IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
With CONFIG_FORTIFY_SOURCE enabled, string functions will also perform
dynamic checks using __builtin_object_size(ptr), which when failed will
panic the kernel.
Because the KASAN test deliberately performs out-of-bounds operations,
the kernel panics with FORTIFY_SOURCE, for example:
| kernel BUG at lib/string_helpers.c:910!
| invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
| CPU: 1 PID: 137 Comm: kunit_try_catch Tainted: G B 5.16.0-rc3+ #3
| Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
| RIP: 0010:fortify_panic+0x19/0x1b
| ...
| Call Trace:
| kmalloc_oob_in_memset.cold+0x16/0x16
| ...
Fix it by also hiding `ptr` from the optimizer, which will ensure that
__builtin_object_size() does not return a valid size, preventing
fortified string functions from panicking.
Link: https://lkml.kernel.org/r/20220124160744.1244685-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Nico Pache <npache@redhat.com>
Reviewed-by: Nico Pache <npache@redhat.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a test checking that KASAN generic can also detect out-of-bounds
accesses to the left of globals.
Unfortunately it seems that GCC doesn't catch this (tested GCC 10, 11).
The main difference between GCC's globals redzoning and Clang's is that
GCC relies on using increased alignment to producing padding, where
Clang's redzoning implementation actually adds real data after the
global and doesn't rely on alignment to produce padding. I believe this
is the main reason why GCC can't reliably catch globals out-of-bounds in
this case.
Given this is now a known issue, to avoid failing the whole test suite,
skip this test case with GCC.
Link: https://lkml.kernel.org/r/20211117130714.135656-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Kaiwan N Billimoria <kaiwan.billimoria@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Kaiwan N Billimoria <kaiwan.billimoria@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As done in commit d73dad4eb5 ("kasan: test: bypass __alloc_size
checks") for __write_overflow warnings, also silence some more cases
that trip the __read_overflow warnings seen in 5.16-rc1[1]:
In file included from include/linux/string.h:253,
from include/linux/bitmap.h:10,
from include/linux/cpumask.h:12,
from include/linux/mm_types_task.h:14,
from include/linux/mm_types.h:5,
from include/linux/page-flags.h:13,
from arch/arm64/include/asm/mte.h:14,
from arch/arm64/include/asm/pgtable.h:12,
from include/linux/pgtable.h:6,
from include/linux/kasan.h:29,
from lib/test_kasan.c:10:
In function 'memcmp',
inlined from 'kasan_memcmp' at lib/test_kasan.c:897:2:
include/linux/fortify-string.h:263:25: error: call to '__read_overflow' declared with attribute error: detected read beyond size of object (1st parameter)
263 | __read_overflow();
| ^~~~~~~~~~~~~~~~~
In function 'memchr',
inlined from 'kasan_memchr' at lib/test_kasan.c:872:2:
include/linux/fortify-string.h:277:17: error: call to '__read_overflow' declared with attribute error: detected read beyond size of object (1st parameter)
277 | __read_overflow();
| ^~~~~~~~~~~~~~~~~
[1] http://kisskb.ellerman.id.au/kisskb/buildresult/14660585/log/
Link: https://lkml.kernel.org/r/20211116004111.3171781-1-keescook@chromium.org
Fixes: d73dad4eb5 ("kasan: test: bypass __alloc_size checks")
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc updates from Andrew Morton:
"257 patches.
Subsystems affected by this patch series: scripts, ocfs2, vfs, and
mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
cleanups, kfence, and damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
mm/damon: remove return value from before_terminate callback
mm/damon: fix a few spelling mistakes in comments and a pr_debug message
mm/damon: simplify stop mechanism
Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
Docs/admin-guide/mm/damon/start: simplify the content
Docs/admin-guide/mm/damon/start: fix a wrong link
Docs/admin-guide/mm/damon/start: fix wrong example commands
mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
mm/damon: remove unnecessary variable initialization
Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
selftests/damon: support watermarks
mm/damon/dbgfs: support watermarks
mm/damon/schemes: activate schemes based on a watermarks mechanism
tools/selftests/damon: update for regions prioritization of schemes
mm/damon/dbgfs: support prioritization weights
mm/damon/vaddr,paddr: support pageout prioritization
mm/damon/schemes: prioritize regions within the quotas
mm/damon/selftests: support schemes quotas
mm/damon/dbgfs: support quotas of schemes
...
