IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Some static functions are needlessly forward declared. Let's remove those
declarations since they add no value.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Every shared ref has a parent tree block, which can be get from
btrfs_extent_inline_ref_offset(). And the tree block must be aligned
to the nodesize, so we'd know this inline ref is not valid if this
block's bytenr is not aligned to the nodesize, in which case, most
likely the ref type has been misused.
This adds the above mentioned check and also updates
print_extent_item() called by btrfs_print_leaf() to point out the
invalid ref while printing the tree structure.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have a helper which can do sanity check, this converts all
btrfs_extent_inline_ref_type to it.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
An invalid value of extent inline ref type may be read from a
malicious image which may force btrfs to crash.
This adds a helper which does sanity check for the ref type, so we can
know if it's sane, return he type, otherwise return an error.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minimal tweak const types, causing warnings due to other cleanup patches ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_make_block_group is always called with chunk_objectid set to
BTRFS_FIRST_CHUNK_TREE_OBJECTID. There's no reason why this behavior will
change anytime soon, so let's remove the argument and decrease the cognitive
load when reading the code path. No functional change
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch provides a band aid to improve the 'out of the box'
behaviour of btrfs for disks that are detected as being an ssd. In a
general purpose mixed workload scenario, the current ssd mode causes
overallocation of available raw disk space for data, while leaving
behind increasing amounts of unused fragmented free space. This
situation leads to early ENOSPC problems which are harming user
experience and adoption of btrfs as a general purpose filesystem.
This patch modifies the data extent allocation behaviour of the ssd mode
to make it behave identical to nossd mode. The metadata behaviour and
additional ssd_spread option stay untouched so far.
Recommendations for future development are to reconsider the current
oversimplified nossd / ssd distinction and the broken detection
mechanism based on the rotational attribute in sysfs and provide
experienced users with a more flexible way to choose allocator behaviour
for data and metadata, optimized for certain use cases, while keeping
sane 'out of the box' default settings. The internals of the current
btrfs code have more potential than what currently gets exposed to the
user to choose from.
The SSD story...
In the first year of btrfs development, around early 2008, btrfs
gained a mount option which enables specific functionality for
filesystems on solid state devices. The first occurance of this
functionality is in commit e18e4809, labeled "Add mount -o ssd, which
includes optimizations for seek free storage".
The effect on allocating free space for doing (data) writes is to
'cluster' writes together, writing them out in contiguous space, as
opposed to a 'tetris' way of putting all separate writes into any free
space fragment that fits (which is what the -o nossd behaviour does).
A somewhat simplified explanation of what happens is that, when for
example, the 'cluster' size is set to 2MiB, when we do some writes, the
data allocator will search for a free space block that is 2MiB big, and
put the writes in there. The ssd mode itself might allow a 2MiB cluster
to be composed of multiple free space extents with some existing data in
between, while the additional ssd_spread mount option kills off this
option and requires fully free space.
The idea behind this is (commit 536ac8ae): "The [...] clusters make it
more likely a given IO will completely overwrite the ssd block, so it
doesn't have to do an internal rwm cycle."; ssd block meaning nand erase
block. So, effectively this means applying a "locality based algorithm"
and trying to outsmart the actual ssd.
Since then, various changes have been made to the involved code, but the
basic idea is still present, and gets activated whenever the ssd mount
option is active. This also happens by default, when the rotational flag
as seen at /sys/block/<device>/queue/rotational is set to 0.
However, there's a number of problems with this approach.
First, what the optimization is trying to do is outsmart the ssd by
assuming there is a relation between the physical address space of the
block device as seen by btrfs and the actual physical storage of the
ssd, and then adjusting data placement. However, since the introduction
of the Flash Translation Layer (FTL) which is a part of the internal
controller of an ssd, these attempts are futile. The use of good quality
FTL in consumer ssd products might have been limited in 2008, but this
situation has changed drastically soon after that time. Today, even the
flash memory in your automatic cat feeding machine or your grandma's
wheelchair has a full featured one.
