IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We are passing a block reserve argument to btrfs_reserve_metadata_bytes()
which is not really used, all we need is to pass the space_info associated
to the block reserve, we don't change the block reserve at all.
Not only it's pointless to pass the block reserve, it's also confusing as
one might think that the reserved bytes will end up being added to the
passed block reserve, when that's not the case. The pattern for reserving
space and adding it to a block reserve is to first reserve space with
btrfs_reserve_metadata_bytes() and if that succeeds, then add the space to
a block reserve by calling btrfs_block_rsv_add_bytes().
Also the reverse of btrfs_reserve_metadata_bytes(), which is
btrfs_space_info_free_bytes_may_use(), takes a space_info argument and
not a block reserve, so one more reason to pass a space_info and not a
block reserve to btrfs_reserve_metadata_bytes().
So change btrfs_reserve_metadata_bytes() and its callers to pass a
space_info argument instead of a block reserve argument.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we no longer include the tracepoints from ctree.h we fail to compile
because we have the dependency in some of the header files and source
files. Add the include where we have these dependencies to allow us to
remove the include from ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The BTRFS_RESERVE_FLUSH_EVICT flush method can also commit transactions,
see the definition of the evict_flush_states const array at space-info.c,
but the documentation for it at space-info.h does not mention it.
So update the documentation.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The space_info->active_total_bytes is no longer necessary as we now
count the region of newly allocated block group as zone_unusable. Drop
its usage.
Fixes: 6a921de589 ("btrfs: zoned: introduce space_info->active_total_bytes")
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was prototyped in ctree.h and the code existed in extent-tree.c,
but it's space-info related so move it into space-info.c.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Inside of FB, as well as some user reports, we've had a consistent
problem of occasional ENOSPC transaction aborts. Inside FB we were
seeing ~100-200 ENOSPC aborts per day in the fleet, which is a really
low occurrence rate given the size of our fleet, but it's not nothing.
There are two causes of this particular problem.
First is delayed allocation. The reservation system for delalloc
assumes that contiguous dirty ranges will result in 1 file extent item.
However if there is memory pressure that results in fragmented writeout,
or there is fragmentation in the block groups, this won't necessarily be
true. Consider the case where we do a single 256MiB write to a file and
then close it. We will have 1 reservation for the inode update, the
reservations for the checksum updates, and 1 reservation for the file
extent item. At some point later we decide to write this entire range
out, but we're so fragmented that we break this into 100 different file
extents. Since we've already closed the file and are no longer writing
to it there's nothing to trigger a refill of the delalloc block rsv to
satisfy the 99 new file extent reservations we need. At this point we
exhaust our delalloc reservation, and we begin to steal from the global
reserve. If you have enough of these cases going in parallel you can
easily exhaust the global reserve, get an ENOSPC at
btrfs_alloc_tree_block() time, and then abort the transaction.
The other case is the delayed refs reserve. The delayed refs reserve
updates its size based on outstanding delayed refs and dirty block
groups. However we only refill this block reserve when returning
excess reservations and when we call btrfs_start_transaction(root, X).
We will reserve 2*X credits at transaction start time, and fill in X
into the delayed refs reserve to make sure it stays topped off.
Generally this works well, but clearly has downsides. If we do a
particularly delayed ref heavy operation we may never catch up in our
reservations. Additionally running delayed refs generates more delayed
refs, and at that point we may be committing the transaction and have no
way to trigger a refill of our delayed refs rsv. Then a similar thing
occurs with the delalloc reserve.
Generally speaking we well over-reserve in all of our block rsvs. If we
reserve 1 credit we're usually reserving around 264k of space, but we'll
often not use any of that reservation, or use a few blocks of that
reservation. We can be reasonably sure that as long as you were able to
reserve space up front for your operation you'll be able to find space
on disk for that reservation.
