IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
APIC base relocation is not supported anyway and won't work
correctly so just drop the code that handles it and keep AVIC
MMIO bar at the default APIC base.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-17-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that kvm_request_apicv_update doesn't need to drop the kvm->srcu lock,
we can call kvm_request_apicv_update directly.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-13-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Thanks to the former patches, it is now possible to keep the APICv
memslot always enabled, and it will be invisible to the guest
when it is inhibited
This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make svm_copy_vmrun_state()/svm_copy_vmloadsave_state() interface match
'memcpy(dest, src)' to avoid any confusion.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210719090322.625277-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To match svm_copy_vmrun_state(), rename nested_svm_vmloadsave() to
svm_copy_vmloadsave_state().
Opportunistically add missing braces to 'else' branch in
vmload_vmsave_interception().
No functional change intended.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210716144104.465269-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the VM was migrated while in SMM, no nested state was saved/restored,
and therefore svm_leave_smm has to load both save and control area
of the vmcb12. Save area is already loaded from HSAVE area,
so now load the control area as well from the vmcb12.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the code setting non-VMLOAD-VMSAVE state from
svm_set_nested_state() into its own function. This is going to be
re-used from svm_enter_smm()/svm_leave_smm().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In theory there are no side effects of not intercepting #SMI,
because then #SMI becomes transparent to the OS and the KVM.
Plus an observation on recent Zen2 CPUs reveals that these
CPUs ignore #SMI interception and never deliver #SMI VMexits.
This is also useful to test nested KVM to see that L1
handles #SMIs correctly in case when L1 doesn't intercept #SMI.
Finally the default remains the same, the SMI are intercepted
by default thus this patch doesn't have any effect unless
non default module param value is used.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enlightened MSR-Bitmap as per TLFS:
"The L1 hypervisor may collaborate with the L0 hypervisor to make MSR
accesses more efficient. It can enable enlightened MSR bitmaps by setting
the corresponding field in the enlightened VMCS to 1. When enabled, L0
hypervisor does not monitor the MSR bitmaps for changes. Instead, the L1
hypervisor must invalidate the corresponding clean field after making
changes to one of the MSR bitmaps."
Enable this for SVM.
Related VMX changes:
commit ceef7d10dfb6 ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support")
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <87df0710f95d28b91cc4ea014fc4d71056eebbee.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SVM added support for certain reserved fields to be used by
software or hypervisor. Add the following reserved fields:
- VMCB offset 0x3e0 - 0x3ff
- Clean bit 31
- SVM intercept exit code 0xf0000000
Later patches will make use of this for supporting Hyper-V
nested virtualization enhancements.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <a1f17a43a8e9e751a1a9cc0281649d71bdbf721b.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unify VMX and SVM code by moving APICv/AVIC enablement tracking to common
'enable_apicv' variable. Note: unlike APICv, AVIC is disabled by default.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210609150911.1471882-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make it consistent with kvm_intel.enable_apicv.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Reorganize SEV code to streamline and simplify future development
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCg1XQACgkQEsHwGGHe
VUpRKA//dwzDD1QU16JucfhgFlv/9OTm48ukSwAb9lZjDEy4H1CtVL3xEHFd7L3G
LJp0LTW+OQf0/0aGlQp/cP6sBF6G9Bf4mydx70Id4SyCQt8eZDodB+ZOOWbeteWq
p92fJPbX8CzAglutbE+3v/MD8CCAllTiLZnJZPVj4Kux2/wF6EryDgF1+rb5q8jp
ObTT9817mHVwWVUYzbgceZtd43IocOlKZRmF1qivwScMGylQTe1wfMjunpD5pVt8
Zg4UDNknNfYduqpaG546E6e1zerGNaJK7SHnsuzHRUVU5icNqtgBk061CehP9Ksq
DvYXLUl4xF16j6xJAqIZPNrBkJGdQf4q1g5x2FiBm7rSQU5owzqh5rkVk4EBFFzn
UtzeXpqbStbsZHXycyxBNdq2HXxkFPf2NXZ+bkripPg+DifOGots1uwvAft+6iAE
GudK6qxAvr8phR1cRyy6BahGtgOStXbZYEz0ZdU6t7qFfZMz+DomD5Jimj0kAe6B
s6ras5xm8q3/Py87N/KNjKtSEpgsHv/7F+idde7ODtHhpRL5HCBqhkZOSRkMMZqI
ptX1oSTvBXwRKyi5x9YhkKHUFqfFSUTfJhiRFCWK+IEAv3Y7SipJtfkqxRbI6fEV
FfCeueKDDdViBtseaRceVLJ8Tlr6Qjy27fkPPTqJpthqPpCdoZ0=
=ENfF
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"The three SEV commits are not really urgent material. But we figured
since getting them in now will avoid a huge amount of conflicts
between future SEV changes touching tip, the kvm and probably other
trees, sending them to you now would be best.