Second, the behaviour as described above results in the filesystem being
filled up with badly fragmented free space extents because of relatively
small pieces of space that are freed up by deletes, but not selected
again as part of a 'cluster'. Since the algorithm prefers allocating a
new chunk over going back to tetris mode, the end result is a filesystem
in which all raw space is allocated, but which is composed of
underutilized chunks with a 'shotgun blast' pattern of fragmented free
space. Usually, the next problematic thing that happens is the
filesystem wanting to allocate new space for metadata, which causes the
filesystem to fail in spectacular ways.
Third, the default mount options you get for an ssd ('ssd' mode enabled,
'discard' not enabled), in combination with spreading out writes over
the full address space and ignoring freed up space leads to worst case
behaviour in providing information to the ssd itself, since it will
never learn that all the free space left behind is actually free. There
are two ways to let an ssd know previously written data does not have to
be preserved, which are sending explicit signals using discard or
fstrim, or by simply overwriting the space with new data. The worst
case behaviour is the btrfs ssd_spread mount option in combination with
not having discard enabled. It has a side effect of minimizing the reuse
of free space previously written in.
Fourth, the rotational flag in /sys/ does not reliably indicate if the
device is a locally attached ssd. For example, iSCSI or NBD displays as
non-rotational, while a loop device on an ssd shows up as rotational.
The combination of the second and third problem effectively means that
despite all the good intentions, the btrfs ssd mode reliably causes the
ssd hardware and the filesystem structures and performance to be choked
to death. The clickbait version of the title of this story would have
been "Btrfs ssd optimizations considered harmful for ssds".
The current nossd 'tetris' mode (even still without discard) allows a
pattern of overwriting much more previously used space, causing many
more implicit discards to happen because of the overwrite information
the ssd gets. The actual location in the physical address space, as seen
from the point of view of btrfs is irrelevant, because the actual writes
to the low level flash are reordered anyway thanks to the FTL.
Changes made in the code
1. Make ssd mode data allocation identical to tetris mode, like nossd.
2. Adjust and clean up filesystem mount messages so that we can easily
identify if a kernel has this patch applied or not, when providing
support to end users. Also, make better use of the *_and_info helpers to
only trigger messages on actual state changes.
Backporting notes
Notes for whoever wants to backport this patch to their 4.9 LTS kernel:
* First apply commit 951e7966 "btrfs: drop the nossd flag when
remounting with -o ssd", or fixup the differences manually.
* The rest of the conflicts are because of the fs_info refactoring. So,
for example, instead of using fs_info, it's root->fs_info in
extent-tree.c
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a WARN_ON(!var) inside an if branch which is executed (among
others) only when var is true.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently should_alloc_chunk uses ->total_bytes - ->bytes_readonly to
signify the total amount of bytes in this space info. However, given
Jeff's patch which adds bytes_pinned and bytes_may_use to the calculation
of num_allocated it becomes a lot more clear to just eliminate num_bytes
altogether and add the bytes_readonly to the amount of used space. That
way we don't change the results of the following statements. In the
process also start using btrfs_space_info_used.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In a heavy write scenario, we can end up with a large number of pinned bytes.
This can translate into (very) premature ENOSPC because pinned bytes
must be accounted for when allowing a reservation but aren't accounted for
when deciding whether to create a new chunk.
This patch adds the accounting to should_alloc_chunk so that we can
create the chunk.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The return value of flush_space was used to have significance in the
early days when the code was first introduced and before the ticketed
enospc rework. Since the latter got introduced the return value lost any
significance whatsoever to its callers. So let's remove it. While at it
also remove the unused ticket variable in
btrfs_async_reclaim_metadata_space. It was used in the initial version
of the ticketed ENOSPC work, however Wang Xiaoguang detected a problem
with this and fixed it in ce129655c9d9 ("btrfs: introduce tickets_id to
determine whether asynchronous metadata reclaim work makes progress").
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
This also adjusts the respective callers in other files. Those were
found with -Wunused-parameter.
btrfs_full_stripe_len's mapping_tree - introduced by 53b381b3abeb
("Btrfs: RAID5 and RAID6") but it was never really used even in that
commit
btrfs_is_parity_mirror's mirror_num - same as above
chunk_drange_filter's chunk_offset - introduced by 94e60d5a5c4b ("Btrfs:
devid subset filter") and never used.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers append "\n" so we can keep the actual strings shorter. The
extra newline will print an empty line. Some messages have been
slightly modified to be more consistent with the rest (lowercase first
letter).