With HW tag-based KASAN, error checks are performed implicitly by the
load and store instructions in the memcpy implementation. A failed
check results in tag checks being disabled and execution will keep
going. As a result, under HW tag-based KASAN, prior to commit
1b0668be62 ("kasan: test: disable kmalloc_memmove_invalid_size for
HW_TAGS"), this memcpy would end up corrupting memory until it hits an
inaccessible page and causes a kernel panic.
This is a pre-existing issue that was revealed by commit 285133040e
("arm64: Import latest memcpy()/memmove() implementation") which changed
the memcpy implementation from using signed comparisons (incorrectly,
resulting in the memcpy being terminated early for negative sizes) to
using unsigned comparisons.
It is unclear how this could be handled by memcpy itself in a reasonable
way. One possibility would be to add an exception handler that would
force memcpy to return if a tag check fault is detected -- this would
make the behavior roughly similar to generic and SW tag-based KASAN.
However, this wouldn't solve the problem for asynchronous mode and also
makes memcpy behavior inconsistent with manually copying data.
This test was added as a part of a series that taught KASAN to detect
negative sizes in memory operations, see commit 8cceeff48f ("kasan:
detect negative size in memory operation function"). Therefore we
should keep testing for negative sizes with generic and SW tag-based
KASAN. But there is some value in testing small memcpy overflows, so
let's add another test with memcpy that does not destabilize the kernel
by performing out-of-bounds writes, and run it in all modes.
Link: https://linux-review.googlesource.com/id/I048d1e6a9aff766c4a53f989fb0c83de68923882
Link: https://lkml.kernel.org/r/20210910211356.3603758-1-pcc@google.com
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures supported by KASAN_HW_TAGS can provide an asymmetric mode
of execution. On an MTE enabled arm64 hw for example this can be
identified with the asymmetric tagging mode of execution. In particular,
when such a mode is present, the CPU triggers a fault on a tag mismatch
during a load operation and asynchronously updates a register when a tag
mismatch is detected during a store operation.
Extend the KASAN HW execution mode kernel command line parameter to
support asymmetric mode.
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20211006154751.4463-6-vincenzo.frascino@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Merge misc updates from Andrew Morton:
"173 patches.
Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
oom-kill, migration, ksm, percpu, vmstat, and madvise)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
mm/madvise: add MADV_WILLNEED to process_madvise()
mm/vmstat: remove unneeded return value
mm/vmstat: simplify the array size calculation
mm/vmstat: correct some wrong comments
mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
selftests: vm: add COW time test for KSM pages
selftests: vm: add KSM merging time test
mm: KSM: fix data type
selftests: vm: add KSM merging across nodes test
selftests: vm: add KSM zero page merging test
selftests: vm: add KSM unmerge test
selftests: vm: add KSM merge test
mm/migrate: correct kernel-doc notation
mm: wire up syscall process_mrelease
mm: introduce process_mrelease system call
memblock: make memblock_find_in_range method private
mm/mempolicy.c: use in_task() in mempolicy_slab_node()
mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
mm/mempolicy: advertise new MPOL_PREFERRED_MANY
mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
...
Patch series "kasan: test: avoid crashing the kernel with HW_TAGS", v2.
KASAN tests do out-of-bounds and use-after-free accesses. Running the
tests works fine for the GENERIC mode, as it uses qurantine and redzones.
But the HW_TAGS mode uses neither, and running the tests might crash the
kernel.
Rework the tests to avoid corrupting kernel memory.
This patch (of 8):
Rework kmalloc_oob_right() to do these bad access checks:
1. An unaligned access one byte past the requested kmalloc size
(can only be detected by KASAN_GENERIC).
2. An aligned access into the first out-of-bounds granule that falls
within the aligned kmalloc object.
3. Out-of-bounds access past the aligned kmalloc object.
Test #3 deliberately uses a read access to avoid corrupting memory.
Otherwise, this test might lead to crashes with the HW_TAGS mode, as it
neither uses quarantine nor redzones.