The idea is that the tip, kvm etc branches for 5.14 will all base
ontop of -rc2 and thus everything will be peachy. What is more, those
changes are purely mechanical and defines movement so they should be
fine to go now (famous last words).
Summary:
- Enable -Wundef for the compressed kernel build stage
- Reorganize SEV code to streamline and simplify future development"
* tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Enable -Wundef
x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFG
x86/sev: Move GHCB MSR protocol and NAE definitions in a common header
x86/sev-es: Rename sev-es.{ch} to sev.{ch}
The guest and the hypervisor contain separate macros to get and set
the GHCB MSR protocol and NAE event fields. Consolidate the GHCB
protocol definitions and helper macros in one place.
Leave the supported protocol version define in separate files to keep
the guest and hypervisor flexibility to support different GHCB version
in the same release.
There is no functional change intended.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-3-brijesh.singh@amd.com
When an SEV-ES guest is running, the GHCB is unmapped as part of the
vCPU run support. However, kvm_vcpu_unmap() triggers an RCU dereference
warning with CONFIG_PROVE_LOCKING=y because the SRCU lock is released
before invoking the vCPU run support.
Move the GHCB unmapping into the prepare_guest_switch callback, which is
invoked while still holding the SRCU lock, eliminating the RCU dereference
warning.
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <b2f9b79d15166f2c3e4375c0d9bc3268b7696455.1620332081.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace calls to svm_sev_enabled() with direct checks on sev_enabled, or
in the case of svm_mem_enc_op, simply drop the call to svm_sev_enabled().
This effectively replaces checks against a valid max_sev_asid with checks
against sev_enabled. sev_enabled is forced off by sev_hardware_setup()
if max_sev_asid is invalid, all call sites are guaranteed to run after
sev_hardware_setup(), and all of the checks care about SEV being fully
enabled (as opposed to intentionally handling the scenario where
max_sev_asid is valid but SEV enabling fails due to OOM).
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the allocation of the SEV VMCB array to sev.c to help pave the way
toward encapsulating SEV enabling wholly within sev.c.
No functional change intended.
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a reverse-CPUID entry for the memory encryption word, 0x8000001F.EAX,
and use it to override the supported CPUID flags reported to userspace.
Masking the reported CPUID flags avoids over-reporting KVM support, e.g.
without the mask a SEV-SNP capable CPU may incorrectly advertise SNP
support to userspace.
Clear SEV/SEV-ES if their corresponding module parameters are disabled,
and clear the memory encryption leaf completely if SEV is not fully
supported in KVM. Advertise SME_COHERENT in addition to SEV and SEV-ES,
as the guest can use SME_COHERENT to avoid CLFLUSH operations.
Explicitly omit SME and VM_PAGE_FLUSH from the reporting. These features
are used by KVM, but are not exposed to the guest, e.g. guest access to
related MSRs will fault.
