IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Skip zero-ing in aer_alloc_rpc() since it is allocated by kzalloc().
The closing comment marker "*/" is recommended for kernel-doc comments.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
I noticed that when I inject a fatal error to an endpoint via
aer-inject, aer_root_reset() is called as reset_link for a
downstream port at upstream of the endpoint:
pcieport 0000:00:06.0: AER: Uncorrected (Fatal) error received: id=5401
:
pcieport 0000:52:02.0: Root Port link has been reset
It externally appears to be working, but internally issues some
accesses to PCI_ERR_ROOT_COMMAND/STATUS registers that is for
root port so not available on downstream port.
This patch introduces default_downstream_reset_link that is
a version of aer_root_reset() with no accesses to root port's
register. It is used for downstream ports that has no reset_link
function its specific.
This patch also updates related description in pcieaer-howto.txt.
Some minor fixes are included.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The pcie->port of port service device points the port associated
the service with. The find_aer_service iterates over children of
given port udev.
So it is clear that the pcie->port of port service of given port
udev must always point the udev.
Therefore we can know the type of udev without checking its children.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Make it clear that we only interest in 2 *_RCV bits.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Current get_e_source() returns pointer to an element of array.
However since it also progress consume counter, it is possible
that the element is overwritten by newly produced data before
the element is really consumed.
This patch changes get_e_source() to copy contents of the element
to address pointed by its caller. Once copied the element in
array can be consumed.
And relocate this function to more innocuous place.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Divide tricky for-loop into readable if-blocks.
The logic to set multi_error_valid (to force walking pci bus
hierarchy to find 2nd~ error devices) is changed too, to check
MULTI_{,_UN}COR_RCV bit individually and to force walk only when
it is required.
And rework setting e_info->severity for uncorrectable, not to use
magic numbers.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Stop iteration if we cannot register any more.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Take core part of find_device_iter() to make a new function
is_error_source() that checks given device has report an error
or not.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Return bool to indicate that the source device is found or not.
This allows us to skip calling aer_process_err_devices() if we can.
And move dev_printk for debug into this function.
v2: return bool instead of int
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
These functions are only called from init/remove path of aerdrv,
so move them from aerdrv_core.c to aerdrv.c, to make them static.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This cleanup solves some minor naming issues by removing unuseful
function aer_delete_rootport() and by renaming disable_root_aer()
to aer_disable_rootport().
- Inconsistent location of alloc & free:
The struct rpc is allocated in aer_alloc_rpc() at aerdrv.c
while it is implicitly freed in aer_delete_rootport() at
aerdrv_core.c.
- Inconsistent function name:
It makes a bit confusion that aer_delete_rootport() is seemed
to be paired with aer_enable_rootport(), i.e. there is neither
"add" against "delete" nor "disable" against "enable".
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
While testing completion timeouts I found that hardware was not recovering.
It looks like the hot reset was never being propagated to the endpoint
devices on the bus due to the fact that we were clearing the bit too
quickly.
The documentation I have states that we should be transmitting hot reset
TS1s for 2ms. To achieve this I have added a 2ms delay from the time we
set the secondary bus reset bit to the time we clear it. In addition I
changed the define used for the secondary bus reset bit to match the
register define that was being used.
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Set power.async_suspend for all PCI devices and PCIe port services,
so that they can be suspended and resumed in parallel with other
devices they don't depend on in a known way (i.e. devices which are
not their parents or children).
This only affects the "regular" suspend and resume stages, which
means in particular that the restoration of the PCI devices' standard
configuration registers during resume will still be carried out
synchronously (at the "early" resume stage).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Use pci_pcie_cap() instead of pci_find_capability() to get PCIe
capability offset. This reduces redundant search in PCI configuration
space.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Use pci_is_pcie() instead of looking at obsolete is_pcie field in
struct pci_dev.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Apparently, some machines may have problems with PCI run-time power
management if MSIs are used for the native PCIe PME signaling. In
particular, on the MSI Wind U-100 PCIe PME interrupts are not
generated by a PCIe root port after a resume from suspend to RAM, if
the system wake-up was triggered by a PME from the device attached to
this port. [It doesn't help to free the interrupt on suspend and
request it back on resume, even if that is done along with disabling
the MSI and re-enabling it, respectively.] However, if INTx
interrupts are used for this purpose on the same machine, everything
works just fine.
For this reason, add a kernel command line switch allowing one to
request that MSIs be not used for the native PCIe PME signaling,
introduce a DMI table allowing us to blacklist machines that need
this switch to be set by default and put the MSI Wind U-100 into this
table.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
PCIe native PME detection mechanism is based on interrupts generated
by root ports or event collectors every time a PCIe device sends a
PME message upstream.
