1026 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
231c807a60 |
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner: "Third more careful attempt for this set of fixes: - Prevent a 32bit math overflow in the cpufreq code - Fix a buffer overflow when scanning the cgroup2 cpu.max property - A set of fixes for the NOHZ scheduler logic to prevent waking up CPUs even if the capacity of the busy CPUs is sufficient along with other tweaks optimizing the behaviour for asymmetric systems (big/little)" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/fair: Skip LLC NOHZ logic for asymmetric systems sched/fair: Tune down misfit NOHZ kicks sched/fair: Comment some nohz_balancer_kick() kick conditions sched/core: Fix buffer overflow in cgroup2 property cpu.max sched/cpufreq: Fix 32-bit math overflow |
||
Konstantin Khlebnikov
|
4c47acd824 |
sched/core: Fix buffer overflow in cgroup2 property cpu.max
Add limit into sscanf format string for on-stack buffer. Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 0d5936344f30 ("sched: Implement interface for cgroup unified hierarchy") Link: https://lkml.kernel.org/r/155189230232.2620.13120481613524200065.stgit@buzz Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
8dcd175bc3 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: - a few misc things - ocfs2 updates - most of MM * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits) tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include proc: more robust bulk read test proc: test /proc/*/maps, smaps, smaps_rollup, statm proc: use seq_puts() everywhere proc: read kernel cpu stat pointer once proc: remove unused argument in proc_pid_lookup() fs/proc/thread_self.c: code cleanup for proc_setup_thread_self() fs/proc/self.c: code cleanup for proc_setup_self() proc: return exit code 4 for skipped tests mm,mremap: bail out earlier in mremap_to under map pressure mm/sparse: fix a bad comparison mm/memory.c: do_fault: avoid usage of stale vm_area_struct writeback: fix inode cgroup switching comment mm/huge_memory.c: fix "orig_pud" set but not used mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC mm/memcontrol.c: fix bad line in comment mm/cma.c: cma_declare_contiguous: correct err handling mm/page_ext.c: fix an imbalance with kmemleak mm/compaction: pass pgdat to too_many_isolated() instead of zone mm: remove zone_lru_lock() function, access ->lru_lock directly ... |
||
Linus Torvalds
|
45802da05e |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - refcount conversions - Solve the rq->leaf_cfs_rq_list can of worms for real. - improve power-aware scheduling - add sysctl knob for Energy Aware Scheduling - documentation updates - misc other changes" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits) kthread: Do not use TIMER_IRQSAFE kthread: Convert worker lock to raw spinlock sched/fair: Use non-atomic cpumask_{set,clear}_cpu() sched/fair: Remove unused 'sd' parameter from select_idle_smt() sched/wait: Use freezable_schedule() when possible sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block sched/fair: Explain LLC nohz kick condition sched/fair: Simplify nohz_balancer_kick() sched/topology: Fix percpu data types in struct sd_data & struct s_data sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument sched/fair: Fix O(nr_cgroups) in the load balancing path sched/fair: Optimize update_blocked_averages() sched/fair: Fix insertion in rq->leaf_cfs_rq_list sched/fair: Add tmp_alone_branch assertion sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock() sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity sched/fair: Update scale invariance of PELT sched/fair: Move the rq_of() helper function sched/core: Convert task_struct.stack_refcount to refcount_t ... |
||
Linus Torvalds
|
3478588b51 |
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar: "The biggest part of this tree is the new auto-generated atomics API wrappers by Mark Rutland. The primary motivation was to allow instrumentation without uglifying the primary source code. The linecount increase comes from adding the auto-generated files to the Git space as well: include/asm-generic/atomic-instrumented.h | 1689 ++++++++++++++++-- include/asm-generic/atomic-long.h | 1174 ++++++++++--- include/linux/atomic-fallback.h | 2295 +++++++++++++++++++++++++ include/linux/atomic.h | 1241 +------------ I preferred this approach, so that the full call stack of the (already complex) locking APIs is still fully visible in 'git grep'. But if this is excessive we could certainly hide them. There's a separate build-time mechanism to determine whether the headers are out of date (they should never be stale if we do our job right). Anyway, nothing from this should be visible to regular kernel developers. Other changes: - Add support for dynamic keys, which removes a source of false positives in the workqueue code, among other things (Bart Van Assche) - Updates to tools/memory-model (Andrea Parri, Paul E. McKenney) - qspinlock, wake_q and lockdep micro-optimizations (Waiman Long) - misc other updates and enhancements" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits) locking/lockdep: Shrink struct lock_class_key locking/lockdep: Add module_param to enable consistency checks lockdep/lib/tests: Test dynamic key registration lockdep/lib/tests: Fix run_tests.sh kernel/workqueue: Use dynamic lockdep keys for workqueues locking/lockdep: Add support for dynamic keys locking/lockdep: Verify whether lock objects are small enough to be used as class keys locking/lockdep: Check data structure consistency locking/lockdep: Reuse lock chains that have been freed locking/lockdep: Fix a comment in add_chain_cache() locking/lockdep: Introduce lockdep_next_lockchain() and lock_chain_count() locking/lockdep: Reuse list entries that are no longer in use locking/lockdep: Free lock classes that are no longer in use locking/lockdep: Update two outdated comments locking/lockdep: Make it easy to detect whether or not inside a selftest locking/lockdep: Split lockdep_free_key_range() and lockdep_reset_lock() locking/lockdep: Initialize the locks_before and locks_after lists earlier locking/lockdep: Make zap_class() remove all matching lock order entries locking/lockdep: Reorder struct lock_class members locking/lockdep: Avoid that add_chain_cache() adds an invalid chain to the cache ... |
||
Mel Gorman
|
5e1f0f098b |
mm, compaction: capture a page under direct compaction
Compaction is inherently race-prone as a suitable page freed during compaction can be allocated by any parallel task. This patch uses a capture_control structure to isolate a page immediately when it is freed by a direct compactor in the slow path of the page allocator. The intent is to avoid redundant scanning. 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%) Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%) Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%) Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%) Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%) Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%* Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%) Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%) Latency is only moderately affected but the devil is in the details. A closer examination indicates that base page fault latency is reduced but latency of huge pages is increased as it takes creater care to succeed. Part of the "problem" is that allocation success rates are close to 100% even when under pressure and compaction gets harder 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%) Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%) Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%) Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%) Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%) Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%) Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%) Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%) And scan rates are reduced as expected by 6% for the migration scanner and 29% for the free scanner indicating that there is less redundant work. Compaction migrate scanned 20815362 19573286 Compaction free scanned 16352612 11510663 [mgorman@techsingularity.net: remove redundant check] Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