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally invoke sev_hardware_setup() when configuring SVM and
handle clearing the module params/variable 'sev' and 'sev_es' in
sev_hardware_setup(). This allows making said variables static within
sev.c and reduces the odds of a collision with guest code, e.g. the guest
side of things has already laid claim to 'sev_enabled'.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KVM's "user return MSRs" framework to defer restoring the host's
MSR_TSC_AUX until the CPU returns to userspace. Add/improve comments to
clarify why MSR_TSC_AUX is intercepted on both RDMSR and WRMSR, and why
it's safe for KVM to keep the guest's value loaded even if KVM is
scheduled out.
Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210423223404.3860547-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a capability for userspace to mirror SEV encryption context from
one vm to another. On our side, this is intended to support a
Migration Helper vCPU, but it can also be used generically to support
other in-guest workloads scheduled by the host. The intention is for
the primary guest and the mirror to have nearly identical memslots.
The primary benefits of this are that:
1) The VMs do not share KVM contexts (think APIC/MSRs/etc), so they
can't accidentally clobber each other.
2) The VMs can have different memory-views, which is necessary for post-copy
migration (the migration vCPUs on the target need to read and write to
pages, when the primary guest would VMEXIT).
This does not change the threat model for AMD SEV. Any memory involved
is still owned by the primary guest and its initial state is still
attested to through the normal SEV_LAUNCH_* flows. If userspace wanted
to circumvent SEV, they could achieve the same effect by simply attaching
a vCPU to the primary VM.
This patch deliberately leaves userspace in charge of the memslots for the
mirror, as it already has the power to mess with them in the primary guest.
This patch does not support SEV-ES (much less SNP), as it does not
handle handing off attested VMSAs to the mirror.
For additional context, we need a Migration Helper because SEV PSP
migration is far too slow for our live migration on its own. Using
an in-guest migrator lets us speed this up significantly.
Signed-off-by: Nathan Tempelman <natet@google.com>
Message-Id: <20210408223214.2582277-1-natet@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define the actual size of the IOPM and MSRPM tables so that the actual size
can be used when initializing them and when checking the consistency of their
physical address.
These #defines are placed in svm.h so that they can be shared.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <20210412215611.110095-2-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a comment above the declaration of vcpu_svm.vmcb to call out that it
is simply a shorthand for current_vmcb->ptr. The myriad accesses to
svm->vmcb are quite confusing without this crucial detail.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove vmcb_pa from vcpu_svm and simply read current_vmcb->pa directly in
the one path where it is consumed. Unlike svm->vmcb, use of the current
vmcb's address is very limited, as evidenced by the fact that its use
can be trimmed to a single dereference.
Opportunistically add a comment about using vmcb01 for VMLOAD/VMSAVE, at
first glance using vmcb01 instead of vmcb_pa looks wrong.
No functional change intended.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently to support Intel->AMD migration, if CPU vendor is GenuineIntel,
we emulate the full 64 value for MSR_IA32_SYSENTER_{EIP|ESP}
msrs, and we also emulate the sysenter/sysexit instruction in long mode.
(Emulator does still refuse to emulate sysenter in 64 bit mode, on the
ground that the code for that wasn't tested and likely has no users)
However when virtual vmload/vmsave is enabled, the vmload instruction will
update these 32 bit msrs without triggering their msr intercept,
which will lead to having stale values in kvm's shadow copy of these msrs,
which relies on the intercept to be up to date.
Fix/optimize this by doing the following:
1. Enable the MSR intercepts for SYSENTER MSRs iff vendor=GenuineIntel
(This is both a tiny optimization and also ensures that in case
the guest cpu vendor is AMD, the msrs will be 32 bit wide as
AMD defined).
2. Store only high 32 bit part of these msrs on interception and combine
it with hardware msr value on intercepted read/writes
iff vendor=GenuineIntel.
3. Disable vmload/vmsave virtualization if vendor=GenuineIntel.
(It is somewhat insane to set vendor=GenuineIntel and still enable
SVM for the guest but well whatever).
Then zero the high 32 bit parts when kvm intercepts and emulates vmload.
Thanks a lot to Paulo Bonzini for helping me with fixing this in the most
correct way.