Link: https://lkml.kernel.org/r/cover.1628779805.git.andreyknvl@gmail.com
Link: https://lkml.kernel.org/r/474aa8b7b538c6737a4c6d0090350af2e1776bef.1628779805.git.andreyknvl@gmail.com
Signed-off-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have special logic to suppress MTE tag check fault reporting, based
on a global `mte_report_once` and `reported` variables. These can be
used to suppress calling kasan_report() when taking a tag check fault,
but do not prevent taking the fault in the first place, nor does they
affect the way we disable tag checks upon taking a fault.
The core KASAN code already defaults to reporting a single fault, and
has a `multi_shot` control to permit reporting multiple faults. The only
place we transiently alter `mte_report_once` is in lib/test_kasan.c,
where we also the `multi_shot` state as the same time. Thus
`mte_report_once` and `reported` are redundant, and can be removed.
When a tag check fault is taken, tag checking will be disabled by
`do_tag_recovery` and must be explicitly re-enabled if desired. The test
code does this by calling kasan_enable_tagging_sync().
This patch removes the redundant mte_report_once() logic and associated
variables.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20210714143843.56537-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull KUnit update from Shuah Khan:
"Fixes and features:
- add support for skipped tests
- introduce kunit_kmalloc_array/kunit_kcalloc() helpers
- add gnu_printf specifiers
- add kunit_shutdown
- add unit test for filtering suites by names
- convert lib/test_list_sort.c to use KUnit
- code organization moving default config to tools/testing/kunit
- refactor of internal parser input handling
- cleanups and updates to documentation
- code cleanup related to casts"
* tag 'linux-kselftest-kunit-fixes-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest: (29 commits)
kunit: add unit test for filtering suites by names
kasan: test: make use of kunit_skip()
kunit: test: Add example tests which are always skipped
kunit: tool: Support skipped tests in kunit_tool
kunit: Support skipped tests
thunderbolt: test: Reinstate a few casts of bitfields
kunit: tool: internal refactor of parser input handling
lib/test: convert lib/test_list_sort.c to use KUnit
kunit: introduce kunit_kmalloc_array/kunit_kcalloc() helpers
kunit: Remove the unused all_tests.config
kunit: Move default config from arch/um -> tools/testing/kunit
kunit: arch/um/configs: Enable KUNIT_ALL_TESTS by default
kunit: Add gnu_printf specifiers
lib/cmdline_kunit: Remove a cast which are no-longer required
kernel/sysctl-test: Remove some casts which are no-longer required
thunderbolt: test: Remove some casts which are no longer required
mmc: sdhci-of-aspeed: Remove some unnecessary casts from KUnit tests
iio: Remove a cast in iio-test-format which is no longer required
device property: Remove some casts in property-entry-test
Documentation: kunit: Clean up some string casts in examples
...
The KUNIT_EXPECT_KASAN_FAIL() macro currently uses KUNIT_EXPECT_EQ() to
compare fail_data.report_expected and fail_data.report_found. This always
gave a somewhat useless error message on failure, but the addition of
extra compile-time checking with READ_ONCE() has caused it to get much
longer, and be truncated before anything useful is displayed.
Instead, just check fail_data.report_found by hand (we've just set
report_expected to 'true'), and print a better failure message with
KUNIT_FAIL(). Because of this, report_expected is no longer used
anywhere, and can be removed.
Beforehand, a failure in:
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)area)[3100]);
would have looked like:
[22:00:34] [FAILED] vmalloc_oob
[22:00:34] # vmalloc_oob: EXPECTATION FAILED at lib/test_kasan.c:991
[22:00:34] Expected ({ do { extern void __compiletime_assert_705(void) __attribute__((__error__("Unsupported access size for {READ,WRITE}_ONCE()."))); if (!((sizeof(fail_data.report_expected) == sizeof(char) || sizeof(fail_data.repp
[22:00:34] not ok 45 - vmalloc_oob
With this change, it instead looks like:
[22:04:04] [FAILED] vmalloc_oob
[22:04:04] # vmalloc_oob: EXPECTATION FAILED at lib/test_kasan.c:993
[22:04:04] KASAN failure expected in "((volatile char *)area)[3100]", but none occurred
[22:04:04] not ok 45 - vmalloc_oob
Also update the example failure in the documentation to reflect this.