b1b988a6a0 |
Merge branch 'timers-2038-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull year 2038 updates from Thomas Gleixner: "Another round of changes to make the kernel ready for 2038. After lots of preparatory work this is the first set of syscalls which are 2038 safe: 403 clock_gettime64 404 clock_settime64 405 clock_adjtime64 406 clock_getres_time64 407 clock_nanosleep_time64 408 timer_gettime64 409 timer_settime64 410 timerfd_gettime64 411 timerfd_settime64 412 utimensat_time64 413 pselect6_time64 414 ppoll_time64 416 io_pgetevents_time64 417 recvmmsg_time64 418 mq_timedsend_time64 419 mq_timedreceiv_time64 420 semtimedop_time64 421 rt_sigtimedwait_time64 422 futex_time64 423 sched_rr_get_interval_time64 The syscall numbers are identical all over the architectures" * 'timers-2038-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) riscv: Use latest system call ABI checksyscalls: fix up mq_timedreceive and stat exceptions unicore32: Fix __ARCH_WANT_STAT64 definition asm-generic: Make time32 syscall numbers optional asm-generic: Drop getrlimit and setrlimit syscalls from default list 32-bit userspace ABI: introduce ARCH_32BIT_OFF_T config option compat ABI: use non-compat openat and open_by_handle_at variants y2038: add 64-bit time_t syscalls to all 32-bit architectures y2038: rename old time and utime syscalls y2038: remove struct definition redirects y2038: use time32 syscall names on 32-bit syscalls: remove obsolete __IGNORE_ macros y2038: syscalls: rename y2038 compat syscalls x86/x32: use time64 versions of sigtimedwait and recvmmsg timex: change syscalls to use struct __kernel_timex timex: use __kernel_timex internally sparc64: add custom adjtimex/clock_adjtime functions time: fix sys_timer_settime prototype time: Add struct __kernel_timex time: make adjtime compat handling available for 32 bit ... |
||
Peter Zijlstra
|
568f196756 |
bpf: check that BPF programs run with preemption disabled
Introduce cant_sleep() macro for annotation of functions that cannot sleep. Use it in BPF_PROG_RUN to catch execution of BPF programs in preemptable context. Suggested-by: Jann Horn <jannh@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> |
||
Dietmar Eggemann
|
d0fe0b9c45 |
sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
Since commit: d03266910a53 ("sched/fair: Fix task group initialization") the utilization of a sched entity representing a task group is no longer initialized to any other value than 0. So post_init_entity_util_avg() is only used for tasks, not for sched_entities. Make this clear by calling it with a task_struct pointer argument which also eliminates the entity_is_task(se) if condition in the fork path and get rid of the stale comment in remove_entity_load_avg() accordingly. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190122162501.12000-1-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
c9ba7560c5 |
Linux 5.0-rc6
-----BEGIN PGP SIGNATURE----- iQFRBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlxgqNUeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGwsoH+OVXu0NQofwTvVru 8lgF3BSDG2mhf7mxbBBlBizGVy9jnjRNGCFMC+Jq8IwiFLwprja/G27kaDTkpuF1 PHC3yfjKvjTeUP5aNdHlmxv6j1sSJfZl0y46DQal4UeTG/Giq8TFTi+Tbz7Wb/WV yCx4Lr8okAwTuNhnL8ojUCVIpd3c8QsyR9v6nEQ14Mj+MvEbokyTkMJV0bzOrM38 JOB+/X1XY4JPZ6o3MoXrBca3bxbAJzMneq+9CWw1U5eiIG3msg4a+Ua3++RQMDNr 8BP0yCZ6wo32S8uu0PI6HrZaBnLYi5g9Wh7Q7yc0mn1Uh1zWFykA6TtqK90agJeR A6Ktjw== =scY4 -----END PGP SIGNATURE----- Merge tag 'v5.0-rc6' into sched/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
41ea39101d |
y2038: Add time64 system calls
This series finally gets us to the point of having system calls with 64-bit time_t on all architectures, after a long time of incremental preparation patches. There was actually one conversion that I missed during the summer, i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes and review comments. The following system calls are now added on all 32-bit architectures using the same system call numbers: 403 clock_gettime64 404 clock_settime64 405 clock_adjtime64 406 clock_getres_time64 407 clock_nanosleep_time64 408 timer_gettime64 409 timer_settime64 410 timerfd_gettime64 411 timerfd_settime64 412 utimensat_time64 413 pselect6_time64 414 ppoll_time64 416 io_pgetevents_time64 417 recvmmsg_time64 418 mq_timedsend_time64 419 mq_timedreceiv_time64 420 semtimedop_time64 421 rt_sigtimedwait_time64 422 futex_time64 423 sched_rr_get_interval_time64 Each one of these corresponds directly to an existing system call that includes a 'struct timespec' argument, or a structure containing a timespec or (in case of clock_adjtime) timeval. Not included here are new versions of getitimer/setitimer and getrusage/waitid, which are planned for the future but only needed to make a consistent API rather than for correct operation beyond y2038. These four system calls are based on 'timeval', and it has not been finally decided what the replacement kernel interface will use instead. So far, I have done a lot of build testing across most architectures, which has found a number of bugs. Runtime testing so far included testing LTP on 32-bit ARM with the existing system calls, to ensure we do not regress for existing binaries, and a test with a 32-bit x86 build of LTP against a modified version of the musl C library that has been adapted to the new system call interface [3]. This library can be used for testing on all architectures supported by musl-1.1.21, but it is not how the support is getting integrated into the official musl release. Official musl support is planned but will require more invasive changes to the library. Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/ Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/ Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2] Signed-off-by: Arnd Bergmann <arnd@arndb.de> -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iQIcBAABCAAGBQJcXf7/AAoJEGCrR//JCVInPSUP/RhsQSCKMGtONB/vVICQhwep PybhzBSpHWFxszzTi6BEPN1zS9B069G9mDollRBYZCckyPqL/Bv6sI/vzQZdNk01 Q6Nw92OnNE1QP8owZ5TjrZhpbtopWdqIXjsbGZlloUemvuJP2JwvKovQUcn5CPTQ jbnqU04CVyFFJYVxAnGJ+VSeWNrjW/cm/m+rhLFjUcwW7Y3aodxsPqPP6+K9hY9P yIWfcH42WBeEWGm1RSBOZOScQl4SGCPUAhFydl/TqyEQagyegJMIyMOv9wZ5AuTT xK644bDVmNsrtJDZDpx+J8hytXCk1LrnKzkHR/uK80iUIraF/8D7PlaPgTmEEjko XcrywEkvkXTVU3owCm2/sbV+8fyFKzSPipnNfN1JNxEX71A98kvMRtPjDueQq/GA Yh81rr2YLF2sUiArkc2fNpENT7EGhrh1q6gviK3FB8YDgj1kSgPK5wC/X0uolC35 E7iC2kg4NaNEIjhKP/WKluCaTvjRbvV+0IrlJLlhLTnsqbA57ZKCCteiBrlm7wQN 4csUtCyxchR9Ac2o/lj+Mf53z68Zv74haIROp18K2dL7ZpVcOPnA3XHeauSAdoyp wy2Ek6ilNvlNB+4x+mRntPoOsyuOUGv7JXzB9JvweLWUd9G7tvYeDJQp/0YpDppb K4UWcKnhtEom0DgK08vY =IZVb -----END PGP SIGNATURE----- Merge tag 'y2038-new-syscalls' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038 Pull y2038 - time64 system calls from Arnd Bergmann: This series finally gets us to the point of having system calls with 64-bit time_t on all architectures, after a long time of incremental preparation patches. There was actually one conversion that I missed during the summer, i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes and review comments. The following system calls are now added on all 32-bit architectures using the same system call numbers: 403 clock_gettime64 404 clock_settime64 405 clock_adjtime64 406 clock_getres_time64 407 clock_nanosleep_time64 408 timer_gettime64 409 timer_settime64 410 timerfd_gettime64 411 timerfd_settime64 412 utimensat_time64 413 pselect6_time64 414 ppoll_time64 416 io_pgetevents_time64 417 recvmmsg_time64 418 mq_timedsend_time64 419 mq_timedreceiv_time64 420 semtimedop_time64 421 rt_sigtimedwait_time64 422 futex_time64 423 sched_rr_get_interval_time64 Each one of these corresponds directly to an existing system call that includes a 'struct timespec' argument, or a structure containing a timespec or (in case of clock_adjtime) timeval. Not included here are new versions of getitimer/setitimer and getrusage/waitid, which are planned for the future but only needed to make a consistent API rather than for correct operation beyond y2038. These four system calls are based on 'timeval', and it has not been finally decided what the replacement kernel interface will use instead. So far, I have done a lot of build testing across most architectures, which has found a number of bugs. Runtime testing so far included testing LTP on 32-bit ARM with the existing system calls, to ensure we do not regress for existing binaries, and a test with a 32-bit x86 build of LTP against a modified version of the musl C library that has been adapted to the new system call interface [3]. This library can be used for testing on all architectures supported by musl-1.1.21, but it is not how the support is getting integrated into the official musl release. Official musl support is planned but will require more invasive changes to the library. Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/ Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/ Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2] |