This patch fixes nested migration of 32 bit nested guests, that was
broken because incorrect cached values of SYSENTER msrs were stored in
the migration stream if L1 changed these msrs with
vmload prior to L2 entry.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401111928.996871-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Secure Encrypted Virtualization (SEV) and Secure Encrypted
Virtualization - Encrypted State (SEV-ES) ASIDs are used to encrypt KVMs
on AMD platform. These ASIDs are available in the limited quantities on
a host.
Register their capacity and usage to the misc controller for tracking
via cgroups.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use the vmcb12 control clean field to determine which vmcb12.save
registers were marked dirty in order to minimize register copies
when switching from L1 to L2. Those vmcb12 registers marked as dirty need
to be copied to L0's vmcb02 as they will be used to update the vmcb
state cache for the L2 VMRUN. In the case where we have a different
vmcb12 from the last L2 VMRUN all vmcb12.save registers must be
copied over to L2.save.
Tested:
kvm-unit-tests
kvm selftests
Fedora L1 L2
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Cathy Avery <cavery@redhat.com>
Message-Id: <20210301200844.2000-1-cavery@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper to consolidate boilerplate for nested VM-Exits that don't
provide any data in exit_info_*.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210302174515.2812275-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor the svm_exit_handlers API to pass @vcpu instead of @svm to
allow directly invoking common x86 exit handlers (in a future patch).
Opportunistically convert an absurd number of instances of 'svm->vcpu'
to direct uses of 'vcpu' to avoid pointless casting.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that SVM is using a separate vmcb01 and vmcb02 (and also uses the vmcb12
naming) we can give clearer names to functions that write to and read
from those VMCBs. Likewise, variables and parameters can be renamed
from nested_vmcb to vmcb12.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch moves the asid_generation from the vcpu to the vmcb
in order to track the ASID generation that was active the last
time the vmcb was run. If sd->asid_generation changes between
two runs, the old ASID is invalid and must be changed.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Cathy Avery <cavery@redhat.com>
Message-Id: <20210112164313.4204-3-cavery@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch moves the physical cpu tracking from the vcpu
to the vmcb in svm_switch_vmcb. If either vmcb01 or vmcb02
change physical cpus from one vmrun to the next the vmcb's
previous cpu is preserved for comparison with the current
cpu and the vmcb is marked dirty if different. This prevents
the processor from using old cached data for a vmcb that may
have been updated on a prior run on a different processor.
It also moves the physical cpu check from svm_vcpu_load
to pre_svm_run as the check only needs to be done at run.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Cathy Avery <cavery@redhat.com>
Message-Id: <20210112164313.4204-2-cavery@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
svm->vmcb will now point to a separate vmcb for L1 (not nested) or L2
(nested).
The main advantages are removing get_host_vmcb and hsave, in favor of
concepts that are shared with VMX.
We don't need anymore to stash the L1 registers in hsave while L2
runs, but we need to copy the VMLOAD/VMSAVE registers from VMCB01 to
VMCB02 and back. This more or less has the same cost, but code-wise
nested_svm_vmloadsave can be reused.
This patch omits several optimizations that are possible:
- for simplicity there is some wholesale copying of vmcb.control areas
which can go away.
- we should be able to better use the VMCB01 and VMCB02 clean bits.
- another possibility is to always use VMCB01 for VMLOAD and VMSAVE,
thus avoiding the copy of VMLOAD/VMSAVE registers from VMCB01 to
VMCB02 and back.
Tested:
kvm-unit-tests
kvm self tests
Loaded fedora nested guest on fedora
Signed-off-by: Cathy Avery <cavery@redhat.com>
Message-Id: <20201011184818.3609-3-cavery@redhat.com>
[Fix conflicts; keep VMCB02 G_PAT up to date whenever guest writes the
PAT MSR; do not copy CR4 over from VMCB01 as it is not needed anymore; add
a few more comments. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently we save host state like user-visible host MSRs, and do some
initial guest register setup for MSR_TSC_AUX and MSR_AMD64_TSC_RATIO
in svm_vcpu_load(). Defer this until just before we enter the guest by
moving the handling to kvm_x86_ops.prepare_guest_switch() similarly to
how it is done for the VMX implementation.
