fa04c16574
1487 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Qu Wenruo
|
390ed29b81 |
btrfs: refactor submit_extent_page() to make bio and its flag tracing easier
There is a lot of code inside extent_io.c needs both "struct bio **bio_ret" and "unsigned long prev_bio_flags", along with some parameters like "unsigned long bio_flags". Such strange parameters are here for bio assembly. For example, we have such inode page layout: 0 4K 8K 12K |<-- Extent A-->|<- EB->| Then what we do is: - Page [0, 4K) *bio_ret = NULL So we allocate a new bio to bio_ret, Add page [0, 4K) to *bio_ret. - Page [4K, 8K) *bio_ret != NULL We found this page is continuous to *bio_ret, and if we're not at stripe boundary, we add page [4K, 8K) to *bio_ret. - Page [8K, 12K) *bio_ret != NULL But we found this page is not continuous, so we submit *bio_ret, then allocate a new bio, and add page [8K, 12K) to the new bio. This means we need to record both the bio and its bio_flag, but we record them manually using those strange parameter list, other than encapsulating them into their own structure. So this patch will introduce a new structure, btrfs_bio_ctrl, to record both the bio, and its bio_flags. Also, in above case, for all pages added to the bio, we need to check if the new page crosses stripe boundary. This check itself can be time consuming, and we don't really need to do that for each page. This patch also integrates the stripe boundary check into btrfs_bio_ctrl. When a new bio is allocated, the stripe and ordered extent boundary is also calculated, so no matter how large the bio will be, we only calculate the boundaries once, to save some CPU time. The following functions/structures are affected: - struct extent_page_data Replace its bio pointer with structure btrfs_bio_ctrl (embedded structure, not pointer) - end_write_bio() - flush_write_bio() Just change how bio is fetched - btrfs_bio_add_page() Use pre-calculated boundaries instead of re-calculating them. And use @bio_ctrl to replace @bio and @prev_bio_flags. - calc_bio_boundaries() New function - submit_extent_page() callers - btrfs_do_readpage() callers - contiguous_readpages() callers To Use @bio_ctrl to replace @bio and @prev_bio_flags, and how to grab bio. - btrfs_bio_fits_in_ordered_extent() Removed, as now the ordered extent size limit is done at bio allocation time, no need to check for each page range. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
578bda9e17 |
btrfs: introduce try-lock semantics for exclusive op start
Add try-lock for exclusive operation start to allow callers to do more checks. The same operation must already be running. The try-lock and unlock must pair and are a substitute for btrfs_exclop_start, thus it must also pair with btrfs_exclop_finish to release the exclop context. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
907d2710d7 |
btrfs: add cancellable chunk relocation support
Add support code that will allow canceling relocation on the chunk granularity. This is different and independent of balance, that also uses relocation but is a higher level operation and manages it's own state and pause/cancellation requests. Relocation is used for resize (shrink) and device deletion so this will be a common point to implement cancellation for both. The context is entirely in btrfs_relocate_block_group and btrfs_recover_relocation, enclosing one chunk relocation. The status bit is set and unset between the chunks. As relocation can take long, the effects may not be immediate and the request and actual action can slightly race. The fs_info::reloc_cancel_req is only supposed to be increased and does not pair with decrement like fs_info::balance_cancel_req. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
0d7ed32c1e |
btrfs: protect exclusive_operation by super_lock
The exclusive operation is now atomically checked and set using bit operations. Switch it to protection by spinlock. The super block lock is not frequently used and adding a new lock seems like an overkill so it should be safe to reuse it. The reason to use spinlock is to enhance the locking context so more checks can be done, eg. allowing the same exclusive operation enter the exclop section and cancel the running one. This will be used for resize and device delete. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
49547068f6 |
btrfs: document byte swap optimization of root_item::flags accessors
Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
0d7d316597 |