||
Arnd Bergmann
|
8dabe7245b |
y2038: syscalls: rename y2038 compat syscalls
A lot of system calls that pass a time_t somewhere have an implementation using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have been reworked so that this implementation can now be used on 32-bit architectures as well. The missing step is to redefine them using the regular SYSCALL_DEFINEx() to get them out of the compat namespace and make it possible to build them on 32-bit architectures. Any system call that ends in 'time' gets a '32' suffix on its name for that version, while the others get a '_time32' suffix, to distinguish them from the normal version, which takes a 64-bit time argument in the future. In this step, only 64-bit architectures are changed, doing this rename first lets us avoid touching the 32-bit architectures twice. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Andrea Parri
|
c546951d9c |
sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
move_queued_task() synchronizes with task_rq_lock() as follows: move_queued_task() task_rq_lock() [S] ->on_rq = MIGRATING [L] rq = task_rq() WMB (__set_task_cpu()) ACQUIRE (rq->lock); [S] ->cpu = new_cpu [L] ->on_rq where "[L] rq = task_rq()" is ordered before "ACQUIRE (rq->lock)" by an address dependency and, in turn, "ACQUIRE (rq->lock)" is ordered before "[L] ->on_rq" by the ACQUIRE itself. Use READ_ONCE() to load ->cpu in task_rq() (c.f., task_cpu()) to honor this address dependency. Also, mark the accesses to ->cpu and ->on_rq with READ_ONCE()/WRITE_ONCE() to comply with the LKMM. Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: https://lkml.kernel.org/r/20190121155240.27173-1-andrea.parri@amarulasolutions.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vincent Guittot
|
2312729688 |
sched/fair: Update scale invariance of PELT
The current implementation of load tracking invariance scales the contribution with current frequency and uarch performance (only for utilization) of the CPU. One main result of this formula is that the figures are capped by current capacity of CPU. Another one is that the load_avg is not invariant because not scaled with uarch. The util_avg of a periodic task that runs r time slots every p time slots varies in the range : U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p) with U is the max util_avg value = SCHED_CAPACITY_SCALE At a lower capacity, the range becomes: U * C * (1-y^r')/(1-y^p) * y^i' < Utilization < U * C * (1-y^r')/(1-y^p) with C reflecting the compute capacity ratio between current capacity and max capacity. so C tries to compensate changes in (1-y^r') but it can't be accurate. Instead of scaling the contribution value of PELT algo, we should scale the running time. The PELT signal aims to track the amount of computation of tasks and/or rq so it seems more correct to scale the running time to reflect the effective amount of computation done since the last update. In order to be fully invariant, we need to apply the same amount of running time and idle time whatever the current capacity. Because running at lower capacity implies that the task will run longer, we have to ensure that the same amount of idle time will be applied when system becomes idle and no idle time has been "stolen". But reaching the maximum utilization value (SCHED_CAPACITY_SCALE) means that the task is seen as an always-running task whatever the capacity of the CPU (even at max compute capacity). In this case, we can discard this "stolen" idle times which becomes meaningless. In order to achieve this time scaling, a new clock_pelt is created per rq. The increase of this clock scales with current capacity when something is running on rq and synchronizes with clock_task when rq is idle. With this mechanism, we ensure the same running and idle time whatever the current capacity. This also enables to simplify the pelt algorithm by removing all references of uarch and frequency and applying the same contribution to utilization and loads. Furthermore, the scaling is done only once per update of clock (update_rq_clock_task()) instead of during each update of sched_entities and cfs/rt/dl_rq of the rq like the current implementation. This is interesting when cgroup are involved as shown in the results below: On a hikey (octo Arm64 platform). Performance cpufreq governor and only shallowest c-state to remove variance generated by those power features so we only track the impact of pelt algo. each test runs 16 times: ./perf bench sched pipe (higher is better) kernel tip/sched/core + patch ops/seconds ops/seconds diff cgroup root 59652(+/- 0.18%) 59876(+/- 0.24%) +0.38% level1 55608(+/- 0.27%) 55923(+/- 0.24%) +0.57% level2 52115(+/- 0.29%) 52564(+/- 0.22%) +0.86% hackbench -l 1000 (lower is better) kernel tip/sched/core + patch duration(sec) duration(sec) diff cgroup root 4.453(+/- 2.37%) 4.383(+/- 2.88%) -1.57% level1 4.859(+/- 8.50%) 4.830(+/- 7.07%) -0.60% level2 5.063(+/- 9.83%) 4.928(+/- 9.66%) -2.66% Then, the responsiveness of PELT is improved when CPU is not running at max capacity with this new algorithm. I have put below some examples of duration to reach some typical load values according to the capacity of the CPU with current implementation and with this patch. These values has been computed based on the geometric series and the half period value: Util (%) max capacity half capacity(mainline) half capacity(w/ patch) 972 (95%) 138ms not reachable 276ms 486 (47.5%) 30ms 138ms 60ms 256 (25%) 13ms 32ms 26ms On my hikey (octo Arm64 platform) with schedutil governor, the time to reach max OPP when starting from a null utilization, decreases from 223ms with current scale invariance down to 121ms with the new algorithm. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: patrick.bellasi@arm.com Cc: pjt@google.com Cc: pkondeti@codeaurora.org Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Davidlohr Bueso
|
07879c6a37 |
sched/wake_q: Reduce reference counting for special users
Some users, specifically futexes and rwsems, required fixes that allowed the callers to be safe when wakeups occur before they are expected by wake_up_q(). Such scenarios also play games and rely on reference counting, and until now were pivoting on wake_q doing it. With the wake_q_add() call being moved down, this can no longer be the case. As such we end up with a a double task refcounting overhead; and these callers care enough about this (being rather core-ish). This patch introduces a wake_q_add_safe() call that serves for callers that have already done refcounting and therefore the task is 'safe' from wake_q point of view (int that it requires reference throughout the entire queue/>wakeup cycle). In the one case it has internal reference counting, in the other case it consumes the reference counting. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Xie Yongji <xieyongji@baidu.com> Cc: Yongji Xie <elohimes@gmail.com> Cc: andrea.parri@amarulasolutions.com Cc: lilin24@baidu.com Cc: liuqi16@baidu.com Cc: nixun@baidu.com Cc: yuanlinsi01@baidu.com Cc: zhangyu31@baidu.com Link: https://lkml.kernel.org/r/20181218195352.7orq3upiwfdbrdne@linux-r8p5 Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Valentin Schneider
|
b5a4e2bb0f |
Revert "sched/core: Take the hotplug lock in sched_init_smp()"