Once a PME message has been sent by an endpoint device and received
by its root port (or event collector in the case of root complex
integrated endpoints), the Requester ID from the message header is
registered in the root port's Root Status register. At the same
time, the PME Status bit of the Root Status register is set to
indicate that there's a PME to handle. If PCIe PME interrupt is
enabled for the root port, it generates an interrupt once the PME
Status has been set. After receiving the interrupt, the kernel can
identify the PCIe device that generated the PME using the Requester
ID from the root port's Root Status register. [For details, see PCI
Express Base Specification, Rev. 2.0.]
Implement a driver for the PCIe PME root port service working in
accordance with the above description.
Based on a patch from Shaohua Li <shaohua.li@intel.com>.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The aer_inject module hangs in aer_inject() when checking the device's
error masks. The hang is due to a recursive use of the aer_inject lock.
The aer_inject() routine grabs the lock while processing the error and then
calls pci_read_config_dword to read the masks. The pci_read_config_dword
routine is earlier overridden by pci_read_aer, which among other things,
grabs the aer_inject lock.
Fixed by moving the pci_read_config_dword calls to read the masks to before
the lock is taken.
Acked-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The Correcteable/Uncorrectable Error Mask Registers are used by PCIe AER
driver which will controls the reporting of individual errors to PCIe RC
via PCIe error messages.
If hardware masks special error reporting to RC, the aer_inject driver
should not inject aer error.
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Youquan, Song <youquan.song@intel.com>
Acked-by: Ying, Huang <ying.huang@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Changing occurrences of variants of PCI-X and PCIe to the PCI-SIG
terms listed in the "Trademark and Logo Usage Guidelines".
http://www.pcisig.com/developers/procedures/logos/Trademark_and_Logo_Usage_Guidelines_updated_112206.pdf
Patch is limited to drivers/pci/ and changes concern non-comment parts or
anything that might be visible to the user.
Signed-off-by: Stefan Assmann <sassmann@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This problem happened when removing PCIe root port using PCI logical
hotplug operation.
The immediate cause of this problem is that the pointer to invalid
data structure is passed to pcie_update_aspm_capable() by
pcie_aspm_exit_link_state(). When pcie_aspm_exit_link_state() received
a pointer to root port link, it unconfigures the root port link and
frees its data structure at first. At this point, there are not links
to configure under the root port and the data structure for root port
link is already freed. So pcie_aspm_exit_link_state() must not call
pcie_update_aspm_capable() and pcie_config_aspm_path().
This patch fixes the problem by changing pcie_aspm_exit_link_state()
not to call pcie_update_aspm_capable() and pcie_config_aspm_path() if
the specified link is root port link.
------------[ cut here ]------------
kernel BUG at drivers/pci/pcie/aspm.c:606!
invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
last sysfs file: /sys/devices/pci0000:40/0000:40:13.0/remove
CPU 1
Modules linked in: shpchp
Pid: 9345, comm: sysfsd Not tainted 2.6.32-rc5 #98 ProLiant DL785 G6
RIP: 0010:[<ffffffff811df69b>] [<ffffffff811df69b>] pcie_update_aspm_capable+0x15/0xbe
RSP: 0018:ffff88082a2f5ca0 EFLAGS: 00010202
RAX: 0000000000000e77 RBX: ffff88182cc3e000 RCX: ffff88082a33d006
RDX: 0000000000000001 RSI: ffffffff811dff4a RDI: ffff88182cc3e000
RBP: ffff88082a2f5cc0 R08: ffff88182cc3e000 R09: 0000000000000000
R10: ffff88182fc00180 R11: ffff88182fc00198 R12: ffff88182cc3e000
R13: 0000000000000000 R14: ffff88182cc3e000 R15: ffff88082a2f5e20
FS: 00007f259a64b6f0(0000) GS:ffff880864600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b
CR2: 00007feb53f73da0 CR3: 000000102cc94000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process sysfsd (pid: 9345, threadinfo ffff88082a2f4000, task ffff88082a33cf00)
Stack:
ffff88182cc3e000 ffff88182cc3e000 0000000000000000 ffff88082a33cf00
<0> ffff88082a2f5cf0 ffffffff811dff52 ffff88082a2f5cf0 ffff88082c525168
<0> ffff88402c9fd2f8 ffff88402c9fd2f8 ffff88082a2f5d20 ffffffff811d7db2
Call Trace:
[<ffffffff811dff52>] pcie_aspm_exit_link_state+0xf5/0x11e
[<ffffffff811d7db2>] pci_stop_bus_device+0x76/0x7e
[<ffffffff811d7d67>] pci_stop_bus_device+0x2b/0x7e
[<ffffffff811d7e4f>] pci_remove_bus_device+0x15/0xb9
[<ffffffff811dcb8c>] remove_callback+0x29/0x3a
[<ffffffff81135aeb>] sysfs_schedule_callback_work+0x15/0x6d
[<ffffffff81072790>] worker_thread+0x19d/0x298
[<ffffffff8107273b>] ? worker_thread+0x148/0x298
[<ffffffff81135ad6>] ? sysfs_schedule_callback_work+0x0/0x6d
[<ffffffff810765c0>] ? autoremove_wake_function+0x0/0x38