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Many commits ago the data space_info in alloc_data_chunk_ondemand used to be
acquired from the inode. At that point commit
33b4d47f5e24 ("Btrfs: deal with NULL space info") got introduced to deal with
spurios cases where the space info could be null, following a rebalance.
Nowadays, however, the space info is referenced directly from the btrfs_fs_info
struct which is initialised at filesystem mount time. This makes the null
checks redundant, so remove them.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of flush_space pass the same number for orig/num_bytes
arguments. Let's remove one of the numbers and also modify the trace
point to show only a single number - bytes requested.
Seems that last point where the two parameters were treated differently
is before the ticketed enospc rework.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The sectorsize member of btrfs_block_group_cache is unused. So remove it, this
reduces the number of holes in the struct.
With patch:
/* size: 856, cachelines: 14, members: 40 */
/* sum members: 837, holes: 4, sum holes: 19 */
/* bit holes: 1, sum bit holes: 29 bits */
/* last cacheline: 24 bytes */
Without patch:
/* size: 864, cachelines: 14, members: 41 */
/* sum members: 841, holes: 5, sum holes: 23 */
/* bit holes: 1, sum bit holes: 29 bits */
/* last cacheline: 32 bytes */
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a lot of metadata is reserved for outstanding delayed allocations, we
rely on shrink_delalloc() to reclaim metadata space in order to fulfill
reservation tickets. However, shrink_delalloc() has a shortcut where if
it determines that space can be overcommitted, it will stop early. This
made sense before the ticketed enospc system, but now it means that
shrink_delalloc() will often not reclaim enough space to fulfill any
tickets, leading to an early ENOSPC. (Reservation tickets don't care
about being able to overcommit, they need every byte accounted for.)
Fix it by getting rid of the shortcut so that shrink_delalloc() reclaims
all of the metadata it is supposed to. This fixes early ENOSPCs we were
seeing when doing a btrfs receive to populate a new filesystem, as well
as early ENOSPCs Christoph saw when doing a big cp -r onto Btrfs.
Fixes: 957780eb2788 ("Btrfs: introduce ticketed enospc infrastructure")
Tested-by: Christoph Anton Mitterer <mail@christoph.anton.mitterer.name>
Cc: stable@vger.kernel.org
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have a block group that is all of the following:
1) uncached in memory
2) is read-only
3) has a disk cache state that indicates we need to recreate the cache
AND the file system has enough free space fragmentation such that the
request for an extent of a given size can't be honored;
AND have a single CPU core;
AND it's the block group with the highest starting offset such that
there are no opportunities (like reading from disk) for the loop to
yield the CPU;
We can end up with a lockup.
The root cause is simple. Once we're in the position that we've read in
all of the other block groups directly and none of those block groups
can honor the request, there are no more opportunities to sleep. We end
up trying to start a caching thread which never gets run if we only have
one core. This *should* present as a hung task waiting on the caching
thread to make some progress, but it doesn't. Instead, it degrades into
a busy loop because of the placement of the read-only check.
During the first pass through the loop, block_group->cached will be set
to BTRFS_CACHE_STARTED and have_caching_bg will be set. Then we hit the
read-only check and short circuit the loop. We're not yet in
LOOP_CACHING_WAIT, so we skip that loop back before going through the
loop again for other raid groups.
Then we move to LOOP_CACHING_WAIT state.
During the this pass through the loop, ->cached will still be
BTRFS_CACHE_STARTED, which means it's not cached, so we'll enter
cache_block_group, do a lot of nothing, and return, and also set
have_caching_bg again. Then we hit the read-only check and short circuit
the loop. The same thing happens as before except now we DO trigger
the LOOP_CACHING_WAIT && have_caching_bg check and loop back up to the
top. We do this forever.
There are two fixes in this patch since they address the same underlying
bug.
The first is to add a cond_resched to the end of the loop to ensure
that the caching thread always has an opportunity to run. This will
fix the soft lockup issue, but find_free_extent will still loop doing
nothing until the thread has completed.