This reverts commit 40fa3780bac2b654edf23f6b13f4e2dd550aea10. Now that we have a system-wide muting of hotplug lockdep during init, this is no longer needed. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: cai@gmx.us Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: linux-arm-kernel@lists.infradead.org Cc: longman@redhat.com Cc: marc.zyngier@arm.com Cc: mark.rutland@arm.com Link: https://lkml.kernel.org/r/1545243796-23224-3-git-send-email-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Davidlohr Bueso
|
87ff19cb2f |
sched/wake_q: Add branch prediction hint to wake_q_add() cmpxchg
The cmpxchg() will fail when the task is already in the process of waking up, and as such is an extremely rare occurrence. Micro-optimize the call and put an unlikely() around it. To no surprise, when using CONFIG_PROFILE_ANNOTATED_BRANCHES under a number of workloads the incorrect rate was a mere 1-2%. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yongji Xie <elohimes@gmail.com> Cc: andrea.parri@amarulasolutions.com Cc: lilin24@baidu.com Cc: liuqi16@baidu.com Cc: nixun@baidu.com Cc: xieyongji@baidu.com Cc: yuanlinsi01@baidu.com Cc: zhangyu31@baidu.com Link: https://lkml.kernel.org/r/20181203053130.gwkw6kg72azt2npb@linux-r8p5 Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
4c4e373156 |
sched/wake_q: Fix wakeup ordering for wake_q
Notable cmpxchg() does not provide ordering when it fails, however wake_q_add() requires ordering in this specific case too. Without this it would be possible for the concurrent wakeup to not observe our prior state. Andrea Parri provided: C wake_up_q-wake_q_add { int next = 0; int y = 0; } P0(int *next, int *y) { int r0; /* in wake_up_q() */ WRITE_ONCE(*next, 1); /* node->next = NULL */ smp_mb(); /* implied by wake_up_process() */ r0 = READ_ONCE(*y); } P1(int *next, int *y) { int r1; /* in wake_q_add() */ WRITE_ONCE(*y, 1); /* wake_cond = true */ smp_mb__before_atomic(); r1 = cmpxchg_relaxed(next, 1, 2); } exists (0:r0=0 /\ 1:r1=0) This "exists" clause cannot be satisfied according to the LKMM: Test wake_up_q-wake_q_add Allowed States 3 0:r0=0; 1:r1=1; 0:r0=1; 1:r1=0; 0:r0=1; 1:r1=1; No Witnesses Positive: 0 Negative: 3 Condition exists (0:r0=0 /\ 1:r1=0) Observation wake_up_q-wake_q_add Never 0 3 Reported-by: Yongji Xie <elohimes@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
e6018c0f5c |
sched/wake_q: Document wake_q_add()
The only guarantee provided by wake_q_add() is that a wakeup will happen after it, it does _NOT_ guarantee the wakeup will be delayed until the matching wake_up_q(). If wake_q_add() fails the cmpxchg() a concurrent wakeup is pending and that can happen at any time after the cmpxchg(). This means we should not rely on the wakeup happening at wake_q_up(), but should be ready for wake_q_add() to issue the wakeup. The delay; if provided (most likely); should only result in more efficient behaviour. Reported-by: Yongji Xie <elohimes@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Masahiro Yamada
|
e9666d10a5 |
jump_label: move 'asm goto' support test to Kconfig
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label". The jump label is controlled by HAVE_JUMP_LABEL, which is defined like this: #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) # define HAVE_JUMP_LABEL #endif We can improve this by testing 'asm goto' support in Kconfig, then make JUMP_LABEL depend on CC_HAS_ASM_GOTO. Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will match to the real kernel capability. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Sedat Dilek <sedat.dilek@gmail.com> |
||
Linus Torvalds
|
a65981109f |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton: - procfs updates - various misc bits - lib/ updates - epoll updates - autofs - fatfs - a few more MM bits * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (58 commits) mm/page_io.c: fix polled swap page in checkpatch: add Co-developed-by to signature tags docs: fix Co-Developed-by docs drivers/base/platform.c: kmemleak ignore a known leak fs: don't open code lru_to_page() fs/: remove caller signal_pending branch predictions mm/: remove caller signal_pending branch predictions arch/arc/mm/fault.c: remove caller signal_pending_branch predictions kernel/sched/: remove caller signal_pending branch predictions kernel/locking/mutex.c: remove caller signal_pending branch predictions mm: select HAVE_MOVE_PMD on x86 for faster mremap mm: speed up mremap by 20x on large regions mm: treewide: remove unused address argument from pte_alloc functions initramfs: cleanup incomplete rootfs scripts/gdb: fix lx-version string output kernel/kcov.c: mark write_comp_data() as notrace kernel/sysctl: add panic_print into sysctl panic: add options to print system info when panic happens bfs: extra sanity checking and static inode bitmap exec: separate MM_ANONPAGES and RLIMIT_STACK accounting ... |
||
Davidlohr Bueso
|
34ec35ad8f |
kernel/sched/: remove caller signal_pending branch predictions
This is already done for us internally by the signal machinery. Link: http://lkml.kernel.org/r/20181116002713.8474-3-dave@stgolabs.net Signed-off-by: Davidlohr Bueso <dave@stgolabs.net> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
96d4f267e4 |
Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
17bf423a1f |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - Introduce "Energy Aware Scheduling" - by Quentin Perret. This is a coherent topology description of CPUs in cooperation with the PM subsystem, with the goal to schedule more energy-efficiently on asymetric SMP platform - such as waking up tasks to the more energy-efficient CPUs first, as long as the system isn't oversubscribed. For details of the design, see: https://lore.kernel.org/lkml/20180724122521.22109-1-quentin.perret@arm.com/ - Misc cleanups and smaller enhancements" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits) sched/fair: Select an energy-efficient CPU on task wake-up sched/fair: Introduce an energy estimation helper function sched/fair: Add over-utilization/tipping point indicator sched/fair: Clean-up update_sg_lb_stats parameters sched/toplogy: Introduce the 'sched_energy_present' static key sched/topology: Make Energy Aware Scheduling depend on schedutil sched/topology: Disable EAS on inappropriate platforms sched/topology: Add lowest CPU asymmetry sched_domain level pointer sched/topology: Reference the Energy Model of CPUs when available PM: Introduce an Energy Model management framework sched/cpufreq: Prepare schedutil for Energy Aware Scheduling sched/topology: Relocate arch_scale_cpu_capacity() to the internal header sched/core: Remove unnecessary unlikely() in push_*_task() sched/topology: Remove the ::smt_gain field from 'struct sched_domain' sched: Fix various typos in comments sched/core: Clean up the #ifdef block in add_nr_running() sched/fair: Make some variables static sched/core: Create task_has_idle_policy() helper sched/fair: Add lsub_positive() and use it consistently sched/fair: Mask UTIL_AVG_UNCHANGED usages ... |
||
Ingo Molnar
|
4bbfd7467c |
Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU changes from Paul E. McKenney: - Convert RCU's BUG_ON() and similar calls to WARN_ON() and similar. - Replace calls of RCU-bh and RCU-sched update-side functions to their vanilla RCU counterparts. This series is a step towards complete removal of the RCU-bh and RCU-sched update-side functions. ( Note that some of these conversions are going upstream via their respective maintainers. ) - Documentation updates, including a number of flavor-consolidation updates from Joel Fernandes. - Miscellaneous fixes. - Automate generation of the initrd filesystem used for rcutorture testing. - Convert spin_is_locked() assertions to instead use lockdep. ( Note that some of these conversions are going upstream via their respective maintainers. ) - SRCU updates, especially including a fix from Dennis Krein for a bag-on-head-class bug. - RCU torture-test updates. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
dfcb245e28 |
sched: Fix various typos in comments
Go over the scheduler source code and fix common typos in comments - and a typo in an actual variable name. No change in functionality intended. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
