send_event
which output redundant information. Maybe you intended it like that so
it is selectable how much log spam you want, or if not you may want to
apply this patch.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@sophos.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
When an fanotify listener is closing it may cause a deadlock between the
listener and the original task doing an fs operation. If the original task
is waiting for a permissions response it will be holding the srcu lock. The
listener cannot clean up and exit until after that srcu lock is syncronized.
Thus deadlock. The fix introduced here is to stop accepting new permissions
events when a listener is shutting down and to grant permission for all
outstanding events. Thus the original task will eventually release the srcu
lock and the listener can complete shutdown.
Reported-by: Andreas Gruenbacher <agruen@suse.de>
Cc: Andreas Gruenbacher <agruen@suse.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
This reverts commit 3bcf3860a4 (and the
accompanying commit c1e5c95402 "vfs/fsnotify: fsnotify_close can delay
the final work in fput" that was a horribly ugly hack to make it work at
all).
The 'struct file' approach not only causes that disgusting hack, it
somehow breaks pulseaudio, probably due to some other subtlety with
f_count handling.
Fix up various conflicts due to later fsnotify work.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>