[<ffffffff810725f3>] ? worker_thread+0x0/0x298
[<ffffffff8107629e>] kthread+0x7d/0x85
[<ffffffff8102eafa>] child_rip+0xa/0x20
[<ffffffff8102e4bc>] ? restore_args+0x0/0x30
[<ffffffff81076221>] ? kthread+0x0/0x85
[<ffffffff8102eaf0>] ? child_rip+0x0/0x20
Code: 89 e5 8a 50 48 31 c0 c0 ea 03 83 e2 07 e8 b2 de fe ff c9 48 98 c3 55 48 89 e5 41 56 49 89 fe 41 55 41 54 53 48 83 7f 10 00 74 04 <0f> 0b eb fe 48 8b 05 da 7d 63 00 4c 8d 60 e8 4c 89 e1 eb 24 4c
RIP [<ffffffff811df69b>] pcie_update_aspm_capable+0x15/0xbe
RSP <ffff88082a2f5ca0>
---[ end trace 6ae0f65bdeab8555 ]---
Reported-by: Alex Chiang <achiang@hp.com>
Tested-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The pci_cleanup_aer_correct_error_status() function has been
#if 0'd out since 2.6.25. Time to remove the dead code.
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The current implementation of pci_cleanup_aer_uncorrect_error_status
only clears either fatal or non-fatal error status bits depending
on the state of the I/O channel. This implementation will then often
leave some bits set after PCI error recovery completes. The uncleared bit
settings will then be falsely reported the next time an AER interrupt is
generated for that hierarchy. An easy way to illustrate this issue is to
use the aer-inject module to simultaneously inject both an uncorrectable
non-fatal and uncorrectable fatal error. One of the errors will not be
cleared.
This patch resolves this issue by unconditionally clearing all bits in
the AER uncorrectable status register. All settings and corrective action
strategies are saved and determined before
pci_cleanup_aer_uncorrect_error_status is called, so this change should not
affect errory handling functionality.
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Remove 'port_type' field in struct pcie_port_data(), because we can
get port type information from struct pci_dev. With this change, this
patch also does followings:
- Remove struct pcie_port_data because it no longer has any field.
- Remove portdrv private definitions about port type (PCIE_RC_PORT,
PCIE_SW_UPSTREAM_PORT and PCIE_SW_DOWNSTREAM_PORT), and use generic
definitions instead.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Add missing service irqs cleanup in the error code path of
pcie_port_device_register().
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Call pci_enable_device() before initializing service irqs, because
legacy interrupt is initialized in pci_enable_device() on some
architectures.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This patch cleans up the service irqs initialization as follows:
- Remove 'irq_mode' field in pcie_port_data and related definitions,
which is not needed because we can get the same information from
'is_msix', 'is_msi' and 'pin' fields in struct pci_dev.
- Change the name of 'vectors' argument of assign_interrupt_mode() to
'irqs' because it holds irq numbers actually. People might confuse
it with CPU vector or MSI/MSI-X vector.
- Change function name assign_interrupt_mode() to init_service_irqs()
becasuse we no longer have 'irq_mode' data structure, and new name
is more straightforward (IMO).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
No reason to check PME capability outside get_port_device_capability().
Do it in get_port_device_capability().
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
PCIe port type is already stored in 'pcie_type' field of struct
pci_dev. So we don't need to get it from pci configuration space.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
In the current port bus driver implementation, pcie_device allocation,
initialization and registration are done in separated functions. Doing
those in one function make the code simple and easier to read.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
We don't need pcie_port_device_probe() because we can get pci
device/port type using pci_is_pcie() and 'pcie_type' fields in struct
pci_dev. Remove pcie_port_device_probe().
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Changes for PCIe AER driver to use pci_is_pcie() instead of checking
pci_dev->is_pcie.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Change for PCIe ASPM driver to use pci_is_pcie() instead of checking
pci_dev->is_pcie.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Use pci_pcie_cap() instead of pci_find_capability() to get PCIe capability
offset in PCIe ASPM driver. This avoids unnecessary search in PCI
configuration space.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Use pci_pcie_cap() instead of pci_find_capability() to get PCIe capability
offset in PCI Express Port Bus driver. This avoids unnecessary serarch
in PCI configuration space.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Use pcie_cap() instead of pci_find_capability() to get PCIe capability
offset in PCIe AER driver. This avoids unnecessary search in PCI
configuration space.
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>