5f675231e4 |
Linux 4.20-rc5
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlwEZdIeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAlQH/19oax2Za3IPqF4X DM3lal5M6zlUVkoYstqzpbR3MqUwgEnMfvoeMDC6mI9N4/+r2LkV7cRR8HzqQCCS jDfD69IzRGb52VSeJmbOrkxBWsR1Nn0t4Z3rEeLPxwaOoNpRc8H973MbAQ2FKMpY S4Y3jIK1dNiRRxdh52NupVkQF+djAUwkBuVk/rrvRJmTDij4la03cuCDAO+Di9lt GHlVvygKw2SJhDR+z3ArwZNmE0ceCcE6+W7zPHzj2KeWuKrZg22kfUD454f2YEIw FG0hu9qecgtpYCkLSm2vr4jQzmpsDoyq3ZfwhjGrP4qtvPC3Db3vL3dbQnkzUcJu JtwhVCE= =O1q1 -----END PGP SIGNATURE----- Merge tag 'v4.20-rc5' into sched/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra (Intel)
|
c5511d03ec |
sched/smt: Make sched_smt_present track topology
Currently the 'sched_smt_present' static key is enabled when at CPU bringup SMT topology is observed, but it is never disabled. However there is demand to also disable the key when the topology changes such that there is no SMT present anymore. Implement this by making the key count the number of cores that have SMT enabled. In particular, the SMT topology bits are set before interrrupts are enabled and similarly, are cleared after interrupts are disabled for the last time and the CPU dies. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.246110444@linutronix.de |
||
Viresh Kumar
|
1da1843f9f |
sched/core: Create task_has_idle_policy() helper
We already have task_has_rt_policy() and task_has_dl_policy() helpers, create task_has_idle_policy() as well and update sched core to start using it. While at it, use task_has_dl_policy() at one more place. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/ce3915d5b490fc81af926a3b6bfb775e7188e005.1541416894.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
024d4d4c0c |
Merge branch 'sched/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner: "Two small scheduler fixes: - Take hotplug lock in sched_init_smp(). Technically not really required, but lockdep will complain other. - Trivial comment fix in sched/fair" * 'sched/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/fair: Fix a comment in task_numa_fault() sched/core: Take the hotplug lock in sched_init_smp() |
||
Paul E. McKenney
|
309ba859b9 |
rcu: Eliminate synchronize_rcu_mult()
Now that synchronize_rcu() waits for both RCU read-side critical sections and preempt-disabled regions of code, the sole caller of synchronize_rcu_mult() can be replaced by synchronize_rcu(). This patch makes this change and removes synchronize_rcu_mult(). Note that _wait_rcu_gp() still supports synchronize_rcu_mult(), and thus might be simplified in the future to take only take a single call_rcu() function rather than the current list of them. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> |
||
Valentin Schneider
|
40fa3780ba |
sched/core: Take the hotplug lock in sched_init_smp()
When running on linux-next (8c60c36d0b8c ("Add linux-next specific files for 20181019")) + CONFIG_PROVE_LOCKING=y on a big.LITTLE system (e.g. Juno or HiKey960), we get the following report: [ 0.748225] Call trace: [ 0.750685] lockdep_assert_cpus_held+0x30/0x40 [ 0.755236] static_key_enable_cpuslocked+0x20/0xc8 [ 0.760137] build_sched_domains+0x1034/0x1108 [ 0.764601] sched_init_domains+0x68/0x90 [ 0.768628] sched_init_smp+0x30/0x80 [ 0.772309] kernel_init_freeable+0x278/0x51c [ 0.776685] kernel_init+0x10/0x108 [ 0.780190] ret_from_fork+0x10/0x18 The static_key in question is 'sched_asym_cpucapacity' introduced by commit: df054e8445a4 ("sched/topology: Add static_key for asymmetric CPU capacity optimizations") In this particular case, we enable it because smp_prepare_cpus() will end up fetching the capacity-dmips-mhz entry from the devicetree, so we already have some asymmetry detected when entering sched_init_smp(). This didn't get detected in tip/sched/core because we were missing: commit cb538267ea1e ("jump_label/lockdep: Assert we hold the hotplug lock for _cpuslocked() operations") Calls to build_sched_domains() post sched_init_smp() will hold the hotplug lock, it just so happens that this very first call is a special case. As stated by a comment in sched_init_smp(), "There's no userspace yet to cause hotplug operations" so this is a harmless warning. However, to both respect the semantics of underlying callees and make lockdep happy, take the hotplug lock in sched_init_smp(). This also satisfies the comment atop sched_init_domains() that says "Callers must hold the hotplug lock". Reported-by: Sudeep Holla <sudeep.holla@arm.com> Tested-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: morten.rasmussen@arm.com Cc: quentin.perret@arm.com Link: http://lkml.kernel.org/r/1540301851-3048-1-git-send-email-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
6ef746769e |
More power management updates for 4.20-rc1
- Fix build regression in the intel_pstate driver that doesn't build without CONFIG_ACPI after recent changes (Dominik Brodowski). - One of the heuristics in the menu cpuidle governor is based on a function returning 0 most of the time, so drop it and clean up the scheduler code related to it (Daniel Lezcano). - Prevent the arm_big_little cpufreq driver from being used on ARM64 which is not suitable for it and drop the arm_big_little_dt driver that is not used any more (Sudeep Holla). - Prevent the hung task watchdog from triggering during resume from system-wide sleep states by disabling it before freezing tasks and enabling it again after they have been thawed (Vitaly Kuznetsov). -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iQIcBAABCAAGBQJb2BJ7AAoJEILEb/54YlRx/kwP/iD7tUUZ6mT84OI0FTbEj8A/ fM+uHrwy25PmqyWGGtbHpaWU9OxVxUReSicsBCt+2LZmX3sFYpbSb243mv3pmxqb A0kLflG4lWCKJNIfa/a3OMDTUw26mxSTCidE3jJXkd8HkWrzeAWvMair+UCuzMf3 A4Omu0IkNL8C0MKtUOb3PlUk3dnLYMxuairNhozBPhi+P+0tLW9/9XvgPJBVhnbZ CKn/aFsDoc08tAfxC8N32cgKwE7nbeIgTJTBFyu2lQmInsd4TTuoM50vSC5i+x88 AmBOoH9IX0fhXJ6hgm+VMW8+x9S+H7jAVy/3C2xoUBeCclzlxX6eUCtjV5YNZqqn 1nXQfGeAwgzX6Tyu6HjM7vjbfObk59ZwpmDRPJEUEhLDEBMS+iDStlp9zmKTedNm G4iSTzS6qJCNPtx4y5wkLp/FvzTofIuWqVFJSJC4+EoVKkbbw9xwaY+JKXUt1Uwx j+U6EtRhzL/kVX0nq+iQXXeANxCFNzI56Ov5O7mxjF1m/hDE/Gb2QEeIb6nRZC2A H3I2so2J3h1yTgadpGFFvJWaqfHkgcBTsm06tSgHVb86quiTANJIQ9mqfFyOzDDJ KaZ82MROt7UuCMI6X9n+oIBDZWLHmADge6RdHCD1wB+zrUmusCtNEHUZACXd0mPf s8MUK4bWVhViVXGS5bMP =/bnR -----END PGP SIGNATURE----- Merge tag 'pm-4.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull more power management updates from Rafael Wysocki: "These remove a questionable heuristic from the menu cpuidle governor, fix a recent build regression in the intel_pstate driver, clean up ARM big-Little support in cpufreq and fix up hung task watchdog's interaction with system-wide power management transitions. Specifics: - Fix build regression in the intel_pstate driver that doesn't build without CONFIG_ACPI after recent changes (Dominik Brodowski). - One of the heuristics in the menu cpuidle governor is based on a function returning 0 most of the time, so drop it and clean up the scheduler code related to it (Daniel Lezcano). - Prevent the arm_big_little cpufreq driver from being used on ARM64 which is not suitable for it and drop the arm_big_little_dt driver that is not used any more (Sudeep Holla). - Prevent the hung task watchdog from triggering during resume from system-wide sleep states by disabling it before freezing tasks and enabling it again after they have been thawed (Vitaly Kuznetsov)" * tag 'pm-4.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: kernel: hung_task.c: disable on suspend cpufreq: remove unused arm_big_little_dt driver cpufreq: drop ARM_BIG_LITTLE_CPUFREQ support for ARM64 cpufreq: intel_pstate: Fix compilation for !CONFIG_ACPI cpuidle: menu: Remove get_loadavg() from the performance multiplier sched: Factor out nr_iowait and nr_iowait_cpu |
||
Johannes Weiner
|
eb414681d5 |
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
246b3b3342 |
sched: introduce this_rq_lock_irq()
do_sched_yield() disables IRQs, looks up this_rq() and locks it. The next patch is adding another site with the same pattern, so provide a convenience function for it. Link: http://lkml.kernel.org/r/20180828172258.3185-8-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Suren Baghdasaryan <surenb@google.com> Tested-by: Daniel Drake <drake@endlessm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