btrfs: don't set the full sync flag when truncation does not touch extents
At btrfs_truncate() where we truncate the inode either to the same size or to a smaller size, we always set the full sync flag on the inode. This is needed in case the truncation drops or trims any file extent items that start beyond or cross the new inode size, so that the next fsync drops all inode items from the log and scans again the fs/subvolume tree to find all items that must be logged. However if the truncation does not drop or trims any file extent items, we do not need to set the full sync flag and force the next fsync to use the slow code path. So do not set the full sync flag in such cases. One use case where it is frequent to do truncations that do not change the inode size and do not drop any extents (no prealloc extents beyond i_size) is when running Microsoft's SQL Server inside a Docker container. One example workload is the one Philipp Fent reported recently, in the thread with a link below. In this workload a large number of fsyncs are preceded by such truncate operations. After this change I constantly get the runtime for that workload from Philipp to be reduced by about -12%, for example from 184 seconds down to 162 seconds. Link: https://lore.kernel.org/linux-btrfs/93c4600e-5263-5cba-adf0-6f47526e7561@in.tum.de/ Tested-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
08508fea07 |
btrfs: make btrfs_verify_data_csum() to return a bitmap
This will provide the basis for later per-sector repair for subpage, while still keeping the existing code happy. As if all csums match, the return value will be 0, same as now. Only when csum mismatches, the return value is different. The new return value will be a bitmap, for 4K sectorsize and 4K page size, it will be either 1, instead of the -EIO (which is not used directly by the callers, no effective change). But for 4K sectorsize and 64K page size, aka subpage case, since the bvec can contain multiple sectors, knowing which sectors are corrupted will allow us to submit repair only for corrupted sectors. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
142b507f91 |
for-5.13-rc1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCZnCIACgkQxWXV+ddt WDuEvhAAmC+Mkrz25GbQnSIp2FKYCCQK34D0rdghml0Bc0cJcDh3yhgIB6ZTHZ7e Z+UZu84ISK31OHKDzXtX0MINN2wuU4u4kd6PHtYj0wSVl3cX6E/K5j6YcThfI1Ru vCW5O87V9SCV5NnykIFt3sbYvsPKtF9lhgPQprj4np+wxaSyNlEF2c+zLTI3J7NV +8OlM4oi8GocZd1aAwGpVM3qUPyQSHEb9oUEp6aV1ERuAs6LIyeGks3Cag6gjPnq dYz3jV9HyZB5GtX0dmv4LeRFIog1uFi+SIEFl5RpqhB3sXN3n6XHMka4x20FXiWy PfX9+Nf4bQGx6F9rGsgHNHQP5dVhHAkZcq3E0n0yshIfNe8wDHBRlmk0wbfj4K7I VYv85SxEYpigG8KzF5gjiar4EqsaJVQcJioMxVE7z9vrW6xlOWD1lf/ViUZnB3wd IQEyGz2qOe9eqJD+dnyN7QkN9WKGSUr2p1Q/DngCIwFzKWf1qIlETNXrIL+AZ97r v4G5mMq9dCxs3s8c5SGbdF9qqK8gEuaV3iWQAoKOciuy6fbc553Q90I1v3OhW+by j2yVoo3nJbBJBuLBNWPDUlwxQF/EHPQ6nh3fvxNRgwksXgRmqywdJb5dQ8hcKgSH RsvinJhtKo5rTgtgGgmNvmLAjKIieW1lIVG4ha0O/m49HeaohDE= =GNNs -----END PGP SIGNATURE----- Merge tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "First batch of various fixes, here's a list of notable ones: - fix unmountable seed device after fstrim - fix silent data loss in zoned mode due to ordered extent splitting - fix race leading to unpersisted data and metadata on fsync - fix deadlock when cloning inline extents and using qgroups" * tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: initialize return variable in cleanup_free_space_cache_v1 btrfs: zoned: sanity check zone type btrfs: fix unmountable seed device after fstrim btrfs: fix deadlock when cloning inline extents and using qgroups btrfs: fix race leading to unpersisted data and metadata on fsync btrfs: do not consider send context as valid when trying to flush qgroups btrfs: zoned: fix silent data loss after failure splitting ordered extent |
||
Filipe Manana
|
f9baa501b4 |
btrfs: fix deadlock when cloning inline extents and using qgroups
There are a few exceptional cases where cloning an inline extent needs to copy the inline extent data into a page of the destination inode. When this happens, we end up starting a transaction while having a dirty page for the destination inode and while having the range locked in the destination's inode iotree too. Because when reserving metadata space for a transaction we may need to flush existing delalloc in case there is not enough free space, we have a mechanism in place to prevent a deadlock, which was introduced in commit |
||
Linus Torvalds
|
a4f7fae101 |