Additionally, since handling of saving/restoring host user MSRs is the
same both with/without SEV-ES enabled, move that handling to common
code.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20210202190126.2185715-4-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the set of host user MSRs that need to be individually
saved/restored are the same with/without SEV-ES, we can drop the
.sev_es_restored flag and just iterate through the list unconditionally
for both cases. A subsequent patch can then move these loops to a
common path.
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20210202190126.2185715-3-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using a guest workload which simply issues 'hlt' in a tight loop to
generate VMEXITs, it was observed (on a recent EPYC processor) that a
significant amount of the VMEXIT overhead measured on the host was the
result of MSR reads/writes in svm_vcpu_load/svm_vcpu_put according to
perf:
67.49%--kvm_arch_vcpu_ioctl_run
|
|--23.13%--vcpu_put
| kvm_arch_vcpu_put
| |
| |--21.31%--native_write_msr
| |
| --1.27%--svm_set_cr4
|
|--16.11%--vcpu_load
| |
| --15.58%--kvm_arch_vcpu_load
| |
| |--13.97%--svm_set_cr4
| | |
| | |--12.64%--native_read_msr
Most of these MSRs relate to 'syscall'/'sysenter' and segment bases, and
can be saved/restored using 'vmsave'/'vmload' instructions rather than
explicit MSR reads/writes. In doing so there is a significant reduction
in the svm_vcpu_load/svm_vcpu_put overhead measured for the above
workload:
50.92%--kvm_arch_vcpu_ioctl_run
|
|--19.28%--disable_nmi_singlestep
|
|--13.68%--vcpu_load
| kvm_arch_vcpu_load
| |
| |--9.19%--svm_set_cr4
| | |
| | --6.44%--native_read_msr
| |
| --3.55%--native_write_msr
|
|--6.05%--kvm_inject_nmi
|--2.80%--kvm_sev_es_mmio_read
|--2.19%--vcpu_put
| |
| --1.25%--kvm_arch_vcpu_put
| native_write_msr
Quantifying this further, if we look at the raw cycle counts for a
normal iteration of the above workload (according to 'rdtscp'),
kvm_arch_vcpu_ioctl_run() takes ~4600 cycles from start to finish with
the current behavior. Using 'vmsave'/'vmload', this is reduced to
~2800 cycles, a savings of 39%.
While this approach doesn't seem to manifest in any noticeable
improvement for more realistic workloads like UnixBench, netperf, and
kernel builds, likely due to their exit paths generally involving IO
with comparatively high latencies, it does improve overall overhead
of KVM_RUN significantly, which may still be noticeable for certain
situations. It also simplifies some aspects of the code.
With this change, explicit save/restore is no longer needed for the
following host MSRs, since they are documented[1] as being part of the
VMCB State Save Area:
MSR_STAR, MSR_LSTAR, MSR_CSTAR,
MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
MSR_IA32_SYSENTER_CS,
MSR_IA32_SYSENTER_ESP,
MSR_IA32_SYSENTER_EIP,
MSR_FS_BASE, MSR_GS_BASE
and only the following MSR needs individual handling in
svm_vcpu_put/svm_vcpu_load:
MSR_TSC_AUX
We could drop the host_save_user_msrs array/loop and instead handle
MSR read/write of MSR_TSC_AUX directly, but we leave that for now as
a potential follow-up.
Since 'vmsave'/'vmload' also handles the LDTR and FS/GS segment
registers (and associated hidden state)[2], some of the code
previously used to handle this is no longer needed, so we drop it
as well.
The first public release of the SVM spec[3] also documents the same
handling for the host state in question, so we make these changes
unconditionally.
Also worth noting is that we 'vmsave' to the same page that is
subsequently used by 'vmrun' to record some host additional state. This
is okay, since, in accordance with the spec[2], the additional state
written to the page by 'vmrun' does not overwrite any fields written by
'vmsave'. This has also been confirmed through testing (for the above
CPU, at least).