The second is to move the read-only check to the top of the loop. We're
never going to return an allocation within a read-only block group so
we may as well skip it early. The check for ->cached == BTRFS_CACHE_ERROR
would cause the same problem except that BTRFS_CACHE_ERROR is considered
a "done" state and we won't re-set have_caching_bg again.
Many thanks to Stephan Kulow <coolo@suse.de> for his excellent help in
the testing process.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Dave Jones hit a WARN_ON(nr < 0) in btrfs_wait_ordered_roots() with
v4.12-rc6. This was because commit 70e7af244 made it possible for
calc_reclaim_items_nr() to return a negative number. It's not really a
bug in that commit, it just didn't go far enough down the stack to find
all the possible 64->32 bit overflows.
This switches calc_reclaim_items_nr() to return a u64 and changes everyone
that uses the results of that math to u64 as well.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Fixes: 70e7af2 ("Btrfs: fix delalloc accounting leak caused by u32 overflow")
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For the following case, btrfs can underflow qgroup reserved space
at an error path:
(Page size 4K, function name without "btrfs_" prefix)
Task A | Task B
----------------------------------------------------------------------
Buffered_write [0, 2K) |
|- check_data_free_space() |
| |- qgroup_reserve_data() |
| Range aligned to page |
| range [0, 4K) <<< |
| 4K bytes reserved <<< |
|- copy pages to page cache |
| Buffered_write [2K, 4K)
| |- check_data_free_space()
| | |- qgroup_reserved_data()
| | Range alinged to page
| | range [0, 4K)
| | Already reserved by A <<<
| | 0 bytes reserved <<<
| |- delalloc_reserve_metadata()
| | And it *FAILED* (Maybe EQUOTA)
| |- free_reserved_data_space()
|- qgroup_free_data()
Range aligned to page range
[0, 4K)
Freeing 4K
(Special thanks to Chandan for the detailed report and analyse)
[CAUSE]
Above Task B is freeing reserved data range [0, 4K) which is actually
reserved by Task A.
And at writeback time, page dirty by Task A will go through writeback
routine, which will free 4K reserved data space at file extent insert
time, causing the qgroup underflow.
[FIX]
For btrfs_qgroup_free_data(), add @reserved parameter to only free
data ranges reserved by previous btrfs_qgroup_reserve_data().
So in above case, Task B will try to free 0 byte, so no underflow.
Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new parameter, struct extent_changeset for
btrfs_qgroup_reserved_data() and its callers.
Such extent_changeset was used in btrfs_qgroup_reserve_data() to record
which range it reserved in current reserve, so it can free it in error
paths.
The reason we need to export it to callers is, at buffered write error
path, without knowing what exactly which range we reserved in current
allocation, we can free space which is not reserved by us.
This will lead to qgroup reserved space underflow.
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_qgroup_release/free_data() only returns 0 or a negative error
number (ENOMEM is the only possible error).
This is normally good enough, but sometimes we need the exact byte
count it freed/released.
Change it to return actually released/freed bytenr number instead of 0
for success.
And slightly modify related extent_changeset structure, since in btrfs
one no-hole data extent won't be larger than 128M, so "unsigned int"
is large enough for the use case.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The total_bytes_pinned counter is completely broken when accounting
delayed refs:
- If two drops for the same extent are merged, we will decrement
total_bytes_pinned twice but only increment it once.
- If an add is merged into a drop or vice versa, we will decrement the
total_bytes_pinned counter but never increment it.
- If multiple references to an extent are dropped, we will account it
multiple times, potentially vastly over-estimating the number of bytes
that will be freed by a commit and doing unnecessary work when we're
close to ENOSPC.
The last issue is relatively minor, but the first two make the
total_bytes_pinned counter leak or underflow very often. These
accounting issues were introduced in b150a4f10d87 ("Btrfs: use a percpu
to keep track of possibly pinned bytes"), but they were papered over by
zeroing out the counter on every commit until d288db5dc011 ("Btrfs: fix
race of using total_bytes_pinned").
We need to make sure that an extent is accounted as pinned exactly once
if and only if we will drop references to it when when the transaction
is committed. Ideally we would only add to total_bytes_pinned when the
*last* reference is dropped, but this information isn't readily
available for data extents. Again, this over-estimation can lead to
extra commits when we're close to ENOSPC, but it's not as bad as before.