Merge branch 'miklos.fileattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fileattr conversion updates from Miklos Szeredi via Al Viro: "This splits the handling of FS_IOC_[GS]ETFLAGS from ->ioctl() into a separate method. The interface is reasonably uniform across the filesystems that support it and gives nice boilerplate removal" * 'miklos.fileattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (23 commits) ovl: remove unneeded ioctls fuse: convert to fileattr fuse: add internal open/release helpers fuse: unsigned open flags fuse: move ioctl to separate source file vfs: remove unused ioctl helpers ubifs: convert to fileattr reiserfs: convert to fileattr ocfs2: convert to fileattr nilfs2: convert to fileattr jfs: convert to fileattr hfsplus: convert to fileattr efivars: convert to fileattr xfs: convert to fileattr orangefs: convert to fileattr gfs2: convert to fileattr f2fs: convert to fileattr ext4: convert to fileattr ext2: convert to fileattr btrfs: convert to fileattr ... |
||
Johannes Thumshirn
|
18bb8bbf13 |
btrfs: zoned: automatically reclaim zones
When a file gets deleted on a zoned file system, the space freed is not returned back into the block group's free space, but is migrated to zone_unusable. As this zone_unusable space is behind the current write pointer it is not possible to use it for new allocations. In the current implementation a zone is reset once all of the block group's space is accounted as zone unusable. This behaviour can lead to premature ENOSPC errors on a busy file system. Instead of only reclaiming the zone once it is completely unusable, kick off a reclaim job once the amount of unusable bytes exceeds a user configurable threshold between 51% and 100%. It can be set per mounted filesystem via the sysfs tunable bg_reclaim_threshold which is set to 75% by default. Similar to reclaiming unused block groups, these dirty block groups are added to a to_reclaim list and then on a transaction commit, the reclaim process is triggered but after we deleted unused block groups, which will free space for the relocation process. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Johannes Thumshirn
|
f33720657d |
btrfs: rename delete_unused_bgs_mutex to reclaim_bgs_lock
As a preparation for extending the block group deletion use case, rename the unused_bgs_mutex to reclaim_bgs_lock. Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
e9306ad4ef |
btrfs: more graceful errors/warnings on 32bit systems when reaching limits
Btrfs uses internally mapped u64 address space for all its metadata. Due to the page cache limit on 32bit systems, btrfs can't access metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K page size while 256T for 64K page size. Users can have a filesystem which doesn't have metadata beyond the boundary at mount time, but later balance can cause it to create metadata beyond the boundary. And modification to MM layer is unrealistic just for such minor use case. We can't do more than to prevent mounting such filesystem or warn early when the numbers are still within the limits. To address such problem, this patch will introduce the following checks: - Mount time rejection This will reject any fs which has metadata chunk at or beyond the boundary. - Mount time early warning If there is any metadata chunk beyond 5/8th of the boundary, we do an early warning and hope the end user will see it. - Runtime extent buffer rejection If we're going to allocate an extent buffer at or beyond the boundary, reject such request with EOVERFLOW. This is definitely going to cause problems like transaction abort, but we have no better ways. - Runtime extent buffer early warning If an extent buffer beyond 5/8th of the max file size is allocated, do an early warning. Above error/warning message will only be printed once for each fs to reduce dmesg flood. If the mount is rejected, the filesystem will be mountable only on a 64bit host. Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/ Reported-by: Erik Jensen <erikjensen@rkjnsn.net> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
ace75066ce |
btrfs: improve btree readahead for full send operations
