IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Makes creation of shm pools more flexible by adding new more primitive
functions to allocate a shm pool. This makes it easier to add driver
specific shm pool management.
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Volodymyr Babchuk <vlad.babchuk@gmail.com>
Adds support for asynchronous supplicant requests, meaning that the
supplicant can process several requests in parallel or block in a
request for some time.
Acked-by: Etienne Carriere <etienne.carriere@linaro.org>
Tested-by: Etienne Carriere <etienne.carriere@linaro.org> (b2260 pager=y/n)
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Adds TEE_IOCTL_PARAM_ATTR_META which can be used to indicate meta
parameters when communicating with user space. These meta parameters can
be used by supplicant support multiple parallel requests at a time.
Reviewed-by: Etienne Carriere <etienne.carriere@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
The first node supplied to of_find_matching_node() has its reference
counter decreased as part of call to that function. In optee_driver_init()
after calling of_find_matching_node() it's invalid to call of_node_put() on
the supplied node again.
So remove the invalid call to of_node_put().
Reported-by: Alex Shi <alex.shi@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In the latest changes of optee_os, the interrupts' names are
changed to "native" and "foreign" interrupts.
Signed-off-by: David Wang <david.wang@arm.com>
Signed-off-by: Jerome Forissier <jerome.forissier@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Mirrors the TEE_DESC_PRIVILEGED bit of struct tee_desc:flags into struct
tee_ioctl_version_data:gen_caps as TEE_GEN_CAP_PRIVILEGED in
tee_ioctl_version()
Reviewed-by: Jerome Forissier <jerome.forissier@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Prior to this patch RPC sleep was uninterruptible since msleep() is
uninterruptible. Change to use msleep_interruptible() instead.
Signed-off-by: Tiger Yu <tigeryu99@hotmail.com>
Reviewed-by: Joakim Bech <joakim.bech@linaro.org>
Signed-off-by: Jerome Forissier <jerome.forissier@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Add const to tee_desc structures as they are only passed as an argument
to the function tee_device_alloc. This argument is of type const, so
declare these structures as const too.
Add const to tee_driver_ops structures as they are only stored in the
ops field of a tee_desc structure. This field is of type const, so
declare these structure types as const.
Signed-off-by: Bhumika Goyal <bhumirks@gmail.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
dma_buf_ops are not supposed to change at runtime. All functions
working with dma_buf_ops provided by <linux/dma-buf.h> work with
const dma_buf_ops. So mark the non-const structs as const.
File size before:
text data bss dec hex filename
2026 112 0 2138 85a drivers/tee/tee_shm.o
File size After adding 'const':
text data bss dec hex filename
2138 0 0 2138 85a drivers/tee/tee_shm.o
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Fixes the static checker warning in optee_release().
error: uninitialized symbol 'parg'.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJZF2pwAAoJEHm+PkMAQRiG9aAIAJJyV6Ux9kaX+glqO3KIs0wm
0K/yqMOv1JTfJ1UUgY4iZbk5XOPPmXv1bdKJFECZfuAHdymJUF/RVNNvDlZbaLdd
K8vDEi92eRwcf07a5b/Q2F8yNfADKKmRAA/oAbuQLBhJ0dPHig70PIvi9gq9kqiE
Ft1MinbsZLavYatLm7oVDr/nsYebEDMGwTy0EX5bF2YjydfAlCvVWnI5ld5wisiV
0fQF4W7MMjjcpAzG8uq3atEB8iQcWS2Ykz2chZRbYzHcdV2WJW751Vge9xc05Hzi
rxlqn6peZFiFyM0qdPLhY0ktGzSTZcCFeb3aZicvm5aOamy2KJjOSZrEwjU8kts=
=VHpx
-----END PGP SIGNATURE-----
Merge tag 'v4.12-rc1' into fixes
We've received a few fixes branches with -rc1 as base, but our contents was
still at pre-rc1. Merge it in expliticly to make 'git merge --log' clear on
hat was actually merged.
Signed-off-by: Olof Johansson <olof@lixom.net>
For the moment, the tee subsystem only makes sense in combination with
the op-tee driver that depends on ARM_SMCCC, so let's hide the subsystem
from users that can't select that.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This branch introduces a generic TEE framework in the kernel, to handle
trusted environemtns (security coprocessor or software implementations
such as OP-TEE/TrustZone). I'm sending it separately from the other
arm-soc driver changes to give it a little more visibility, once
the subsystem is merged, we will likely keep this in the arm₋soc
drivers branch or have the maintainers submit pull requests directly,
depending on the patch volume.
I have reviewed earlier versions in the past, and have reviewed
the latest version in person during Linaro Connect BUD17.
Here is my overall assessment of the subsystem:
* There is clearly demand for this, both for the generic
infrastructure and the specific OP-TEE implementation.
* The code has gone through a large number of reviews,
and the review comments have all been addressed, but
the reviews were not coming up with serious issues any more
and nobody volunteered to vouch for the quality.
* The user space ioctl interface is sufficient to work with the
OP-TEE driver, and it should in principle work with other
TEE implementations that follow the GlobalPlatform[1] standards,
but it might need to be extended in minor ways depending on
specific requirements of future TEE implementations
* The main downside of the API to me is how the user space
is tied to the TEE implementation in hardware or firmware,
but uses a generic way to communicate with it. This seems
to be an inherent problem with what it is trying to do,
and I could not come up with any better solution than what
is implemented here.
