IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
drbg_kcapi_sym_ctr() was using wait_for_completion_interruptible() to
wait for completion of async crypto op but if a signal occurs it
may return before DMA ops of HW crypto provider finish, thus
corrupting the output buffer.
Resolve this by using wait_for_completion() instead.
Reported-by: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
CC: stable@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
An SGL to be initialized only once even when its buffers are written
to several times.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When using SGs, only heap memory (memory that is valid as per
virt_addr_valid) is allowed to be referenced. The CTR DRBG used to
reference the caller-provided memory directly in an SG. In case the
caller provided stack memory pointers, the SG mapping is not considered
to be valid. In some cases, this would even cause a paging fault.
The change adds a new scratch buffer that is used unconditionally to
catch the cases where the caller-provided buffer is not suitable for
use in an SG. The crypto operation of the CTR DRBG produces its output
with that scratch buffer and finally copies the content of the
scratch buffer to the caller's buffer.
The scratch buffer is allocated during allocation time of the CTR DRBG
as its access is protected with the DRBG mutex.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CTR DRBG segments the number of random bytes to be generated into
128 byte blocks. The current code misses the advancement of the output
buffer pointer when the requestor asks for more than 128 bytes of data.
In this case, the next 128 byte block of random numbers is copied to
the beginning of the output buffer again. This implies that only the
first 128 bytes of the output buffer would ever be filled.
The patch adds the advancement of the buffer pointer to fill the entire
buffer.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Fix to return a negative error code from the error handling
case instead of 0.
Signed-off-by: Wei Yongjun <weiyj.lk@gmail.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When calling the DRBG health test in FIPS mode, the Jitter RNG is not
yet present in the kernel crypto API which will cause the instantiation
to fail and thus the health test to fail.
As the health tests cover the enforcement of various thresholds, invoke
the functions that are supposed to enforce the thresholds directly.
This patch also saves precious seed.
Reported-by: Tapas Sarangi <TSarangi@trustwave.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We accidentally return PTR_ERR(NULL) which is success but we should
return -ENOMEM.
Fixes: 3559128521 ('crypto: drbg - use CTR AES instead of ECB AES')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The TFM object maintains the key for the CTR DRBG.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CTR DRBG update function performs a full CTR AES operation including
the XOR with "plaintext" data. Hence, remove the XOR from the code and
use the CTR mode to do the XOR.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Hardware cipher implementation may require aligned buffers. All buffers
that potentially are processed with a cipher are now aligned.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CTR DRBG derives its random data from the CTR that is encrypted with
AES.
This patch now changes the CTR DRBG implementation such that the
CTR AES mode is employed. This allows the use of steamlined CTR AES
implementation such as ctr-aes-aesni.
Unfortunately there are the following subtile changes we need to apply
when using the CTR AES mode:
- the CTR mode increments the counter after the cipher operation, but
the CTR DRBG requires the increment before the cipher op. Hence, the
crypto_inc is applied to the counter (drbg->V) once it is
recalculated.
- the CTR mode wants to encrypt data, but the CTR DRBG is interested in
the encrypted counter only. The full CTR mode is the XOR of the
encrypted counter with the plaintext data. To access the encrypted
counter, the patch uses a NULL data vector as plaintext to be
"encrypted".
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CTR DRBG code always set the key for each sym cipher invocation even
though the key has not been changed.
The patch ensures that the setkey is only invoked when a new key is
generated by the DRBG.
With this patch, the CTR DRBG performance increases by more than 150%.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The HMAC implementation allows setting the HMAC key independently from
the hashing operation. Therefore, the key only needs to be set when a
new key is generated.
This patch increases the speed of the HMAC DRBG by at least 35% depending
on the use case.
The patch is fully CAVS tested.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The newly released FIPS 140-2 IG 9.8 specifies that for SP800-90A
compliant DRBGs, the FIPS 140-2 continuous random number generator test
is not required any more.
This patch removes the test and all associated data structures.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The drbg_state_ops structures are never modified, so declare them as const.
Done with the help of Coccinelle.
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Be more verbose and also report ->backend_cra_name when
crypto_alloc_shash() or crypto_alloc_cipher() fail in
drbg_init_hash_kernel() or drbg_init_sym_kernel()
correspondingly.
Example
DRBG: could not allocate digest TFM handle: hmac(sha256)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As required by SP800-90A, the DRBG implements are reseeding threshold.