The fix implemented here is to increment total_bytes_pinned when the
total refmod count for an extent goes negative and decrement it if the
refmod count goes back to non-negative or after we've run all of the
delayed refs for that extent.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need this to decide when to account pinned bytes.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we only increment total_bytes_pinned in
btrfs_free_tree_block() when dropping the last reference on the block.
However, when the delayed ref is run later, we will decrement
total_bytes_pinned regardless of whether it was the last reference or
not. This causes the counter to underflow when the reference we dropped
was not the last reference. Fix it by incrementing the counter
unconditionally, which is what btrfs_free_extent() does. This makes
total_bytes_pinned an overestimate when references to shared extents are
dropped, but in the worst case this will just make us try to commit the
transaction to try to free up space and find we didn't free enough.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extents marked in pin_down_extent() will be unpinned later in
unpin_extent_range(), which decrements total_bytes_pinned.
pin_down_extent() must increment the counter to avoid underflowing it.
Also adjust btrfs_free_tree_block() to avoid accounting for the same
extent twice.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The value of flags is one of DATA/METADATA/SYSTEM, they must exist at
when add_pinned_bytes is called.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ added changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few places where we pass in a negative num_bytes, so make it
signed for clarity. Also move it up in the file since later patches will
need it there.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following the factoring out of the creation code udpate_space_info can
only be called for already-existing space_info structs. As such it
cannot fail. Remove superfluous error handling and make the function
return void.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the struct space_info creation code is intermixed in the
udpate_space_info function. There are well-defined points at which the
we actually want to create brand-new space_info structs (e.g. during
mount of the filesystem as well as sometimes when adding/initialising
new chunks). In such cases update_space_info is called with 0 as the
bytes parameter. All of this makes for spaghetti code.
Fix it by factoring out the creation code in a separate
create_space_info structure. This also allows to simplify the internals.
Also remove BUG_ON from do_alloc_chunk since the callers handle errors.
Furthermore it will make the update_space_info function not fail,
allowing us to remove error handling in callers. This will come in a
follow up patch.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We commit transaction in order to reclaim space from pinned bytes because
it could process delayed refs, and in may_commit_transaction(), we check
first if pinned bytes are enough for the required space, we then check if
that plus bytes reserved for delayed insert are enough for the required
space.
This changes the code to the above logic.
Fixes: b150a4f10d87 ("Btrfs: use a percpu to keep track of possibly pinned bytes")
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reported-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
can_overcommit using the root to determine the allocation profile
is the only use of a root in the call graph below reserve_metadata_bytes.
It turns out that we only need to know whether the allocation is for
the chunk root or not -- and we can pass that around as a bool instead.
This allows us to pull root usage out of the reservation path all the
way up to reserve_metadata_bytes itself, which uses it only to compare
against fs_info->chunk_root to set the bool. In turn, this eliminates
a bunch of races where we use a particular root too early in the mount
process.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two places where we don't already know what kind of alloc
profile we need before calling btrfs_get_alloc_profile, but we need
access to a root everywhere we call it.
This patch adds helpers for btrfs_{data,metadata,system}_alloc_profile()
and relegates btrfs_system_alloc_profile to a static for use in those
two cases. The next patch will eliminate one of those.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The ->free_chunk_space variable is used to track the unallocated space
and access to it is protected by a spinlock, which is not used for
anything else. Make the code a bit self-explanatory by switching the
variable to an atomic64_t type and kill the spinlock.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
[ not a performance critical code, use of atomic type is ok ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have to recover relocation during mount, we'll ultimately have to
evict the orphan inode. That goes through the reservation dance, where
priority_reclaim_metadata_space and flush_space expect fs_info->fs_root
to be valid. That's the next thing to be set up during mount, so we
crash, almost always in flush_space trying to join the transaction
but priority_reclaim_metadata_space is possible as well. This call
path has been problematic in the past WRT whether ->fs_root is valid
yet. Commit 957780eb278 (Btrfs: introduce ticketed enospc
infrastructure) added new users that are called in the direct path
instead of the async path that had already been worked around.