4dcb9239da |
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping updates from Thomas Gleixner: "The timers and timekeeping departement provides: - Another large y2038 update with further preparations for providing the y2038 safe timespecs closer to the syscalls. - An overhaul of the SHCMT clocksource driver - SPDX license identifier updates - Small cleanups and fixes all over the place" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits) tick/sched : Remove redundant cpu_online() check clocksource/drivers/dw_apb: Add reset control clocksource: Remove obsolete CLOCKSOURCE_OF_DECLARE clocksource/drivers: Unify the names to timer-* format clocksource/drivers/sh_cmt: Add R-Car gen3 support dt-bindings: timer: renesas: cmt: document R-Car gen3 support clocksource/drivers/sh_cmt: Properly line-wrap sh_cmt_of_table[] initializer clocksource/drivers/sh_cmt: Fix clocksource width for 32-bit machines clocksource/drivers/sh_cmt: Fixup for 64-bit machines clocksource/drivers/sh_tmu: Convert to SPDX identifiers clocksource/drivers/sh_mtu2: Convert to SPDX identifiers clocksource/drivers/sh_cmt: Convert to SPDX identifiers clocksource/drivers/renesas-ostm: Convert to SPDX identifiers clocksource: Convert to using %pOFn instead of device_node.name tick/broadcast: Remove redundant check RISC-V: Request newstat syscalls y2038: signal: Change rt_sigtimedwait to use __kernel_timespec y2038: socket: Change recvmmsg to use __kernel_timespec y2038: sched: Change sched_rr_get_interval to use __kernel_timespec y2038: utimes: Rework #ifdef guards for compat syscalls ... |
||
Daniel Lezcano
|
a7fe5190c0 |
cpuidle: menu: Remove get_loadavg() from the performance multiplier
The function get_loadavg() returns almost always zero. To be more
precise, statistically speaking for a total of 1023379 times passing
in the function, the load is equal to zero 1020728 times, greater than
100, 610 times, the remaining is between 0 and 5.
In 2011, the get_loadavg() was removed from the Android tree because
of the above [1]. At this time, the load was:
unsigned long this_cpu_load(void)
{
struct rq *this = this_rq();
return this->cpu_load[0];
}
In 2014, the code was changed by commit 372ba8cb46b2 (cpuidle: menu: Lookup CPU
runqueues less) and the load is:
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
struct rq *rq = this_rq();
*nr_waiters = atomic_read(&rq->nr_iowait);
*load = rq->load.weight;
}
with the same result.
Both measurements show using the load in this code path does no matter
anymore. Removing it.
[1]
|
||
Daniel Lezcano
|
145d952a29 |
sched: Factor out nr_iowait and nr_iowait_cpu
The function nr_iowait_cpu() can be used directly by nr_iowait() instead of duplicating code. Call nr_iowait_cpu() from nr_iowait() Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
||
Rafael J. Wysocki
|
9c2298aad3 |
sched/core: Fix comment regarding nr_iowait_cpu() and get_iowait_load()
The comment related to nr_iowait_cpu() and get_iowait_load() confuses cpufreq with cpuidle and is not very useful for this reason, so fix it. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Linux PM <linux-pm@vger.kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: e33a9bba85a8 "sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler" Link: http://lkml.kernel.org/r/3803514.xkx7zY50tF@aspire.rjw.lan Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dietmar Eggemann
|
4a465e3ebb |
sched/fair: Remove setting task's se->runnable_weight during PELT update
A CFS (SCHED_OTHER, SCHED_BATCH or SCHED_IDLE policy) task's se->runnable_weight must always be in sync with its se->load.weight. se->runnable_weight is set to se->load.weight when the task is forked (init_entity_runnable_average()) or reniced (reweight_entity()). There are two cases in set_load_weight() which since they currently only set se->load.weight could lead to a situation in which se->load.weight is different to se->runnable_weight for a CFS task: (1) A task switches to SCHED_IDLE. (2) A SCHED_FIFO, SCHED_RR or SCHED_DEADLINE task which has been reniced (during which only its static priority gets set) switches to SCHED_OTHER or SCHED_BATCH. Set se->runnable_weight to se->load.weight in these two cases to prevent this. This eliminates the need to explicitly set it to se->load.weight during PELT updates in the CFS scheduler fastpath. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/20180803140538.1178-1-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vincent Guittot
|
11d4afd4ff |
sched/pelt: Fix warning and clean up IRQ PELT config
Create a config for enabling irq load tracking in the scheduler. irq load tracking is useful only when irq or paravirtual time is accounted but it's only possible with SMP for now. Also use __maybe_unused to remove the compilation warning in update_rq_clock_task() that has been introduced by: 2e62c4743adc ("sched/fair: Remove #ifdefs from scale_rt_capacity()") Suggested-by: Ingo Molnar <mingo@redhat.com> Reported-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Reported-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: dou_liyang@163.com Fixes: 2e62c4743adc ("sched/fair: Remove #ifdefs from scale_rt_capacity()") Link: http://lkml.kernel.org/r/1537867062-27285-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Srikar Dronamraju
|
1327237a59 |
sched/numa: Pass destination CPU as a parameter to migrate_task_rq
This additional parameter (new_cpu) is used later for identifying if task migration is across nodes. No functional change. Specjbb2005 results (8 warehouses) Higher bops are better 2 Socket - 2 Node Haswell - X86 JVMS Prev Current %Change 4 203353 200668 -1.32036 1 328205 321791 -1.95427 2 Socket - 4 Node Power8 - PowerNV JVMS Prev Current %Change 1 214384 204848 -4.44809 2 Socket - 2 Node Power9 - PowerNV JVMS Prev Current %Change 4 188553 188098 -0.241311 1 196273 200351 2.07772 4 Socket - 4 Node Power7 - PowerVM JVMS Prev Current %Change 8 57581.2 58145.9 0.980702 1 103468 103798 0.318939 Brings out the variance between different specjbb2005 runs. Some events stats before and after applying the patch. perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 13,941,377 13,912,183 migrations 1,157,323 1,155,931 faults 382,175 367,139 cache-misses 54,993,823,500 54,240,196,814 sched:sched_move_numa 2,005 1,571 sched:sched_stick_numa 14 9 sched:sched_swap_numa 529 463 migrate:mm_migrate_pages 1,573 703 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 67099 50155 numa_hint_faults_local 58456 45264 numa_hit 240416 239652 numa_huge_pte_updates 18 36 numa_interleave 65 68 numa_local 240339 239576 numa_other 77 76 numa_pages_migrated 1574 680 numa_pte_updates 77182 71146 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 3,176,453 3,156,720 migrations 30,238 30,354 faults 87,869 97,261 cache-misses 12,544,479,391 12,400,026,826 sched:sched_move_numa 23 4 sched:sched_stick_numa 0 0 sched:sched_swap_numa 6 1 migrate:mm_migrate_pages 10 20 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 236 272 numa_hint_faults_local 201 186 numa_hit 72293 71362 numa_huge_pte_updates 0 0 numa_interleave 26 23 numa_local 72233 71299 numa_other 60 63 numa_pages_migrated 8 2 numa_pte_updates 0 0 perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 8,478,820 8,606,824 migrations 171,323 155,352 faults 307,499 301,409 cache-misses 240,353,599 157,759,224 sched:sched_move_numa 214 168 sched:sched_stick_numa 0 0 sched:sched_swap_numa 4 3 migrate:mm_migrate_pages 89 125 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 5301 4650 numa_hint_faults_local 4745 3946 numa_hit 92943 90489 numa_huge_pte_updates 0 0 numa_interleave 899 892 numa_local 92345 90034 numa_other 598 455 numa_pages_migrated 88 124 numa_pte_updates 5505 4818 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 2,066,172 2,113,167 migrations 11,076 10,533 faults 149,544 142,727 cache-misses 10,398,067 5,594,192 sched:sched_move_numa 43 10 sched:sched_stick_numa 0 0 sched:sched_swap_numa 0 0 migrate:mm_migrate_pages 6 6 