So introduce a new flushing state, BTRFS_RESERVE_FLUSH_EMERGENCY. This
gets used in the case that we've exhausted our reserve and the global
reserve. It simply forces a reservation if we have enough actual space
on disk to make the reservation, which is almost always the case. This
keeps us from hitting ENOSPC aborts in these odd occurrences where we've
not kept up with the delayed work.
Fixing this in a complete way is going to be relatively complicated and
time consuming. This patch is what I discussed with Filipe earlier this
year, and what I put into our kernels inside FB. With this patch we're
down to 1-2 ENOSPC aborts per week, which is a significant reduction.
This is a decent stop gap until we can work out a more wholistic
solution to these two corner cases.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This code is used in space-info.c, move the definitions to space-info.h.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The code for this helper is in space-info.c, move the prototype to
space-info.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have hit some transaction abort due to -ENOSPC internally.
Normally we should always reserve enough space for metadata for every
transaction, thus hitting -ENOSPC should really indicate some cases we
didn't expect.
But unfortunately current error reporting will only give a kernel
warning and stack trace, not really helpful to debug what's causing the
problem.
And mount option debug_enospc can only help when user can reproduce the
problem, but under most cases, such transaction abort by -ENOSPC is
really hard to reproduce.
So this patch will dump all space infos (data, metadata, system) when we
abort the first transaction with -ENOSPC.
This should at least provide some clue to us.
The example of a dump would look like this:
BTRFS: Transaction aborted (error -28)
WARNING: CPU: 8 PID: 3366 at fs/btrfs/transaction.c:2137 btrfs_commit_transaction+0xf81/0xfb0 [btrfs]
<call trace skipped>
---[ end trace 0000000000000000 ]---
BTRFS info (device dm-1: state A): dumping space info:
BTRFS info (device dm-1: state A): space_info DATA has 6791168 free, is not full
BTRFS info (device dm-1: state A): space_info total=8388608, used=1597440, pinned=0, reserved=0, may_use=0, readonly=0 zone_unusable=0
BTRFS info (device dm-1: state A): space_info METADATA has 257114112 free, is not full
BTRFS info (device dm-1: state A): space_info total=268435456, used=131072, pinned=180224, reserved=65536, may_use=10878976, readonly=65536 zone_unusable=0
BTRFS info (device dm-1: state A): space_info SYSTEM has 8372224 free, is not full
BTRFS info (device dm-1: state A): space_info total=8388608, used=16384, pinned=0, reserved=0, may_use=0, readonly=0 zone_unusable=0
BTRFS info (device dm-1: state A): global_block_rsv: size 3670016 reserved 3670016
BTRFS info (device dm-1: state A): trans_block_rsv: size 0 reserved 0
BTRFS info (device dm-1: state A): chunk_block_rsv: size 0 reserved 0
BTRFS info (device dm-1: state A): delayed_block_rsv: size 4063232 reserved 4063232
BTRFS info (device dm-1: state A): delayed_refs_rsv: size 3145728 reserved 3145728
BTRFS: error (device dm-1: state A) in btrfs_commit_transaction:2137: errno=-28 No space left
BTRFS info (device dm-1: state EA): forced readonly
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We previously had the pattern of
btrfs_update_space_info(all, the, bg, fields, &space_info);
link_block_group(bg);
bg->space_info = space_info;
Now that we're passing the bg into btrfs_add_bg_to_space_info we can do
the linking in that function, transforming this to simply
btrfs_add_bg_to_space_info(fs_info, bg);
and put the link_block_group() and bg->space_info assignment directly in
btrfs_add_bg_to_space_info.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function has grown a bunch of new arguments, and it just boils down
to passing in all the block group fields as arguments. Simplify this by
passing in the block group itself and updating the space_info fields
based on the block group fields directly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The active_total_bytes, like the total_bytes, accounts for the total bytes
of active block groups in the space_info.
With an introduction of active_total_bytes, we can check if the reserved
bytes can be written to the block groups without activating a new block
group. The check is necessary for metadata allocation on zoned
filesystem. We cannot finish a block group, which may require waiting
for the current transaction, from the metadata allocation context.