The thing is that we don't actually need the fs_root, specifically, for
anything. We either use it to determine whether the root is the
chunk_root for use in choosing an allocation profile or as a root to pass
btrfs_join_transaction before immediately committing it. Anything that
isn't the chunk root works in the former case and any root works in
the latter.
A simple fix is to use a root we know will always be there: the
extent_root.
Cc: <stable@vger.kernel.org> # v4.8+
Fixes: 957780eb278 (Btrfs: introduce ticketed enospc infrastructure)
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to add the space_info kobject, we'll leak the memory
for the percpu counter.
Fixes: 6ab0a2029c (btrfs: publish allocation data in sysfs)
Cc: <stable@vger.kernel.org> # v3.14+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike mirror based profiles, RAID5/6 recovery needs to read out the
whole full stripe.
And if we don't do proper protection, it can easily cause race condition.
Introduce 2 new functions: lock_full_stripe() and unlock_full_stripe()
for RAID5/6.
Which store a rb_tree of mutexes for full stripes, so scrub callers can
use them to lock a full stripe to avoid race.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
The members have been effectively unused since "Btrfs: rework qgroup
accounting" (fcebe4562dec83b3), there's no substitute for
assert_qgroups_uptodate so it's removed as well.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We also don't bother to flush free space cache while with free space
tree.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull sched.h split-up from Ingo Molnar:
"The point of these changes is to significantly reduce the
<linux/sched.h> header footprint, to speed up the kernel build and to
have a cleaner header structure.
After these changes the new <linux/sched.h>'s typical preprocessed
size goes down from a previous ~0.68 MB (~22K lines) to ~0.45 MB (~15K
lines), which is around 40% faster to build on typical configs.
Not much changed from the last version (-v2) posted three weeks ago: I
eliminated quirks, backmerged fixes plus I rebased it to an upstream
SHA1 from yesterday that includes most changes queued up in -next plus
all sched.h changes that were pending from Andrew.
I've re-tested the series both on x86 and on cross-arch defconfigs,
and did a bisectability test at a number of random points.
I tried to test as many build configurations as possible, but some
build breakage is probably still left - but it should be mostly
limited to architectures that have no cross-compiler binaries
available on kernel.org, and non-default configurations"
* 'WIP.sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (146 commits)
sched/headers: Clean up <linux/sched.h>
sched/headers: Remove #ifdefs from <linux/sched.h>
sched/headers: Remove the <linux/topology.h> include from <linux/sched.h>
sched/headers, hrtimer: Remove the <linux/wait.h> include from <linux/hrtimer.h>
sched/headers, x86/apic: Remove the <linux/pm.h> header inclusion from <asm/apic.h>
sched/headers, timers: Remove the <linux/sysctl.h> include from <linux/timer.h>
sched/headers: Remove <linux/magic.h> from <linux/sched/task_stack.h>
sched/headers: Remove <linux/sched.h> from <linux/sched/init.h>
sched/core: Remove unused prefetch_stack()
sched/headers: Remove <linux/rculist.h> from <linux/sched.h>
sched/headers: Remove the 'init_pid_ns' prototype from <linux/sched.h>
sched/headers: Remove <linux/signal.h> from <linux/sched.h>
sched/headers: Remove <linux/rwsem.h> from <linux/sched.h>
sched/headers: Remove the runqueue_is_locked() prototype
sched/headers: Remove <linux/sched.h> from <linux/sched/hotplug.h>
sched/headers: Remove <linux/sched.h> from <linux/sched/debug.h>
sched/headers: Remove <linux/sched.h> from <linux/sched/nohz.h>
sched/headers: Remove <linux/sched.h> from <linux/sched/stat.h>
sched/headers: Remove the <linux/gfp.h> include from <linux/sched.h>
sched/headers: Remove <linux/rtmutex.h> from <linux/sched.h>
...
Instead of including the full <linux/signal.h>, we are going to include the
types-only <linux/signal_types.h> header in <linux/sched.h>, to further
decouple the scheduler header from the signal headers.
This means that various files which relied on the full <linux/signal.h> need
to be updated to gain an explicit dependency on it.
Update the code that relies on sched.h's inclusion of the <linux/signal.h> header.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>