For a detailed history of the patch series, see
https://lkml.org/lkml/2017/3/10/1277
Conflicts: needs a fixup after the drm tree was merged, see
https://patchwork.kernel.org/patch/9691679/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIVAwUAWRIRzWCrR//JCVInAQLKUhAAiJaBqb4uv5wDWKw8MVV5BbFjq6po/eMK
r3lgwyBGoRnrYiXo0z2eYNqpHsmNIGrL21qYMzaBGhVeaOOVPZT4q3zH+Se9Oo+J
HHZZ4J6Q9kDIUy9WkM7ybHVj3C0kQIn7H+/6zi2L97tMQJMZHI0jCSgDa6XPqHzh
G/vqVx5jlaFj6SvkLR0L0yWTe0wXTHoyObSCWsM/nV8AiTNhMD3kcTEOm0XHcAJB
k8ei/Pw2INOFZu1B0xpoRkWoAo6YKMcxQp9kiMkcEhChPIkNK+8+npYJ3fiogsii
BVTXC9Km2jmUfQ21Pegd2XbqzNGU1rJSdHGTyK2Oax+0J+C8xElGMs8U9tqXPqun
fWkSp0dl7Sk0f9Yhc8JBD1Tsbuo0H+TsMtQ6RNvlxLiNHE/5/bZBCeylvtoUyI+m
NcvP0x5QeBmkitz7zhYpjaSv5HjZG3PPO3pfaz0Stmen5ZM8DWB1TaS1Nn9MigHt
RGXlafc6dKybQQBLWDwStv7IkqDRYte+7pwmx+QFCRWj8+uFtTCDPLyaDUTwlErL
n4ztUL1RWiq48S+yJDJURM4mLpEMnJFFF4tiiHH8eUe2JE+CXwGxkT6BG62W71Oy
RosiJ84LmdoHRyHx6xmqpoDcL1WG57IgWt05SRUkQatA/ealGX88gguGEAWsPL0h
cnKPYkiYfug=
=VzpB
-----END PGP SIGNATURE-----
Merge tag 'armsoc-tee' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull TEE driver infrastructure and OP-TEE drivers from Arnd Bergmann:
"This introduces a generic TEE framework in the kernel, to handle
trusted environemtns (security coprocessor or software implementations
such as OP-TEE/TrustZone). I'm sending it separately from the other
arm-soc driver changes to give it a little more visibility, once the
subsystem is merged, we will likely keep this in the arm₋soc drivers
branch or have the maintainers submit pull requests directly,
depending on the patch volume.
I have reviewed earlier versions in the past, and have reviewed the
latest version in person during Linaro Connect BUD17.
Here is my overall assessment of the subsystem:
- There is clearly demand for this, both for the generic
infrastructure and the specific OP-TEE implementation.
- The code has gone through a large number of reviews, and the review
comments have all been addressed, but the reviews were not coming
up with serious issues any more and nobody volunteered to vouch for
the quality.
- The user space ioctl interface is sufficient to work with the
OP-TEE driver, and it should in principle work with other TEE
implementations that follow the GlobalPlatform[1] standards, but it
might need to be extended in minor ways depending on specific
requirements of future TEE implementations
- The main downside of the API to me is how the user space is tied to
the TEE implementation in hardware or firmware, but uses a generic
way to communicate with it. This seems to be an inherent problem
with what it is trying to do, and I could not come up with any
better solution than what is implemented here.
For a detailed history of the patch series, see
https://lkml.org/lkml/2017/3/10/1277"
* tag 'armsoc-tee' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
arm64: dt: hikey: Add optee node
Documentation: tee subsystem and op-tee driver
tee: add OP-TEE driver
tee: generic TEE subsystem
dt/bindings: add bindings for optee
Adds a OP-TEE driver which also can be compiled as a loadable module.
* Targets ARM and ARM64
* Supports using reserved memory from OP-TEE as shared memory
* Probes OP-TEE version using SMCs
* Accepts requests on privileged and unprivileged device
* Uses OPTEE message protocol version 2 to communicate with secure world
Acked-by: Andreas Dannenberg <dannenberg@ti.com>
Tested-by: Jerome Forissier <jerome.forissier@linaro.org> (HiKey)
Tested-by: Volodymyr Babchuk <vlad.babchuk@gmail.com> (RCAR H3)
Tested-by: Scott Branden <scott.branden@broadcom.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Initial patch for generic TEE subsystem.
This subsystem provides:
* Registration/un-registration of TEE drivers.
* Shared memory between normal world and secure world.
* Ioctl interface for interaction with user space.
* Sysfs implementation_id of TEE driver
A TEE (Trusted Execution Environment) driver is a driver that interfaces
with a trusted OS running in some secure environment, for example,
TrustZone on ARM cpus, or a separate secure co-processor etc.
The TEE subsystem can serve a TEE driver for a Global Platform compliant
TEE, but it's not limited to only Global Platform TEEs.
This patch builds on other similar implementations trying to solve
the same problem:
* "optee_linuxdriver" by among others
Jean-michel DELORME<jean-michel.delorme@st.com> and
Emmanuel MICHEL <emmanuel.michel@st.com>
* "Generic TrustZone Driver" by Javier González <javier@javigon.com>
Acked-by: Andreas Dannenberg <dannenberg@ti.com>
Tested-by: Jerome Forissier <jerome.forissier@linaro.org> (HiKey)
Tested-by: Volodymyr Babchuk <vlad.babchuk@gmail.com> (RCAR H3)
Tested-by: Scott Branden <scott.branden@broadcom.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>