Link: https://lkml.kernel.org/r/20210606005531.165954-1-davidgow@google.com
Signed-off-by: David Gow <davidgow@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Brendan Higgins <brendanhiggins@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Daniel Axtens <dja@axtens.net>
Cc: David Gow <davidgow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, KASAN-KUnit tests can check that a particular annotated part of
code causes a KASAN report. However, they do not check that no unwanted
reports happen between the annotated parts.
This patch implements these checks.
It is done by setting report_data.report_found to false in
kasan_test_init() and at the end of KUNIT_EXPECT_KASAN_FAIL() and then
checking that it remains false at the beginning of
KUNIT_EXPECT_KASAN_FAIL() and in kasan_test_exit().
kunit_add_named_resource() call is moved to kasan_test_init(), and the
value of fail_data.report_expected is kept as false in between
KUNIT_EXPECT_KASAN_FAIL() annotations for consistency.
Link: https://lkml.kernel.org/r/48079c52cc329fbc52f4386996598d58022fb872.1617207873.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures supported by KASAN_HW_TAGS can provide a sync or async mode
of execution. On an MTE enabled arm64 hw for example this can be identified
with the synchronous or asynchronous tagging mode of execution.
In synchronous mode, an exception is triggered if a tag check fault occurs.
In asynchronous mode, if a tag check fault occurs, the TFSR_EL1 register is
updated asynchronously. The kernel checks the corresponding bits
periodically.
KASAN requires a specific kernel command line parameter to make use of this
hw features.
Add KASAN HW execution mode kernel command line parameter.
Note: This patch adds the kasan.mode kernel parameter and the
sync/async kernel command line options to enable the described features.
[ Add a new var instead of exposing kasan_arg_mode to be consistent with
flags for other command line arguments. ]
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Link: https://lore.kernel.org/r/20210315132019.33202-3-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The currently existing kasan_check_read/write() annotations are intended
to be used for kernel modules that have KASAN compiler instrumentation
disabled. Thus, they are only relevant for the software KASAN modes that
rely on compiler instrumentation.
However there's another use case for these annotations: ksize() checks
that the object passed to it is indeed accessible before unpoisoning the
whole object. This is currently done via __kasan_check_read(), which is
compiled away for the hardware tag-based mode that doesn't rely on
compiler instrumentation. This leads to KASAN missing detecting some
memory corruptions.
Provide another annotation called kasan_check_byte() that is available
for all KASAN modes. As the implementation rename and reuse
kasan_check_invalid_free(). Use this new annotation in ksize().
To avoid having ksize() as the top frame in the reported stack trace
pass _RET_IP_ to __kasan_check_byte().
Also add a new ksize_uaf() test that checks that a use-after-free is
detected via ksize() itself, and via plain accesses that happen later.
Link: https://linux-review.googlesource.com/id/Iaabf771881d0f9ce1b969f2a62938e99d3308ec5
Link: https://lkml.kernel.org/r/f32ad74a60b28d8402482a38476f02bb7600f620.1610733117.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we have KASAN-KUNIT tests integration, it's easy to see that
some KASAN tests are not adopted to the SW_TAGS mode and are failing.
Adjust the allocation size for kasan_memchr() and kasan_memcmp() by
roung it up to OOB_TAG_OFF so the bad access ends up in a separate
memory granule.
Add a new kmalloc_uaf_16() tests that relies on UAF, and a new
kasan_bitops_tags() test that is tailored to tag-based mode, as it's
hard to adopt the existing kmalloc_oob_16() and kasan_bitops_generic()
(renamed from kasan_bitops()) without losing the precision.
Add new kmalloc_uaf_16() and kasan_bitops_uaf() tests that rely on UAFs,
as it's hard to adopt the existing kmalloc_oob_16() and
kasan_bitops_oob() (rename from kasan_bitops()) without losing the
precision.
Disable kasan_global_oob() and kasan_alloca_oob_left/right() as SW_TAGS
mode doesn't instrument globals nor dynamic allocas.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: David Gow <davidgow@google.com>
Link: https://lkml.kernel.org/r/76eee17b6531ca8b3ca92b240cb2fd23204aaff7.1603129942.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>