[1] AMD64 Architecture Programmer's Manual, Rev 3.33, Volume 2, Appendix B, Table B-2
[2] AMD64 Architecture Programmer's Manual, Rev 3.31, Volume 3, Chapter 4, VMSAVE/VMLOAD
[3] Secure Virtual Machine Architecture Reference Manual, Rev 3.01
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20210202190126.2185715-2-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If not in long mode, the low bits of CR3 are reserved but not enforced to
be zero, so remove those checks. If in long mode, however, the MBZ bits
extend down to the highest physical address bit of the guest, excluding
the encryption bit.
Make the checks consistent with the above, and match them between
nested_vmcb_checks and KVM_SET_SREGS.
Cc: stable@vger.kernel.org
Fixes: 761e41693465 ("KVM: nSVM: Check that MBZ bits in CR3 and CR4 are not set on vmrun of nested guests")
Fixes: a780a3ea6282 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Typically under KVM, an AP is booted using the INIT-SIPI-SIPI sequence,
where the guest vCPU register state is updated and then the vCPU is VMRUN
to begin execution of the AP. For an SEV-ES guest, this won't work because
the guest register state is encrypted.
Following the GHCB specification, the hypervisor must not alter the guest
register state, so KVM must track an AP/vCPU boot. Should the guest want
to park the AP, it must use the AP Reset Hold exit event in place of, for
example, a HLT loop.
First AP boot (first INIT-SIPI-SIPI sequence):
Execute the AP (vCPU) as it was initialized and measured by the SEV-ES
support. It is up to the guest to transfer control of the AP to the
proper location.
Subsequent AP boot:
KVM will expect to receive an AP Reset Hold exit event indicating that
the vCPU is being parked and will require an INIT-SIPI-SIPI sequence to
awaken it. When the AP Reset Hold exit event is received, KVM will place
the vCPU into a simulated HLT mode. Upon receiving the INIT-SIPI-SIPI
sequence, KVM will make the vCPU runnable. It is again up to the guest
to then transfer control of the AP to the proper location.
To differentiate between an actual HLT and an AP Reset Hold, a new MP
state is introduced, KVM_MP_STATE_AP_RESET_HOLD, which the vCPU is
placed in upon receiving the AP Reset Hold exit event. Additionally, to
communicate the AP Reset Hold exit event up to userspace (if needed), a
new exit reason is introduced, KVM_EXIT_AP_RESET_HOLD.
A new x86 ops function is introduced, vcpu_deliver_sipi_vector, in order
to accomplish AP booting. For VMX, vcpu_deliver_sipi_vector is set to the
original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(). SVM adds
a new function that, for non SEV-ES guests, invokes the original SIPI
delivery function, kvm_vcpu_deliver_sipi_vector(), but for SEV-ES guests,
implements the logic above.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e8fbebe8eb161ceaabdad7c01a5859a78b424d5e.1609791600.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The GHCB specification requires the hypervisor to save the address of an
AP Jump Table so that, for example, vCPUs that have been parked by UEFI
can be started by the OS. Provide support for the AP Jump Table set/get
exit code.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The run sequence is different for an SEV-ES guest compared to a legacy or
even an SEV guest. The guest vCPU register state of an SEV-ES guest will
be restored on VMRUN and saved on VMEXIT. There is no need to restore the
guest registers directly and through VMLOAD before VMRUN and no need to
save the guest registers directly and through VMSAVE on VMEXIT.
