IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Starting with ARMv6, the CPUs support the BE-8 variant of big-endian
(byte-invariant). This patch adds the core support:
- setting of the BE-8 mode via the CPSR.E register for both kernel and
user threads
- big-endian page table walking
- REV used to rotate instructions read from memory during fault
processing as they are still little-endian format
- Kconfig and Makefile support for BE-8. The --be8 option must be passed
to the final linking stage to convert the instructions to
little-endian
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If a process is interrupted during an If-Then block and a signal is
invoked, the ITSTATE bits must be cleared otherwise the handler would
not run correctly.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Joseph S. Myers <joseph@codesourcery.com>
ARMv7 SMP hardware can handle the TLB maintenance operations
broadcasting in hardware so that the software can avoid the costly IPIs.
This patch adds the necessary checks (the MMFR3 CPUID register) to avoid
the broadcasting if already supported by the hardware.
(this patch is based on the work done by Tony Thompson @ ARM)
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This is a RealView platform supporting core tiles with ARM11MPCore,
Cortex-A8 or Cortex-A9 (multicore) processors. It has support for MMC,
CompactFlash, PCI-E.
Signed-off-by: Colin Tuckley <colin.tuckley@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This allows for optional alternative implementations of __copy_to_user
and __clear_user, with a possible runtime fallback to the standard
version when the alternative provides no gain over that standard
version. This is done by making the standard __copy_to_user into a weak
alias for the symbol __copy_to_user_std. Same thing for __clear_user.
Those two functions are particularly good candidates to have alternative
implementations for, since they rely on the STRT instruction which has
lower performances than STM instructions on some CPU cores such as
the ARM1176 and Marvell Feroceon.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
* master.kernel.org:/home/rmk/linux-2.6-arm:
[ARM] update mach-types
[ARM] Add cmpxchg support for ARMv6+ systems (v5)
[ARM] barriers: improve xchg, bitops and atomic SMP barriers
Gemini: Fix SRAM/ROM location after memory swap
MAINTAINER: Add F: entries for Gemini and FA526
[ARM] disable NX support for OABI-supporting kernels
[ARM] add coherent DMA mask for mv643xx_eth
[ARM] pxa/palm: fix PalmLD/T5/TX AC97 MFP
[ARM] pxa: add parameter to clksrc_read() for pxa168/910
[ARM] pxa: fix the incorrectly defined drive strength macros for pxa{168,910}
[ARM] Orion: Remove explicit name for platform device resources
[ARM] Kirkwood: Correct MPP for SATA activity/presence LEDs of QNAP TS-119/TS-219.
[ARM] pxa/ezx: fix pin configuration for low power mode
[ARM] pxa/spitz: provide spitz_ohci_exit() that unregisters USB_HOST GPIO
[ARM] pxa: enable GPIO receivers after configuring pins
[ARM] pxa: allow gpio_reset drive high during normal work
[ARM] pxa: save/restore PGSR on suspend/resume.
The flat loader uses an architecture's flat_stack_align() to align the
stack but assumes word-alignment is enough for the data sections.
However, on the Xtensa S6000 we have registers up to 128bit width
which can be used from userspace and therefor need userspace stack and
data-section alignment of at least this size.
This patch drops flat_stack_align() and uses the same alignment that
is required for slab caches, ARCH_SLAB_MINALIGN, or wordsize if it's
not defined by the architecture.
It also fixes m32r which was obviously kaput, aligning an
uninitialized stack entry instead of the stack pointer.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Oskar Schirmer <os@emlix.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Bryan Wu <cooloney@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Johannes Weiner <jw@emlix.com>
Acked-by: Mike Frysinger <vapier.adi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add cmpxchg/cmpxchg64 support for ARMv6K and ARMv7 systems
(original patch from Catalin Marinas <catalin.marinas@arm.com>)
The cmpxchg and cmpxchg64 functions can be implemented using the
LDREX*/STREX* instructions. Since operand lengths other than 32bit are
required, the full implementations are only available if the ARMv6K
extensions are present (for the LDREXB, LDREXH and LDREXD instructions).
For ARMv6, only 32-bits cmpxchg is available.
Mathieu :
Make cmpxchg_local always available with best implementation for all type sizes (1, 2, 4 bytes).
Make cmpxchg64_local always available.
Use "Ir" constraint for "old" operand, like atomic.h atomic_cmpxchg does.