Currently a full send operation uses the standard btree readahead when iterating over the subvolume/snapshot btree, which despite bringing good performance benefits, it could be improved in a few aspects for use cases such as full send operations, which are guaranteed to visit every node and leaf of a btree, in ascending and sequential order. The limitations of that standard btree readahead implementation are the following: 1) It only triggers readahead for leaves that are physically close to the leaf being read, within a 64K range; 2) It only triggers readahead for the next or previous leaves if the leaf being read is not currently in memory; 3) It never triggers readahead for nodes. So add a new readahead mode that addresses all these points and use it for full send operations. The following test script was used to measure the improvement on a box using an average, consumer grade, spinning disk and with 16GiB of RAM: $ cat test.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null mount $MOUNT_OPTIONS $DEV $MNT # Create files with inline data to make it easier and faster to create # large btrees. add_files() { local total=$1 local start_offset=$2 local number_jobs=$3 local total_per_job=$(($total / $number_jobs)) echo "Creating $total new files using $number_jobs jobs" for ((n = 0; n < $number_jobs; n++)); do ( local start_num=$(($start_offset + $n * $total_per_job)) for ((i = 1; i <= $total_per_job; i++)); do local file_num=$((start_num + $i)) local file_path="$MNT/file_${file_num}" xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null if [ $? -ne 0 ]; then echo "Failed creating file $file_path" break fi done ) & worker_pids[$n]=$! done wait ${worker_pids[@]} sync echo echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)" } initial_file_count=500000 add_files $initial_file_count 0 4 echo echo "Creating first snapshot..." btrfs subvolume snapshot -r $MNT $MNT/snap1 echo echo "Adding more files..." add_files $((initial_file_count / 4)) $initial_file_count 4 echo echo "Updating 1/50th of the initial files..." for ((i = 1; i < $initial_file_count; i += 50)); do xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null done echo echo "Creating second snapshot..." btrfs subvolume snapshot -r $MNT $MNT/snap2 umount $MNT echo 3 > /proc/sys/vm/drop_caches blockdev --flushbufs $DEV &> /dev/null hdparm -F $DEV &> /dev/null mount $MOUNT_OPTIONS $DEV $MNT echo echo "Testing full send..." start=$(date +%s) btrfs send $MNT/snap1 > /dev/null end=$(date +%s) echo echo "Full send took $((end - start)) seconds" umount $MNT The durations of the full send operation in seconds were the following: Before this change: 217 seconds After this change: 205 seconds (-5.7%) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
bc03f39ec3 |
btrfs: use a bit to track the existence of tree mod log users
The tree modification log functions are called very frequently, basically they are called every time a btree is modified (a pointer added or removed to a node, a new root for a btree is set, etc). Because of that, to avoid heavy lock contention on the lock that protects the list of tree mod log users, we have checks that test the emptiness of the list with a full memory barrier before the checks, so that when there are no tree mod log users we avoid taking the lock. Replace the memory barrier and list emptiness check with a test for a new bit set at fs_info->flags. This bit is used to indicate when there are tree mod log users, set whenever a user is added to the list and cleared when the last user is removed from the list. This makes the intention a bit more obvious and possibly more efficient (assuming test_bit() may be cheaper than a full memory barrier on some architectures). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
f3a84ccd28 |
btrfs: move the tree mod log code into its own file
The tree modification log, which records modifications done to btrees, is quite large and currently spread all over ctree.c, which is a huge file already. To make things better organized, move all that code into its own separate source and header files. Functions and definitions that are used outside of the module (mostly by ctree.c) are renamed so that they start with a "btrfs_" prefix. Everything else remains unchanged. This makes it easier to go over the tree modification log code every time I need to go read it to fix a bug. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor comment updates ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Johannes Thumshirn
|
cea628008f |
btrfs: remove duplicated in_range() macro
The in_range() macro is defined twice in btrfs' source, once in ctree.h and once in misc.h. Remove the definition in ctree.h and include misc.h in the files depending on it. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
8318ba79ee |
btrfs: add a i_mmap_lock to our inode