Instead, we need to ensure the ongoing allocation (reserved bytes) fits
in active block groups.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The chunk size is stored in the btrfs_space_info structure. It is
initialized at the start and is then used.
A new API is added to update the current chunk size. This API is used
to be able to expose the chunk_size as a sysfs setting.
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename and merge helpers, switch atomic type to u64, style fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
It's only internally used as another way to represent btrfs profiles,
it's not exposed through any on-disk format, in fact this
btrfs_raid_types is diverted from the on-disk format values.
Furthermore, since it's internal structure, its definition can change in
the future.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For non-zoned file systems it's useful to have the auto reclaim feature,
however there are different use cases for non-zoned, for example we may
not want to reclaim metadata chunks ever, only data chunks. Move this
sysfs flag to per-space_info. This won't affect current users because
this tunable only ever did anything for zoned, and that is currently
hidden behind BTRFS_CONFIG_DEBUG.
Tested-by: Pankaj Raghav <p.raghav@samsung.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ jth restore global bg_reclaim_threshold ]
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We used to need the root for btrfs_reserve_metadata_bytes to check the
orphan cleanup state, but we no longer need that, we simply need the
fs_info. Change btrfs_reserve_metadata_bytes() to use the fs_info, and
change both btrfs_block_rsv_refill() and btrfs_block_rsv_add() to do the
same as they simply call btrfs_reserve_metadata_bytes() and then
manipulate the block_rsv that is being used.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We used this in may_commit_transaction() in order to determine if we
needed to commit the transaction. However we no longer have that logic
and thus have no use of this counter anymore, so delete it.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In a zoned filesystem a once written then freed region is not usable
until the underlying zone has been reset. So we need to distinguish such
unusable space from usable free space.
Therefore we need to introduce the "zone_unusable" field to the block
group structure, and "bytes_zone_unusable" to the space_info structure
to track the unusable space.
Pinned bytes are always reclaimed to the unusable space. But, when an
allocated region is returned before using e.g., the block group becomes
read-only between allocation time and reservation time, we can safely
return the region to the block group. For the situation, this commit
introduces "btrfs_add_free_space_unused". This behaves the same as
btrfs_add_free_space() on regular filesystem. On zoned filesystems, it
rewinds the allocation offset.
Because the read-only bytes tracks free but unusable bytes when the block
group is read-only, we need to migrate the zone_unusable bytes to
read-only bytes when a block group is marked read-only.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Starting preemptive flushing at 50% of available free space is a good
start, but some workloads are particularly abusive and can quickly
overwhelm the preemptive flushing code and drive us into using tickets.
Handle this by clamping down on our threshold for starting and
continuing to run preemptive flushing. This is particularly important
for our overcommit case, as we can really drive the file system into
overages and then it's more difficult to pull it back as we start to
actually fill up the file system.
The clamping is essentially 2^CLAMP, but we start at 1 so whatever we
calculate for overcommit is the baseline.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we pass things around to figure out if we maybe freeing data
based on the state of the delayed refs head. This makes the accounting
sort of confusing and hard to follow, as it's distinctly separate from
the delayed ref heads stuff, but also depends on it entirely.
Fix this by explicitly adjusting the space_info->total_bytes_pinned in
the delayed refs code. We now have two places where we modify this
counter, once where we create the delayed and destroy the delayed refs,
and once when we pin and unpin the extents. This means there is a
slight overlap between delayed refs and the pin/unpin mechanisms, but
this is simply used by the ENOSPC infrastructure to determine if we need
to commit the transaction, so there's no adverse affect from this, we
might simply commit thinking it will give us enough space when it might
not.
CC: stable@vger.kernel.org # 5.10
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Create a new function btrfs_reserve_data_bytes() in order to handle data
reservations. This uses the new flush types and flush states to handle
making data reservations.
This patch specifically does not change any functionality, and is
purposefully not cleaned up in order to make bisection easier for the
future patches. The new helper is identical to the old helper in how it
handles data reservations. We first try to force a chunk allocation,
and then we run through the flush states all at once and in the same
order that they were done with the old helper.
Subsequent patches will clean this up and change the behavior of the
flushing, and it is important to keep those changes separate so we can
easily bisect down to the patch that caused the regression, rather than
the patch that made us start using the new infrastructure.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For unlink transactions and block group removal
btrfs_start_transaction_fallback_global_rsv will first try to start an
ordinary transaction and if it fails it will fall back to reserving the
required amount by stealing from the global reserve. This is problematic
because of all the same reasons we had with previous iterations of the
ENOSPC handling, thundering herd. We get a bunch of failures all at
once, everybody tries to allocate from the global reserve, some win and
some lose, we get an ENSOPC.
Fix this behavior by introducing BTRFS_RESERVE_FLUSH_ALL_STEAL. It's
used to mark unlink reservation. To fix this we need to integrate this
logic into the normal ENOSPC infrastructure. We still go through all of
the normal flushing work, and at the moment we begin to fail all the
tickets we try to satisfy any tickets that are allowed to steal by
stealing from the global reserve. If this works we start the flushing
system over again just like we would with a normal ticket satisfaction.
This serializes our global reserve stealing, so we don't have the
thundering herd problem.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of iterating all pending tickets on the normal/priority list to
sum their total size the cost can be amortized across ticket addition/
removal. This turns O(n) + O(m) (where n is the size of the normal list
and m of the priority list) into O(1). This will mostly have effect in
workloads that experience heavy flushing.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
inc_block_group_ro does a calculation to see if we have enough room left
over if we mark this block group as read only in order to see if it's ok
to mark the block group as read only.
The problem is this calculation _only_ works for data, where our used is
always less than our total. For metadata we will overcommit, so this
will almost always fail for metadata.
Fix this by exporting btrfs_can_overcommit, and then see if we have
enough space to remove the remaining free space in the block group we
are trying to mark read only. If we do then we can mark this block
group as read only.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It is not used anymore since commit 957780eb27 ("Btrfs: introduce
ticketed enospc infrastructure"), so just remove it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The attribute is more relaxed than const and the functions could
dereference pointers, as long as the observable state is not changed. We
do have such functions, based on -Wsuggest-attribute=pure .
The visible effects of this patch are negligible, there are differences
in the assembly but hard to summarize.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This name doesn't really fit with how the space reservation stuff works
now, rename it to btrfs_space_info_free_bytes_may_use so it's clear what
the function is doing.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we do not do partial filling of tickets simply remove
orig_bytes, it is no longer needed.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_space_info_add_old_bytes simply checks if we can make the
reservation and updates bytes_may_use, there's no reason to have both
helpers in place.
Factor out the ticket wakeup logic into it's own helper, make
btrfs_space_info_add_old_bytes() update bytes_may_use and then call the
wakeup helper, and replace all calls to btrfs_space_info_add_new_bytes()
with the wakeup helper.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We duplicate this tracepoint everywhere we call these helpers, so update
the helper to have the tracepoint as well.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we've moved all of the users to space-info.c, unexport it and
name it back to can_overcommit.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This moves all of the metadata reservation code into space-info.c.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We'll need this exported so we can use it in all the various was we need
to use it. This is prep work to move reserve_metadata_bytes.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we've moved all the pre-requisite stuff, move these two
functions.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Also rename it to btrfs_space_info_update_* so it's clear what we're
updating.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the first piece of moving the space reservation code to
space-info.c
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These are the basic init and lookup functions and some helper functions,
fairly straightforward before the bad stuff starts.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prep work for consolidating all of the space_info code into one file.
We need to export these so multiple files can use them.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Migrate the struct definition and the one helper that's in ctree.h into
space-info.h
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>