Change since v3 :
- Add "memory" clobbers (thanks to Nicolas Pitre)
- removed __asmeq(), only needed for old compilers, very unlikely on ARMv6+.
Note : ARMv7-M should eventually be ifdefed-out of cmpxchg64. But it's not
supported by the Linux kernel currently.
Put back arm < v6 cmpxchg support.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Nicolas Pitre <nico@cam.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Mathieu Desnoyers pointed out that the ARM barriers were lacking:
- cmpxchg, xchg and atomic add return need memory barriers on
architectures which can reorder the relative order in which memory
read/writes can be seen between CPUs, which seems to include recent
ARM architectures. Those barriers are currently missing on ARM.
- test_and_xxx_bit were missing SMP barriers.
So put these barriers in. Provide separate atomic_add/atomic_sub
operations which do not require barriers.
Reported-Reviewed-and-Acked-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch provides a device drivers, which has a omap iommu, with
address mapping APIs between device virtual address(iommu), physical
address and MPU virtual address.
There are 4 possible patterns for iommu virtual address(iova/da) mapping.
|iova/ mapping iommu_ page
| da pa va (d)-(p)-(v) function type
---------------------------------------------------------------------------
1 | c c c 1 - 1 - 1 _kmap() / _kunmap() s
2 | c c,a c 1 - 1 - 1 _kmalloc()/ _kfree() s
3 | c d c 1 - n - 1 _vmap() / _vunmap() s
4 | c d,a c 1 - n - 1 _vmalloc()/ _vfree() n*
'iova': device iommu virtual address
'da': alias of 'iova'
'pa': physical address
'va': mpu virtual address
'c': contiguous memory area
'd': dicontiguous memory area
'a': anonymous memory allocation
'()': optional feature
'n': a normal page(4KB) size is used.
's': multiple iommu superpage(16MB, 1MB, 64KB, 4KB) size is used.
'*': not yet, but feasible.
Signed-off-by: Hiroshi DOYU <Hiroshi.DOYU@nokia.com>
Add support for the DMA blocks in the S3C64XX series of CPUS,
which are based on the ARM PL080 PrimeCell system.
Unfortunately, these DMA controllers diverge from the PL080
design by adding another DMA controller register and
configuration for OneNAND.
Signed-off-by: Ben Dooks <ben@simtec.co.uk>
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
The SCU can be used by non-realview platforms, so make it visible
for other people to use rather than having them copy the header file.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The ARM SMP code wasn't properly updated for the cpumask changes, which
results in smp_timer_broadcast() broadcasting ticks to non-online CPUs.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
From: Bruce Ashfield <bruce.ashfield@windriver.com>
To fully support the armv7-a instruction set/optimizations, support
for the R_ARM_MOVW_ABS_NC and R_ARM_MOVT_ABS relocation types is
required.
The MOVW and MOVT are both load-immediate instructions, MOVW loads 16
bits into the bottom half of a register, and MOVT loads 16 bits into the
top half of a register.
The relocation information for these instructions has a full 32 bit
value, plus an addend which is stored in the 16 immediate bits in the
instruction itself. The immediate bits in the instruction are not
contiguous (the register # splits it into a 4 bit and 12 bit value),
so the addend has to be extracted accordingly and added to the value.
The value is then split and put into the instruction; a MOVW uses the
bottom 16 bits of the value, and a MOVT uses the top 16 bits.
Signed-off-by: David Borman <david.borman@windriver.com>
Signed-off-by: Bruce Ashfield <bruce.ashfield@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add power management support to the VIC by registering
each VIC as a system device to get suspend/resume
events going.
Since the VIC registeration is done early, we need to
record the VICs in a static array which is used to add
the system devices later once the initcalls are run. This
means there is now a configuration value for the number
of VICs in the system.
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
In the long run, we may want to place page tables in highmem. However,
pmd_page() has traditionally been coded to convert the physical address
to a virtual one, which won't work with highmem pages. Instead,
translate the physical address to a PFN, and then convert the PFN to a
struct page instead.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Kernel 2.6.30-rc1 added sys_preadv and sys_pwritev to most archs
but not ARM, resulting in
<stdin>:1421:2: warning: #warning syscall preadv not implemented
<stdin>:1425:2: warning: #warning syscall pwritev not implemented
This patch adds sys_preadv and sys_pwritev to ARM.
These syscalls simply take five long-sized parameters, so they
should have no calling-convention/ABI issues in the kernel.