We need to be able to exclude page_mkwrite from happening concurrently with certain operations. To facilitate this, add a i_mmap_lock to our inode, down_read() it in our mkwrite, and add a new ILOCK flag to indicate that we want to take the i_mmap_lock as well. I used pahole to check the size of the btrfs_inode, the sizes are as follows no lockdep: before: 1120 (3 per 4k page) after: 1160 (3 per 4k page) lockdep: before: 2072 (1 per 4k page) after: 2224 (1 per 4k page) We're slightly larger but it doesn't change how many objects we can fit per page. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Goldwyn Rodrigues
|
5e295768a0 |
btrfs: remove mirror argument from btrfs_csum_verify_data()
The parameter mirror is not used and does not make sense for checksum verification of the given bio. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Anand Jain
|
05947ae186 |
btrfs: unexport btrfs_extent_readonly() and make it static
btrfs_extent_readonly() is used by can_nocow_extent() in inode.c. So move it from extent-tree.c to inode.c and declare it as static. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
bfc78479eb |
btrfs: make btrfs_replace_file_extents take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Miklos Szeredi
|
97fc297754 |
btrfs: convert to fileattr
Use the fileattr API to let the VFS handle locking, permission checking and conversion. Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Cc: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
c608aca57d |
for-5.12-rc1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmA85UwACgkQxWXV+ddt WDsdeA/8DXM6pMGaLkYcvkGvR53/vWwQlKq+i+3zuc41fYFJ7k+DQ7/K5hDbEMoM E7YsksoRlNVruH/ZvSdtx1exQ/tNrTdqPuds/UR31lIvS2NX9OZZToGWoC8VmrNw eS9yAwz/7JKUBA6MlMxZFv89OJoHUX9brPSeZVA8hOo3jDr5LXVm0IBskYOBUDRx JIvt+lkJLKMXPWxwUt3hbkbFPAUQVxYYavhJhWiXT9gdxF+eRgjMI0EN43vBMN2y kZtoZGeWR64heo9ehFzYMDlAVyph/loGovQ7m6XVzkk5DQGitg0vs3iAG46WjEXt jxt0ZKmJQwJb3/zNPd8VlLMhULGc56jcq8uhaC2pXjhy18p7EAXml+fH51BExLYK 11hiWtWsrbTsZuYgr6fpqVFukkL/yyH/s7iCWT8Wn+AoPg2fUD99F5nkKT2T0Sso t7MyJVlTdq8avWbTB+8kFx8+Hy1TsRz3Ic2Zpm8+F3KeVflrb31jJIp3cxPCdfUp fWX+7VDjKVt00Ti7uP0fAaFO4hn2FjYcWzR3KOjomWox+8LVxB8PbD4H8jD7As2a 5gGGOULmkiZej7hcP6J6zvnmgZIVAGPsSGSVfZtPh4VGiycL3DozcD0x5QerLchR NZDyIBh2KGE0cRr+cjkPxDyeqfGXQ7VUjp13CBriCkER8SOmBdw= =QJEy -----END PGP SIGNATURE----- Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "This is the first batch of fixes that usually arrive during the merge window code freeze. Regressions and stable material. Regressions: - fix deadlock in log sync in zoned mode - fix bugs in subpage mode still wrongly assuming sectorsize == page size Fixes: - fix missing kunmap of the Q stripe in RAID6 - block group fixes: - fix race between extent freeing/allocation when using bitmaps - avoid double put of block group when emptying cluster - swapfile fixes: - fix swapfile writes vs running scrub - fix swapfile activation vs snapshot creation - fix stale data exposure after cloning a hole with NO_HOLES enabled - remove tree-checker check that does not work in case information from other leaves is necessary" * tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: fix deadlock on log sync btrfs: avoid double put of block group when emptying cluster btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled btrfs: tree-checker: do not error out if extent ref hash doesn't match btrfs: fix race between swap file activation and snapshot creation btrfs: fix race between writes to swap files and scrub btrfs: avoid checking for RO block group twice during nocow writeback btrfs: fix race between extent freeing/allocation when using bitmaps btrfs: make check_compressed_csum() to be subpage compatible btrfs: make btrfs_submit_compressed_read() subpage compatible btrfs: fix raid6 qstripe kmap |
||
Linus Torvalds
|
7d6beb71da |
idmapped-mounts-v5.12
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf
https://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
|
||
Filipe Manana
|
195a49eaf6 |
btrfs: fix race between writes to swap files and scrub
When we active a swap file, at btrfs_swap_activate(), we acquire the
exclusive operation lock to prevent the physical location of the swap
file extents to be changed by operations such as balance and device
replace/resize/remove. We also call there can_nocow_extent() which,
among other things, checks if the block group of a swap file extent is
currently RO, and if it is we can not use the extent, since a write
into it would result in COWing the extent.