This threshold is at 2**48 (64 bit) and 2**32 bit (32 bit) as
implemented in drbg_max_requests.
With the recently introduced changes, the DRBG is now always used as a
stdrng which is initialized very early in the boot cycle. To ensure that
sufficient entropy is present, the Jitter RNG is added to even provide
entropy at early boot time.
However, the 2nd seed source, the nonblocking pool, is usually
degraded at that time. Therefore, the DRBG is seeded with the Jitter RNG
(which I believe contains good entropy, which however is questioned by
others) and is seeded with a degradded nonblocking pool. This seed is
now used for quasi the lifetime of the system (2**48 requests is a lot).
The patch now changes the reseed threshold as follows: up until the time
the DRBG obtains a seed from a fully iniitialized nonblocking pool, the
reseeding threshold is lowered such that the DRBG is forced to reseed
itself resonably often. Once it obtains the seed from a fully
initialized nonblocking pool, the reseed threshold is set to the value
required by SP800-90A.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The get_blocking_random_bytes API is broken because the wait can
be arbitrarily long (potentially forever) so there is no safe way
of calling it from within the kernel.
This patch replaces it with the new callback API which does not
have this problem.
The patch also removes the entropy buffer registered with the DRBG
handle in favor of stack variables to hold the seed data.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the stdrng module alias and increases the priority
to ensure that it is loaded in preference to other RNGs.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
During initialization, the DRBG now tries to allocate a handle of the
Jitter RNG. If such a Jitter RNG is available during seeding, the DRBG
pulls the required entropy/nonce string from get_random_bytes and
concatenates it with a string of equal size from the Jitter RNG. That
combined string is now the seed for the DRBG.
Written differently, the initial seed of the DRBG is now:
get_random_bytes(entropy/nonce) || jitterentropy (entropy/nonce)
If the Jitter RNG is not available, the DRBG only seeds from
get_random_bytes.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The async seeding operation is triggered during initalization right
after the first non-blocking seeding is completed. As required by the
asynchronous operation of random.c, a callback function is provided that
is triggered by random.c once entropy is available. That callback
function performs the actual seeding of the DRBG.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In order to prepare for the addition of the asynchronous seeding call,
the invocation of seeding the DRBG is moved out into a helper function.
In addition, a block of memory is allocated during initialization time
that will be used as a scratchpad for obtaining entropy. That scratchpad
is used for the initial seeding operation as well as by the
asynchronous seeding call. The memory must be zeroized every time the
DRBG seeding call succeeds to avoid entropy data lingering in memory.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch removes the unnecessary CRYPTO_FIPS ifdef from
drbg_healthcheck_sanity so that the code always gets checked
by the compiler.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Stephan Mueller <smueller@chronox.de>
This patch converts the DRBG implementation to the new low-level
rng interface.
This allows us to get rid of struct drbg_gen by using the new RNG
API instead.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Stephan Mueller <smueller@chronox.de>
Initialising the RNG in drbg_kcapi_init is a waste of precious
entropy because all users will immediately seed the RNG after
the allocation.
In fact, all users should seed the RNG before using it. So there
is no point in doing the seeding in drbg_kcapi_init.
This patch removes the initial seeding and the user must seed
the RNG explicitly (as they all currently do).
This patch also changes drbg_kcapi_reset to allow reseeding.
That is, if you call it after a successful initial seeding, then
it will not reset the internal state of the DRBG before mixing
the new input and entropy.
If you still wish to reset the internal state, you can always
free the DRBG and allocate a new one.
Finally this patch removes locking from drbg_uninstantiate because
it's now only called from the destruction path which must not be
executed in parallel with normal operations.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Stephan Mueller <smueller@chronox.de>
As we moved the mutex init out of drbg_instantiate and into cra_init
we need to explicitly initialise the mutex in drbg_healthcheck_sanity.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Stephan Mueller <smueller@chronox.de>
As the DRBG does not operate on shadow copies of the DRBG instance
any more, the cipher handles only need to be allocated once during
initalization time and deallocated during uninstantiate time.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The creation of a shadow copy is intended to only hold a short term
lock. But the drawback is that parallel users have a very similar DRBG
state which only differs by a high-resolution time stamp.
The DRBG will now hold a long term lock. Therefore, the lock is changed
to a mutex which implies that the DRBG can only be used in process
context.