Tested on armv5tel eabi using a preadv/pwritev test program posted
on linuxppc-dev earlier this month.
It would be nice to get this into the kernel before 2.6.30 final,
so that glibc's kernel version feature test for these syscalls
doesn't have to special-case ARM.
Signed-off-by: Mikael Pettersson <mikpe@it.uu.se>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When unmapping N pages (e.g. shared memory) the amount of TLB flushes
done can be (N*PAGE_SIZE/ZAP_BLOCK_SIZE)*N although it should be N at
maximum. With PREEMPT kernel ZAP_BLOCK_SIZE is 8 pages, so there is a
noticeable performance penalty when unmapping a large VMA and the system
is spending its time in flush_tlb_range().
The problem is that tlb_end_vma() is always flushing the full VMA
range. The subrange that needs to be flushed can be calculated by
tlb_remove_tlb_entry(). This approach was suggested by Hugh Dickins,
and is also used by other arches.
The speed increase is roughly 3x for 8M mappings and for larger mappings
even more.
Signed-off-by: Aaro Koskinen <Aaro.Koskinen@nokia.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This adds a SZ_32K define to the available sizes. I need it for an
upcoming platform support.
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Pass the original flags to rwlock arch-code, so that it can re-enable
interrupts if implemented for that architecture.
Initially, make __raw_read_lock_flags and __raw_write_lock_flags stubs
which just do the same thing as non-flags variants.
Signed-off-by: Petr Tesarik <ptesarik@suse.cz>
Signed-off-by: Robin Holt <holt@sgi.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <linux-arch@vger.kernel.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds support for Faraday FA526 core. This core is used at least by:
Cortina Systems Gemini and Centroid family
Cavium Networks ECONA family
Grain Media GM8120
Pixelplus ImageARM
Prolific PL-1029
Faraday IP evaluation boards
v2:
- move TLB_BTB to separate patch
- update copyrights
Signed-off-by: Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
Now, as all places that use Scoop GPIO have been converted to use
GPIO API, drop old-style accessors completely.
Signed-off-by: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
"""The Marvell® PXA168 processor is the first in a family of application
processors targeted at mass market opportunities in computing and consumer
devices. It balances high computing and multimedia performance with low
power consumption to support extended battery life, and includes a wealth
of integrated peripherals to reduce overall BOM cost .... """
See http://www.marvell.com/featured/pxa168.jsp for more information.
1. Marvell Mohawk core is a hybrid of xscale3 and its own ARM core,
there are many enhancements like instructions for flushing the
whole D-cache, and so on
2. Clock reuses Russell's common clkdev, and added the basic support
for UART1/2.
3. Devices are a bit different from the 'mach-pxa' way, the platform
devices are now dynamically allocated only when necessary (i.e.
when pxa_register_device() is called). Description for each device
are stored in an array of 'struct pxa_device_desc'. Now that:
a. this array of device description is marked with __initdata and
can be freed up system is fully up
b. which means board code has to add all needed devices early in
his initializing function
c. platform specific data can now be marked as __initdata since
they are allocated and copied by platform_device_add_data()
4. only the basic UART1/2/3 are added, more devices will come later.
Signed-off-by: Jason Chagas <chagas@marvell.com>
Signed-off-by: Eric Miao <eric.miao@marvell.com>
It would seem when building kernel modules with modern binutils
(required by modern GCC) for ARM v4T targets (specifically observed
with the Samsung 24xx SoC which is an 920T) R_ARM_V4BX relocations
are emitted for function epilogues.
This manifests at module load time with an "unknown relocation: 40"
error message.
The following patch adds the R_ARM_V4BX relocation to the ARM kernel
module loader. The relocation operation is taken from that within the
binutils bfd library.
Signed-off-by: Simtec Linux Team <linux@simtec.co.uk>
Signed-off-by: Vincent Sanders <vince@simtec.co.uk>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
OMAP wishes to pass state to the boot loader upon reboot in order to
instruct it whether to wait for USB-based reflashing or not. There is
already a facility to do this via the reboot() syscall, except we ignore
the string passed to machine_restart().
This patch fixes things to pass this string to arch_reset(). This means
that we keep the reboot mode limited to telling the kernel _how_ to
perform the reboot which should be independent of what we request the
boot loader to do.
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Map unused registers at the end of DMA region at 64 MB to allow PCI masters
to cross the boundary when prefetching data from SDRAM.