However we have no protection against a scrub operation running after we
activate the swap file, which can result in the swap file extents to be
COWed while the scrub is running and operating on the respective block
group, because scrub turns a block group into RO before it processes it
and then back again to RW mode after processing it. That means an attempt
to write into a swap file extent while scrub is processing the respective
block group, will result in COWing the extent, changing its physical
location on disk.
Fix this by making sure that block groups that have extents that are used
by active swap files can not be turned into RO mode, therefore making it
not possible for a scrub to turn them into RO mode. When a scrub finds a
block group that can not be turned to RO due to the existence of extents
used by swap files, it proceeds to the next block group and logs a warning
message that mentions the block group was skipped due to active swap
files - this is the same approach we currently use for balance.
Fixes:
|
||
Naohiro Aota
|
9d294a685f |
btrfs: zoned: enable to mount ZONED incompat flag
This final patch adds the ZONED incompat flag to the supported flags and enables to mount ZONED flagged file system. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Naohiro Aota
|
40ab3be102 |
btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
This is the 1/3 patch to enable tree log on zoned filesystems. The tree-log feature does not work on a zoned filesystem as is. Blocks for a tree-log tree are allocated mixed with other metadata blocks and btrfs writes and syncs the tree-log blocks to devices at the time of fsync(), which has a different timing than a global transaction commit. As a result, both writing tree-log blocks and writing other metadata blocks become non-sequential writes that zoned filesystems must avoid. Introduce a dedicated block group for tree-log blocks, so that tree-log blocks and other metadata blocks can be separate write streams. As a result, each write stream can now be written to devices separately. "fs_info->treelog_bg" tracks the dedicated block group and assigns "treelog_bg" on-demand on tree-log block allocation time. This commit extends the zoned block allocator to use the block group. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Naohiro Aota
|
0bc09ca129 |
btrfs: zoned: serialize metadata IO
We cannot use zone append for writing metadata, because the B-tree nodes have references to each other using logical address. Without knowing the address in advance, we cannot construct the tree in the first place. So we need to serialize write IOs for metadata. We cannot add a mutex around allocation and submission because metadata blocks are allocated in an earlier stage to build up B-trees. Add a zoned_meta_io_lock and hold it during metadata IO submission in btree_write_cache_pages() to serialize IOs. Furthermore, this adds a per-block group metadata IO submission pointer "meta_write_pointer" to ensure sequential writing, which can break when attempting to write back blocks in an unfinished transaction. If the writing out failed because of a hole and the write out is for data integrity (WB_SYNC_ALL), it returns EAGAIN. A caller like fsync() code should handle this properly e.g. by falling back to a full transaction commit. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Johannes Thumshirn
|
cacb2cea46 |
btrfs: zoned: check if bio spans across an ordered extent
To ensure that an ordered extent maps to a contiguous region on disk, we need to maintain a "one bio == one ordered extent" rule. Ensure that constructing bio does not span more than an ordered extent. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
576fa34830 |
btrfs: improve preemptive background space flushing