Update the svm_vcpu_run() function to skip register state saving and
restoring and provide an alternative function for running an SEV-ES guest
in vmenter.S
Additionally, certain host state is restored across an SEV-ES VMRUN. As
a result certain register states are not required to be restored upon
VMEXIT (e.g. FS, GS, etc.), so only do that if the guest is not an SEV-ES
guest.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <fb1c66d32f2194e171b95fc1a8affd6d326e10c1.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An SEV-ES vCPU requires additional VMCB vCPU load/put requirements. SEV-ES
hardware will restore certain registers on VMEXIT, but not save them on
VMRUN (see Table B-3 and Table B-4 of the AMD64 APM Volume 2), so make the
following changes:
General vCPU load changes:
- During vCPU loading, perform a VMSAVE to the per-CPU SVM save area and
save the current values of XCR0, XSS and PKRU to the per-CPU SVM save
area as these registers will be restored on VMEXIT.
General vCPU put changes:
- Do not attempt to restore registers that SEV-ES hardware has already
restored on VMEXIT.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <019390e9cb5e93cd73014fa5a040c17d42588733.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An SEV-ES vCPU requires additional VMCB initialization requirements for
vCPU creation and vCPU load/put requirements. This includes:
General VMCB initialization changes:
- Set a VMCB control bit to enable SEV-ES support on the vCPU.
- Set the VMCB encrypted VM save area address.
- CRx registers are part of the encrypted register state and cannot be
updated. Remove the CRx register read and write intercepts and replace
them with CRx register write traps to track the CRx register values.
- Certain MSR values are part of the encrypted register state and cannot
be updated. Remove certain MSR intercepts (EFER, CR_PAT, etc.).
- Remove the #GP intercept (no support for "enable_vmware_backdoor").
- Remove the XSETBV intercept since the hypervisor cannot modify XCR0.
General vCPU creation changes:
- Set the initial GHCB gpa value as per the GHCB specification.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <3a8aef366416eddd5556dfa3fdc212aafa1ad0a2.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SVM host save area is used to restore some host state on VMEXIT of an
SEV-ES guest. After allocating the save area, clear it and add the
encryption mask to the SVM host save area physical address that is
programmed into the VM_HSAVE_PA MSR.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <b77aa28af6d7f1a0cb545959e08d6dc75e0c3cba.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For an SEV-ES guest, string-based port IO is performed to a shared
(un-encrypted) page so that both the hypervisor and guest can read or
write to it and each see the contents.
For string-based port IO operations, invoke SEV-ES specific routines that
can complete the operation using common KVM port IO support.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <9d61daf0ffda496703717218f415cdc8fd487100.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For an SEV-ES guest, MMIO is performed to a shared (un-encrypted) page
so that both the hypervisor and guest can read or write to it and each
see the contents.
The GHCB specification provides software-defined VMGEXIT exit codes to
indicate a request for an MMIO read or an MMIO write. Add support to
recognize the MMIO requests and invoke SEV-ES specific routines that
can complete the MMIO operation. These routines use common KVM support
to complete the MMIO operation.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <af8de55127d5bcc3253d9b6084a0144c12307d4d.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The GHCB specification defines a GHCB MSR protocol using the lower
12-bits of the GHCB MSR (in the hypervisor this corresponds to the
GHCB GPA field in the VMCB).
Function 0x100 is a request for termination of the guest. The guest has
encountered some situation for which it has requested to be terminated.
The GHCB MSR value contains the reason for the request.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <f3a1f7850c75b6ea4101e15bbb4a3af1a203f1dc.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The GHCB specification defines a GHCB MSR protocol using the lower
12-bits of the GHCB MSR (in the hypervisor this corresponds to the
GHCB GPA field in the VMCB).
Function 0x004 is a request for CPUID information. Only a single CPUID
result register can be sent per invocation, so the protocol defines the
register that is requested. The GHCB MSR value is set to the CPUID
register value as per the specification via the VMCB GHCB GPA field.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <fd7ee347d3936e484c06e9001e340bf6387092cd.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The GHCB specification defines a GHCB MSR protocol using the lower
12-bits of the GHCB MSR (in the hypervisor this corresponds to the
GHCB GPA field in the VMCB).
Function 0x002 is a request to set the GHCB MSR value to the SEV INFO as
per the specification via the VMCB GHCB GPA field.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <c23c163a505290a0d1b9efc4659b838c8c902cbc.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>