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 3552 744 numa_hint_faults_local 3347 584 numa_hit 25611 25551 numa_huge_pte_updates 0 0 numa_interleave 213 263 numa_local 25583 25302 numa_other 28 249 numa_pages_migrated 6 6 numa_pte_updates 3535 744 perf stats 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 99,358,136 101,227,352 migrations 4,041,607 4,151,829 faults 749,653 745,233 cache-misses 225,562,543,251 224,669,561,766 sched:sched_move_numa 771 617 sched:sched_stick_numa 14 2 sched:sched_swap_numa 204 187 migrate:mm_migrate_pages 1,180 316 vmstat 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 27409 24195 numa_hint_faults_local 20677 21639 numa_hit 239988 238331 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 239983 238331 numa_other 5 0 numa_pages_migrated 1016 204 numa_pte_updates 27916 24561 perf stats 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 60,899,307 62,738,978 migrations 544,668 562,702 faults 270,834 228,465 cache-misses 74,543,455,635 75,778,067,952 sched:sched_move_numa 735 648 sched:sched_stick_numa 25 13 sched:sched_swap_numa 174 137 migrate:mm_migrate_pages 816 733 vmstat 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 11059 10281 numa_hint_faults_local 4733 3242 numa_hit 41384 36338 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 41383 36338 numa_other 1 0 numa_pages_migrated 815 706 numa_pte_updates 11323 10176 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jirka Hladky <jhladky@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1537552141-27815-3-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Arnd Bergmann
|
474b9c777b |
y2038: sched: Change sched_rr_get_interval to use __kernel_timespec
This is a preparation patch for converting sys_sched_rr_get_interval to work with 64-bit time_t on 32-bit architectures. The 'interval' argument is changed to struct __kernel_timespec, which will be redefined using 64-bit time_t in the future. The compat version of the system call in turn is enabled for compilation with CONFIG_COMPAT_32BIT_TIME so the individual 32-bit architectures can share the handling of the traditional argument with 64-bit architectures providing it for their compat mode. Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Arnd Bergmann
|
9afc5eee65 |
y2038: globally rename compat_time to old_time32
Christoph Hellwig suggested a slightly different path for handling backwards compatibility with the 32-bit time_t based system calls: Rather than simply reusing the compat_sys_* entry points on 32-bit architectures unchanged, we get rid of those entry points and the compat_time types by renaming them to something that makes more sense on 32-bit architectures (which don't have a compat mode otherwise), and then share the entry points under the new name with the 64-bit architectures that use them for implementing the compatibility. The following types and interfaces are renamed here, and moved from linux/compat_time.h to linux/time32.h: old new --- --- compat_time_t old_time32_t struct compat_timeval struct old_timeval32 struct compat_timespec struct old_timespec32 struct compat_itimerspec struct old_itimerspec32 ns_to_compat_timeval() ns_to_old_timeval32() get_compat_itimerspec64() get_old_itimerspec32() put_compat_itimerspec64() put_old_itimerspec32() compat_get_timespec64() get_old_timespec32() compat_put_timespec64() put_old_timespec32() As we already have aliases in place, this patch addresses only the instances that are relevant to the system call interface in particular, not those that occur in device drivers and other modules. Those will get handled separately, while providing the 64-bit version of the respective interfaces. I'm not renaming the timex, rusage and itimerval structures, as we are still debating what the new interface will look like, and whether we will need a replacement at all. This also doesn't change the names of the syscall entry points, which can be done more easily when we actually switch over the 32-bit architectures to use them, at that point we need to change COMPAT_SYSCALL_DEFINEx to SYSCALL_DEFINEx with a new name, e.g. with a _time32 suffix. Suggested-by: Christoph Hellwig <hch@infradead.org> Link: https://lore.kernel.org/lkml/20180705222110.GA5698@infradead.org/ Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Linus Torvalds
|
0214f46b3a |
Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull core signal handling updates from Eric Biederman: "It was observed that a periodic timer in combination with a sufficiently expensive fork could prevent fork from every completing. This contains the changes to remove the need for that restart. This set of changes is split into several parts: - The first part makes PIDTYPE_TGID a proper pid type instead something only for very special cases. The part starts using PIDTYPE_TGID enough so that in __send_signal where signals are actually delivered we know if the signal is being sent to a a group of processes or just a single process. - With that prep work out of the way the logic in fork is modified so that fork logically makes signals received while it is running appear to be received after the fork completes" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits) signal: Don't send signals to tasks that don't exist signal: Don't restart fork when signals come in. fork: Have new threads join on-going signal group stops fork: Skip setting TIF_SIGPENDING in ptrace_init_task signal: Add calculate_sigpending() fork: Unconditionally exit if a fatal signal is pending fork: Move and describe why the code examines PIDNS_ADDING signal: Push pid type down into complete_signal. signal: Push pid type down into __send_signal signal: Push pid type down into send_signal signal: Pass pid type into do_send_sig_info signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task signal: Pass pid type into group_send_sig_info signal: Pass pid and pid type into send_sigqueue posix-timers: Noralize good_sigevent signal: Use PIDTYPE_TGID to clearly store where file signals will be sent pid: Implement PIDTYPE_TGID pids: Move the pgrp and session pid pointers from task_struct to signal_struct kvm: Don't open code task_pid in kvm_vcpu_ioctl pids: Compute task_tgid using signal->leader_pid ... |
||
Linus Torvalds
|
7140ad3898 |
Updates for v4.19:
- Restructure of lockdep and latency tracers This is the biggest change. Joel Fernandes restructured the hooks from irqs and preemption disabling and enabling. He got rid of a lot of the preprocessor #ifdef mess that they caused. He turned both lockdep and the latency tracers to use trace events inserted in the preempt/irqs disabling paths. But unfortunately, these started to cause issues in corner cases. Thus, parts of the code was reverted back to where lockde and the latency tracers just get called directly (without using the trace events). But because the original change cleaned up the code very nicely we kept that, as well as the trace events for preempt and irqs disabling, but they are limited to not being called in NMIs. - Have trace events use SRCU for "rcu idle" calls. This was required for the preempt/irqs off trace events. But it also had to not allow them to be called in NMI context. Waiting till Paul makes an NMI safe SRCU API. - New notrace SRCU API to allow trace events to use SRCU. - Addition of mcount-nop option support - SPDX headers replacing GPL templates. - Various other fixes and clean ups. - Some fixes are marked for stable, but were not fully tested before the merge window opened. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCW3ruhRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qiM7AP47NhYdSnCFCRUJfrt6PovXmQtuCHt3 c3QMoGGdvzh9YAEAqcSXwh7uLhpHUp1LjMAPkXdZVwNddf4zJQ1zyxQ+EAU= =vgEr -----END PGP SIGNATURE----- Merge tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: - Restructure of lockdep and latency tracers This is the biggest change. Joel Fernandes restructured the hooks from irqs and preemption disabling and enabling. He got rid of a lot of the preprocessor #ifdef mess that they caused. He turned both lockdep and the latency tracers to use trace events inserted in the preempt/irqs disabling paths. But unfortunately, these started to cause issues in corner cases. Thus, parts of the code was reverted back to where lockdep and the latency tracers just get called directly (without using the trace events). But because the original change cleaned up the code very nicely we kept that, as well as the trace events for preempt and irqs disabling, but they are limited to not being called in NMIs. - Have trace events use SRCU for "rcu idle" calls. This was required for the preempt/irqs off trace events. But it also had to not allow them to be called in NMI context. Waiting till Paul makes an NMI safe SRCU API. - New notrace SRCU API to allow trace events to use SRCU. - Addition of mcount-nop option support - SPDX headers replacing GPL templates. - Various other fixes and clean ups. - Some fixes are marked for stable, but were not fully tested before the merge window opened. * tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits) tracing: Fix SPDX format headers to use C++ style comments tracing: Add SPDX License format tags to tracing files tracing: Add SPDX License format to bpf_trace.c blktrace: Add SPDX License format header s390/ftrace: Add -mfentry and -mnop-mcount support tracing: Add -mcount-nop option support tracing: Avoid calling cc-option -mrecord-mcount for every Makefile tracing: Handle CC_FLAGS_FTRACE more accurately Uprobe: Additional argument arch_uprobe to uprobe_write_opcode() Uprobes: Simplify uprobe_register() body tracepoints: Free early tracepoints after RCU is initialized uprobes: Use synchronize_rcu() not synchronize_sched() tracing: Fix synchronizing to event changes with tracepoint_synchronize_unregister() ftrace: Remove unused pointer ftrace_swapper_pid tracing: More reverting of "tracing: Centralize preemptirq tracepoints and unify their usage" tracing/irqsoff: Handle preempt_count for different configs tracing: Partial revert of "tracing: Centralize preemptirq tracepoints and unify their usage" tracing: irqsoff: Account for additional preempt_disable trace: Use rcu_dereference_raw for hooks from trace-event subsystem tracing/kprobes: Fix within_notrace_func() to check only notrace functions ... |
||
Linus Torvalds
|
958f338e96 |
Merge branch 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner: "L1TF, aka L1 Terminal Fault, is yet another speculative hardware engineering trainwreck. It's a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved bits set. If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the page referenced by the address bits in the PTE was still present and accessible. While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged malicious code, similar to the Meltdown attack. While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the speculation bypasses the extended page table (EPT) protection mechanism. The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646 The mitigations provided by this pull request include: - Host side protection by inverting the upper address bits of a non present page table entry so the entry points to uncacheable memory. - Hypervisor protection by flushing L1 Data Cache on VMENTER. - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT by offlining the sibling CPU threads. The knobs are available on the kernel command line and at runtime via sysfs - Control knobs for the hypervisor mitigation, related to L1D flush and SMT control. The knobs are available on the kernel command line and at runtime via sysfs - Extensive documentation about L1TF including various degrees of mitigations. Thanks to all people who have contributed to this in various ways - patches, review, testing, backporting - and the fruitful, sometimes heated, but at the end constructive discussions. There is work in progress to provide other forms of mitigations, which might be less horrible performance wise for a particular kind of workloads, but this is not yet ready for consumption due to their complexity and limitations" * 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) x86/microcode: Allow late microcode loading with SMT disabled tools headers: Synchronise x86 cpufeatures.h for L1TF additions x86/mm/kmmio: Make the tracer robust against L1TF x86/mm/pat: Make set_memory_np() L1TF safe x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert x86/speculation/l1tf: Invert all not present mappings cpu/hotplug: Fix SMT supported evaluation KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Documentation/l1tf: Remove Yonah processors from not vulnerable list x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr() x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d x86: Don't include linux/irq.h from asm/hardirq.h x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond' x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush() cpu/hotplug: detect SMT disabled by BIOS ... |
||
Linus Torvalds
|
13e091b6dd |
Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 timer updates from Thomas Gleixner: "Early TSC based time stamping to allow better boot time analysis. This comes with a general cleanup of the TSC calibration code which grew warts and duct taping over the years and removes 250 lines of code. Initiated and mostly implemented by Pavel with help from various folks" * 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits) x86/kvmclock: Mark kvm_get_preset_lpj() as __init x86/tsc: Consolidate init code sched/clock: Disable interrupts when calling generic_sched_clock_init() timekeeping: Prevent false warning when persistent clock is not available sched/clock: Close a hole in sched_clock_init() x86/tsc: Make use of tsc_calibrate_cpu_early() x86/tsc: Split native_calibrate_cpu() into early and late parts sched/clock: Use static key for sched_clock_running sched/clock: Enable sched clock early sched/clock: Move sched clock initialization and merge with generic clock x86/tsc: Use TSC as sched clock early x86/tsc: Initialize cyc2ns when tsc frequency is determined x86/tsc: Calibrate tsc only once ARM/time: Remove read_boot_clock64() s390/time: Remove read_boot_clock64() timekeeping: Default boot time offset to local_clock() timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset() s390/time: Add read_persistent_wall_and_boot_offset() x86/xen/time: Output xen sched_clock time from 0 x86/xen/time: Initialize pv xen time in init_hypervisor_platform() ... |
||
Linus Torvalds
|
de5d1b39ea |
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking/atomics update from Thomas Gleixner: "The locking, atomics and memory model brains delivered: - A larger update to the atomics code which reworks the ordering barriers, consolidates the atomic primitives, provides the new atomic64_fetch_add_unless() primitive and cleans up the include hell. - Simplify cmpxchg() instrumentation and add instrumentation for xchg() and cmpxchg_double(). - Updates to the memory model and documentation" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits) locking/atomics: Rework ordering barriers locking/atomics: Instrument cmpxchg_double*() locking/atomics: Instrument xchg() locking/atomics: Simplify cmpxchg() instrumentation locking/atomics/x86: Reduce arch_cmpxchg64*() instrumentation tools/memory-model: Rename litmus tests to comply to norm7 tools/memory-model/Documentation: Fix typo, smb->smp sched/Documentation: Update wake_up() & co. memory-barrier guarantees locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock() sched/core: Use smp_mb() in wake_woken_function() tools/memory-model: Add informal LKMM documentation to MAINTAINERS locking/atomics/Documentation: Describe atomic_set() as a write operation tools/memory-model: Make scripts executable tools/memory-model: Remove ACCESS_ONCE() from model tools/memory-model: Remove ACCESS_ONCE() from recipes locking/memory-barriers.txt/kokr: Update Korean translation to fix broken DMA vs. MMIO ordering example MAINTAINERS: Add Daniel Lustig as an LKMM reviewer tools/memory-model: Fix ISA2+pooncelock+pooncelock+pombonce name tools/memory-model: Add litmus test for full multicopy atomicity locking/refcount: Always allow checked forms ... |
||
Thomas Gleixner
|
f2701b77bb |
Merge 4.18-rc7 into master to pick up the KVM dependcy
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |