IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The patch that frees unused lock classes will modify the behavior of
lockdep_free_key_range() and lockdep_reset_lock() depending on whether
or not these functions are called from the context of the lockdep
selftests. Hence make it easy to detect whether or not lockdep code
is called from the context of a lockdep selftest.
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: johannes.berg@intel.com
Cc: tj@kernel.org
Link: https://lkml.kernel.org/r/20190214230058.196511-10-bvanassche@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current Wound-Wait mutex algorithm is actually not Wound-Wait but
Wait-Die. Implement also Wound-Wait as a per-ww-class choice. Wound-Wait
is, contrary to Wait-Die a preemptive algorithm and is known to generate
fewer backoffs. Testing reveals that this is true if the
number of simultaneous contending transactions is small.
As the number of simultaneous contending threads increases, Wait-Wound
becomes inferior to Wait-Die in terms of elapsed time.
Possibly due to the larger number of held locks of sleeping transactions.
Update documentation and callers.
Timings using git://people.freedesktop.org/~thomash/ww_mutex_test
tag patch-18-06-15
Each thread runs 100000 batches of lock / unlock 800 ww mutexes randomly
chosen out of 100000. Four core Intel x86_64:
Algorithm #threads Rollbacks time
Wound-Wait 4 ~100 ~17s.
Wait-Die 4 ~150000 ~19s.
Wound-Wait 16 ~360000 ~109s.
Wait-Die 16 ~450000 ~82s.
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Gustavo Padovan <gustavo@padovan.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Sean Paul <seanpaul@chromium.org>
Cc: David Airlie <airlied@linux.ie>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: linux-doc@vger.kernel.org
Cc: linux-media@vger.kernel.org
Cc: linaro-mm-sig@lists.linaro.org
Co-authored-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The work-around for the expected failure is providing another failure :/
Only when CONFIG_PROVE_LOCKING=y do we increment unexpected_testcase_failures,
so only then do we need to decrement, otherwise we'll end up with a negative
number and that will again trigger a BUG (printout, not crash).
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d82fed7529 ("locking/lockdep/selftests: Fix mixed read-write ABBA tests")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
e914985897 ("locking/lockdep/selftests: Add mixed read-write ABBA tests")
adds an explicit FAILURE to the locking selftest but overlooked the
fact that this kills lockdep. Fudge the test to avoid this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/20170828124245.xlo2yshxq2btgmuf@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently lockdep has limited support for recursive readers, add a few
mixed read-write ABBA selftests to show the extend of these
limitations.
[ 0.000000] ----------------------------------------------------------------------------
[ 0.000000] | spin |wlock |rlock |mutex | wsem | rsem |
[ 0.000000] --------------------------------------------------------------------------
[ 0.000000] mixed read-lock/lock-write ABBA: |FAILED| | ok |
[ 0.000000] mixed read-lock/lock-read ABBA: | ok | | ok |
[ 0.000000] mixed write-lock/lock-write ABBA: | ok | | ok |
This clearly illustrates the case where lockdep fails to find a
deadlock.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boqun.feng@gmail.com
Cc: byungchul.park@lge.com
Cc: david@fromorbit.com
Cc: johannes@sipsolutions.net
Cc: oleg@redhat.com
Cc: tj@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that RT-mutex has lockdep annotations, add them to the selftest.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no such thing as a bad unlock order.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the KERN_CONT changes the locking-selftest output is messed up, eg:
----------------------------------------------------------------------------
| spin |wlock |rlock |mutex | wsem | rsem |
--------------------------------------------------------------------------
A-A deadlock:
ok |
ok |
ok |
ok |
ok |
ok |
Use pr_cont() to get it looking normal again:
----------------------------------------------------------------------------
| spin |wlock |rlock |mutex | wsem | rsem |
--------------------------------------------------------------------------
A-A deadlock: ok | ok | ok | ok | ok | ok |
Reported-by: Christian Kujau <lists@nerdbynature.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@ozlabs.org
Link: http://lkml.kernel.org/r/1480027528-934-1-git-send-email-mpe@ellerman.id.au
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace the single preempt_count() 'function' that's an lvalue with
two proper functions:
preempt_count() - returns the preempt_count value as rvalue
preempt_count_set() - Allows setting the preempt-count value
Also provide preempt_count_ptr() as a convenience wrapper to implement
all modifying operations.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-orxrbycjozopqfhb4dxdkdvb@git.kernel.org
[ Fixed build failure. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the definitions for wound/wait mutexes out to a separate
header, ww_mutex.h. This reduces clutter in mutex.h, and
increases readability.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: Dave Airlie <airlied@gmail.com>
Link: http://lkml.kernel.org/r/51D675DC.3000907@canonical.com
[ Tidied up the code a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_PROVE_LOCKING is not enabled, more tests are
expected to pass unexpectedly, but there no tests that should
start to fail that pass with CONFIG_PROVE_LOCKING enabled.
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: dri-devel@lists.freedesktop.org
Cc: linaro-mm-sig@lists.linaro.org
Cc: rostedt@goodmis.org
Cc: daniel@ffwll.ch
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20130620113151.4001.77963.stgit@patser
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To make the lockdep selftest working on RT we need to convert the
spinlock tests to a raw spinlock. Otherwise we cannot run the irq
context checks. For mainline this is just annotational as spinlocks
are mapped to raw_spinlocks anyway.
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Link: http://lkml.kernel.org/r/1334559716-18447-2-git-send-email-yong.zhang0@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For files only using THIS_MODULE and/or EXPORT_SYMBOL, map
them onto including export.h -- or if the file isn't even
using those, then just delete the include. Fix up any implicit
include dependencies that were being masked by module.h along
the way.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
HARDIRQ_ENTER() maps to irq_enter() which calls rcu_irq_enter().
But HARDIRQ_EXIT() maps to __irq_exit() which doesn't call
rcu_irq_exit().
So for every locking selftest that simulates hardirq disabled,
we create an imbalance in the rcu extended quiescent state
internal state.
As a result, after the first missing rcu_irq_exit(), subsequent
irqs won't exit dyntick-idle mode after leaving the interrupt
handler. This means that RCU won't see the affected CPU as being
in an extended quiescent state, resulting in long grace-period
delays (as in grace periods extending for hours).
To fix this, just use __irq_enter() to simulate the hardirq
context. This is sufficient for the locking selftests as we
don't need to exit any extended quiescent state or perform
any check that irqs normally do when they wake up from idle.
As a side effect, this patch makes it possible to restore
"rcu: Decrease memory-barrier usage based on semi-formal proof",
which eventually helped finding this bug.
Reported-and-tested-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stable <stable@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Impact: cleanup
The naming clashes with upcoming softirq tracepoints, so rename the
APIs to lockdep_*().
Requested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make the locking self-test failures (of 'FAILURE' type) easier to debug by
printing more information.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
From: Ingo Molnar <mingo@elte.hu>
lockdep so far only allowed read-recursion for the same lock instance.
This is enough in the overwhelming majority of cases, but a hostap case
triggered and reported by Miles Lane relies on same-class
different-instance recursion. So we relax the restriction on read-lock
recursion.
(This change does not allow rwsem read-recursion, which is still
forbidden.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Do 'make oldconfig' and accept all the defaults for new config options -
reboot into the kernel and if everything goes well it should boot up fine and
you should have /proc/lockdep and /proc/lockdep_stats files.
Typically if the lock validator finds some problem it will print out
voluminous debug output that begins with "BUG: ..." and which syslog output
can be used by kernel developers to figure out the precise locking scenario.
What does the lock validator do? It "observes" and maps all locking rules as
they occur dynamically (as triggered by the kernel's natural use of spinlocks,
rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a
new locking scenario, it validates this new rule against the existing set of
rules. If this new rule is consistent with the existing set of rules then the
new rule is added transparently and the kernel continues as normal. If the
new rule could create a deadlock scenario then this condition is printed out.
When determining validity of locking, all possible "deadlock scenarios" are
considered: assuming arbitrary number of CPUs, arbitrary irq context and task
context constellations, running arbitrary combinations of all the existing
locking scenarios. In a typical system this means millions of separate
scenarios. This is why we call it a "locking correctness" validator - for all
rules that are observed the lock validator proves it with mathematical
certainty that a deadlock could not occur (assuming that the lock validator
implementation itself is correct and its internal data structures are not
corrupted by some other kernel subsystem). [see more details and conditionals
of this statement in include/linux/lockdep.h and
Documentation/lockdep-design.txt]
Furthermore, this "all possible scenarios" property of the validator also
enables the finding of complex, highly unlikely multi-CPU multi-context races
via single single-context rules, increasing the likelyhood of finding bugs
drastically. In practical terms: the lock validator already found a bug in
the upstream kernel that could only occur on systems with 3 or more CPUs, and
which needed 3 very unlikely code sequences to occur at once on the 3 CPUs.
That bug was found and reported on a single-CPU system (!). So in essence a
race will be found "piecemail-wise", triggering all the necessary components
for the race, without having to reproduce the race scenario itself! In its
short existence the lock validator found and reported many bugs before they
actually caused a real deadlock.
To further increase the efficiency of the validator, the mapping is not per
"lock instance", but per "lock-class". For example, all struct inode objects
in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached,
then there are 10,000 lock objects. But ->inotify_mutex is a single "lock
type", and all locking activities that occur against ->inotify_mutex are
"unified" into this single lock-class. The advantage of the lock-class
approach is that all historical ->inotify_mutex uses are mapped into a single
(and as narrow as possible) set of locking rules - regardless of how many
different tasks or inode structures it took to build this set of rules. The
set of rules persist during the lifetime of the kernel.
To see the rough magnitude of checking that the lock validator does, here's a
portion of /proc/lockdep_stats, fresh after bootup:
lock-classes: 694 [max: 2048]
direct dependencies: 1598 [max: 8192]
indirect dependencies: 17896
all direct dependencies: 16206
dependency chains: 1910 [max: 8192]
in-hardirq chains: 17
in-softirq chains: 105
in-process chains: 1065
stack-trace entries: 38761 [max: 131072]
combined max dependencies: 2033928
hardirq-safe locks: 24
hardirq-unsafe locks: 176
softirq-safe locks: 53
softirq-unsafe locks: 137
irq-safe locks: 59
irq-unsafe locks: 176
The lock validator has observed 1598 actual single-thread locking patterns,
and has validated all possible 2033928 distinct locking scenarios.
More details about the design of the lock validator can be found in
Documentation/lockdep-design.txt, which can also found at:
http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt
[bunk@stusta.de: cleanups]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Introduce DEBUG_LOCKING_API_SELFTESTS, which uses the generic lock debugging
code's silent-failure feature to run a matrix of testcases. There are 210
testcases currently:
+-----------------------
| Locking API testsuite:
+------------------------------+------+------+------+------+------+------+
| spin |wlock |rlock |mutex | wsem | rsem |
-------------------------------+------+------+------+------+------+------+
A-A deadlock: ok | ok | ok | ok | ok | ok |
A-B-B-A deadlock: ok | ok | ok | ok | ok | ok |
A-B-B-C-C-A deadlock: ok | ok | ok | ok | ok | ok |
A-B-C-A-B-C deadlock: ok | ok | ok | ok | ok | ok |
A-B-B-C-C-D-D-A deadlock: ok | ok | ok | ok | ok | ok |
A-B-C-D-B-D-D-A deadlock: ok | ok | ok | ok | ok | ok |
A-B-C-D-B-C-D-A deadlock: ok | ok | ok | ok | ok | ok |
double unlock: ok | ok | ok | ok | ok | ok |
bad unlock order: ok | ok | ok | ok | ok | ok |
--------------------------------------+------+------+------+------+------+
recursive read-lock: | ok | | ok |
--------------------------------------+------+------+------+------+------+
non-nested unlock: ok | ok | ok | ok |
--------------------------------------+------+------+------+
hard-irqs-on + irq-safe-A/12: ok | ok | ok |
soft-irqs-on + irq-safe-A/12: ok | ok | ok |
hard-irqs-on + irq-safe-A/21: ok | ok | ok |
soft-irqs-on + irq-safe-A/21: ok | ok | ok |
sirq-safe-A => hirqs-on/12: ok | ok | ok |
sirq-safe-A => hirqs-on/21: ok | ok | ok |
hard-safe-A + irqs-on/12: ok | ok | ok |
soft-safe-A + irqs-on/12: ok | ok | ok |
hard-safe-A + irqs-on/21: ok | ok | ok |
soft-safe-A + irqs-on/21: ok | ok | ok |
hard-safe-A + unsafe-B #1/123: ok | ok | ok |
soft-safe-A + unsafe-B #1/123: ok | ok | ok |
hard-safe-A + unsafe-B #1/132: ok | ok | ok |
soft-safe-A + unsafe-B #1/132: ok | ok | ok |
hard-safe-A + unsafe-B #1/213: ok | ok | ok |
soft-safe-A + unsafe-B #1/213: ok | ok | ok |
hard-safe-A + unsafe-B #1/231: ok | ok | ok |
soft-safe-A + unsafe-B #1/231: ok | ok | ok |
hard-safe-A + unsafe-B #1/312: ok | ok | ok |
soft-safe-A + unsafe-B #1/312: ok | ok | ok |
hard-safe-A + unsafe-B #1/321: ok | ok | ok |
soft-safe-A + unsafe-B #1/321: ok | ok | ok |
hard-safe-A + unsafe-B #2/123: ok | ok | ok |
soft-safe-A + unsafe-B #2/123: ok | ok | ok |
hard-safe-A + unsafe-B #2/132: ok | ok | ok |
soft-safe-A + unsafe-B #2/132: ok | ok | ok |
hard-safe-A + unsafe-B #2/213: ok | ok | ok |
soft-safe-A + unsafe-B #2/213: ok | ok | ok |
hard-safe-A + unsafe-B #2/231: ok | ok | ok |
soft-safe-A + unsafe-B #2/231: ok | ok | ok |
hard-safe-A + unsafe-B #2/312: ok | ok | ok |
soft-safe-A + unsafe-B #2/312: ok | ok | ok |
hard-safe-A + unsafe-B #2/321: ok | ok | ok |
soft-safe-A + unsafe-B #2/321: ok | ok | ok |
hard-irq lock-inversion/123: ok | ok | ok |
soft-irq lock-inversion/123: ok | ok | ok |
hard-irq lock-inversion/132: ok | ok | ok |
soft-irq lock-inversion/132: ok | ok | ok |
hard-irq lock-inversion/213: ok | ok | ok |
soft-irq lock-inversion/213: ok | ok | ok |
hard-irq lock-inversion/231: ok | ok | ok |
soft-irq lock-inversion/231: ok | ok | ok |
hard-irq lock-inversion/312: ok | ok | ok |
soft-irq lock-inversion/312: ok | ok | ok |
hard-irq lock-inversion/321: ok | ok | ok |
soft-irq lock-inversion/321: ok | ok | ok |
hard-irq read-recursion/123: ok |
soft-irq read-recursion/123: ok |
hard-irq read-recursion/132: ok |
soft-irq read-recursion/132: ok |
hard-irq read-recursion/213: ok |
soft-irq read-recursion/213: ok |
hard-irq read-recursion/231: ok |
soft-irq read-recursion/231: ok |
hard-irq read-recursion/312: ok |
soft-irq read-recursion/312: ok |
hard-irq read-recursion/321: ok |
soft-irq read-recursion/321: ok |
--------------------------------+-----+----------------
Good, all 210 testcases passed! |
--------------------------------+
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>