The lock now guards the instantiation as well as the entire DRBG
generation operation. Therefore, multiple callers are fully serialized
when generating a random number.
As the locking is changed to use a long-term lock to avoid such similar
DRBG states, the entire creation and maintenance of a shadow copy can be
removed.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The drbg_generate returns 0 in success case. That means that
drbg_generate_long will always only generate drbg_max_request_bytes at
most. Longer requests will be truncated to drbg_max_request_bytes.
Reported-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The buffer uses for temporary data must be cleared entirely. In AES192
the used buffer is drbg_statelen(drbg) + drbg_blocklen(drbg) as
documented in the comment above drbg_ctr_df.
This patch ensures that the temp buffer is completely wiped.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Change the RNGs to always return 0 in success case.
This patch ensures that seqiv.c works with RNGs other than krng. seqiv
expects that any return code other than 0 is an error. Without the
patch, rfc4106(gcm(aes)) will not work when using a DRBG or an ANSI
X9.31 RNG.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The DRBG code contains memset(0) calls to initialize a varaible
that are not necessary as the variable is always overwritten by
the processing.
This patch increases the CTR and Hash DRBGs by about 5%.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CTR DRBG only encrypts one single block at a time. Thus, use the
single block crypto API to avoid additional overhead from the block
chaining modes.
With the patch, the speed of the DRBG increases between 30% and 40%.
The DRBG still passes the CTR DRBG CAVS test.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This reverts commit 421d82f5b3.
None of the data zeroed are on the stack so the compiler cannot
optimise them away.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a panic if the FIPS 140-2 self test error failed.
Note, that entire code is only executed with fips_enabled (i.e. when the
kernel is booted with fips=1. It is therefore not executed for 99.9% of
all user base.
As mathematically such failure cannot occur, this panic should never be
triggered. But to comply with NISTs current requirements, an endless
loop must be replaced with the panic.
When the new version of FIPS 140 will be released, this entire
continuous self test function will be ripped out as it will not be
needed any more.
This patch is functionally equivalent as implemented in ansi_cprng.c and drivers/char/random.c.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Compiler dead store optimization can sometimes remove final calls
to memset() used to clear sensitive data at the end of a function.
Replace trailing memset() calls with memzero_explicit() to
preclude unwanted removal.
Signed-off-by: Nickolaus Woodruff <nickolauswoodruff@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use the crypto- prefix for the DRBG implementations.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The kernel module drbg.ko is currently not loaded automatically when a
DRBG is requested by a consumer. This is due to missing MODULE_ALIAS
flags for each of the implemented DRBG types.
This patch adds aliases for each of the 22 defined DRBGs.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The DRBG internal buffer addition function is replaced with crypto_inc when
a buffer is to be incremented by one.
The function drbg_add_buf is moved to the CONFIG_CRYPTO_DRBG_HASH ifdef
area as it is now only needed for the Hash DRBG.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The drbg_healthcheck() contained a test to call the DRBG with an
uninitialized DRBG cipher handle. As this is an inappropriate use of the
kernel crypto API to try to generate random numbers before
initialization, checks verifying for an initialized DRBG have been
removed in previous patches.
Now, the drbg_healthcheck test must also be removed.
Changes V2: Added patch marker to email subject line.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The sparse tool complained that the cpu_to_be[32|64] functions return
__be[32|64] instead of __u32 or __u64. The patch replaces the __u32 and
__u64 with __be32 and __be64.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
During creation of the DRBG shadow state, it is ensured that the DRBG
state structure is already allocated. Thus, a sanity check for verifying
that the structure is allocated is removed.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
SP800-90A mandates several hard-coded values. The old drbg_cores allows
the setting of these values per DRBG implementation. However, due to the
hard requirement of SP800-90A, these values are now returned globally
for each DRBG.
The ability to set such values per DRBG is therefore removed.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The drbg_make_shadow function contains sanity checks which are not
needed as the function is invoked at times where it is ensured that the
checked-for variables are available.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When allocating V, C, the zeroization is only needed when
allocating a new instance of the DRBG, i.e. when performing an
initial seeding. For all other allocations, the memcpy implemented in
drbg_copy_drbg ensures that the memory is filled with the correct
information.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Remove memset(0) which is not needed due to the kzalloc of the memory.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>