Signed-off-by: Krzysztof Hałasa <khc@pm.waw.pl>
The choice is between looping over the physical range and performing
single cache line operations, or to map highmem pages somewhere, as
cache range ops are possible only on virtual addresses.
Because L2 range ops are much faster, we go with the later by factoring
the physical-to-virtual address conversion and use a fixmap entry for it
in the HIGHMEM case.
Possible future optimizations to avoid the pte setup cost:
- do the pte setup for highmem pages only
- determine a threshold for doing a line-by-line processing on physical
addresses when the range is small
Signed-off-by: Nicolas Pitre <nico@marvell.com>
If a machine class has a custom __virt_to_bus() implementation then it
must provide a __arch_page_to_dma() implementation as well which is
_not_ based on page_address() to support highmem.
This patch fixes existing __arch_page_to_dma() and provide a default
implementation otherwise. The default implementation for highmem is
based on __pfn_to_bus() which is defined only when no custom
__virt_to_bus() is provided by the machine class.
That leaves only ebsa110 and footbridge which cannot support highmem
until they provide their own __arch_page_to_dma() implementation.
But highmem support on those legacy platforms with limited memory is
certainly not a priority.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
This is a helper to be used by the DMA mapping API to handle cache
maintenance for memory identified by a page structure instead of a
virtual address. Those pages may or may not be highmem pages, and
when they're highmem pages, they may or may not be virtually mapped.
When they're not mapped then there is no L1 cache to worry about. But
even in that case the L2 cache must be processed since unmapped highmem
pages can still be L2 cached.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
The kmap virtual area borrows a 2MB range at the top of the 16MB area
below PAGE_OFFSET currently reserved for kernel modules and/or the
XIP kernel. This 2MB corresponds to the range covered by 2 consecutive
second-level page tables, or a single pmd entry as seen by the Linux
page table abstraction. Because XIP kernels are unlikely to be seen
on systems needing highmem support, there shouldn't be any shortage of
VM space for modules (14 MB for modules is still way more than twice the
typical usage).
Because the virtual mapping of highmem pages can go away at any moment
after kunmap() is called on them, we need to bypass the delayed cache
flushing provided by flush_dcache_page() in that case.
The atomic kmap versions are based on fixmaps, and
__cpuc_flush_dcache_page() is used directly in that case.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
This is the minimum fixmap interface expected to be implemented by
architectures supporting highmem.
We have a second level page table already allocated and covering
0xfff00000-0xffffffff because the exception vector page is located
at 0xffff0000, and various cache tricks already use some entries above
0xffff0000. Therefore the PTEs covering 0xfff00000-0xfffeffff are free
to be used.
However the XScale cache flushing code already uses virtual addresses
between 0xfffe0000 and 0xfffeffff.
So this reserves the 0xfff00000-0xfffdffff range for fixmap stuff.
The Documentation/arm/memory.txt information is updated accordingly,
including the information about the actual top of DMA memory mapping
region which didn't match the code.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
This patch adds a Non-cacheable Normal ARM executable memory type,
MT_MEMORY_NONCACHED.
On OMAP3, this is used for rapid dynamic voltage/frequency scaling in
the VDD2 voltage domain. OMAP3's SDRAM controller (SDRC) is in the
VDD2 voltage domain, and its clock frequency must change along with
voltage. The SDRC clock change code cannot run from SDRAM itself,
since SDRAM accesses are paused during the clock change. So the
current implementation of the DVFS code executes from OMAP on-chip
SRAM, aka "OCM RAM."
If the OCM RAM pages are marked as Cacheable, the ARM cache controller
will attempt to flush dirty cache lines to the SDRC, so it can fill
those lines with OCM RAM instruction code. The problem is that the
SDRC is paused during DVFS, and so any SDRAM access causes the ARM MPU
subsystem to hang.
TI's original solution to this problem was to mark the OCM RAM
sections as Strongly Ordered memory, thus preventing caching. This is
overkill: since the memory is marked as non-bufferable, OCM RAM writes
become needlessly slow. The idea of "Strongly Ordered SRAM" is also
conceptually disturbing. Previous LAKML list discussion is here:
http://www.spinics.net/lists/arm-kernel/msg54312.html
This memory type MT_MEMORY_NONCACHED is used for OCM RAM by a future
patch.
Cc: Richard Woodruff <r-woodruff2@ti.com>
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>