Currently if we ever have to flush space because we do not have enough we allocate a ticket and attach it to the space_info, and then systematically flush things in the filesystem that hold space reservations until our space is reclaimed. However this has a latency cost, we must go to sleep and wait for the flushing to make progress before we are woken up and allowed to continue doing our work. In order to address that we used to kick off the async worker to flush space preemptively, so that we could be reclaiming space hopefully before any tasks needed to stop and wait for space to reclaim. When I introduced the ticketed ENOSPC stuff this broke slightly in the fact that we were using tickets to indicate if we were done flushing. No tickets, no more flushing. However this meant that we essentially never preemptively flushed. This caused a write performance regression that Nikolay noticed in an unrelated patch that removed the committing of the transaction during btrfs_end_transaction. The behavior that happened pre that patch was btrfs_end_transaction() would see that we were low on space, and it would commit the transaction. This was bad because in this particular case you could end up with thousands and thousands of transactions being committed during the 5 minute reproducer. With the patch to remove this behavior we got much more sane transaction commits, but we ended up slower because we would write for a while, flush, write for a while, flush again. To address this we need to reinstate a preemptive flushing mechanism. However it is distinctly different from our ticketing flushing in that it doesn't have tickets to base it's decisions on. Instead of bolting this logic into our existing flushing work, add another worker to handle this preemptive flushing. Here we will attempt to be slightly intelligent about the things that we flushing, attempting to balance between whichever pool is taking up the most space. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
f00c42dd4c |
btrfs: introduce a FORCE_COMMIT_TRANS flush operation
Solely for preemptive flushing, we want to be able to force the transaction commit without any of the ambiguity of may_commit_transaction(). This is because may_commit_transaction() checks tickets and such, and in preemptive flushing we already know it'll be helpful, so use this to keep the code nice and clean and straightforward. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
5deb17e18e |
btrfs: track ordered bytes instead of just dio ordered bytes
We track dio_bytes because the shrink delalloc code needs to know if we have more DIO in flight than we have normal buffered IO. The reason for this is because we can't "flush" DIO, we have to just wait on the ordered extents to finish. However this is true of all ordered extents. If we have more ordered space outstanding than dirty pages we should be waiting on ordered extents. We already are ok on this front technically, because we always do a FLUSH_DELALLOC_WAIT loop, but I want to use the ordered counter in the preemptive flushing code as well, so change this to count all ordered bytes instead of just DIO ordered bytes. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
9db4dc241e |
btrfs: make btrfs_start_delalloc_root's nr argument a long
It's currently u64 which gets instantly translated either to LONG_MAX (if U64_MAX is passed) or cast to an unsigned long (which is in fact, wrong because writeback_control::nr_to_write is a signed, long type). Just convert the function's argument to be long time which obviates the need to manually convert u64 value to a long. Adjust all call sites which pass U64_MAX to pass LONG_MAX. Finally ensure that in shrink_delalloc the u64 is converted to a long without overflowing, resulting in a negative number. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
69948022c9 |
btrfs: remove new_dirid argument from btrfs_create_subvol_root
It's no longer used. While at it also remove new_dirid in create_subvol as it's used in a single place and open code it. No functional changes. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
6b8fad576a |
btrfs: rename btrfs_root::highest_objectid to free_objectid
This reflects the true purpose of the member as it's being used solely in context where a new objectid is being allocated. Future changes will also change the way it's being used to closely follow this semantics. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
c05d51c773 |
for-5.11-rc5-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAUIkAACgkQxWXV+ddt WDsWVg/+IIEk9H1v9q9ShvVmPvmnlT8/0ywj1hdwFMBkFBjIeU8tBz9ZMGPXCzrF XemmWKChVOnR3SIq/bMrwuRC/Gv/pBvwVshXLP51YJHv7lSGX0Ayrb27BFQcVaC/ 3QhpE7veEiqxwLyMj+LWG4hE2X+oqiqzrXCpeC5un4zEluT45RSKooqueQ4jM8aw DrKLQA57a1YEIqrE2KQzy5A6BnSNyxPXEEX34kbugmmen46Fh77hrwme1K9vQn1t v3/V4LcarXADxxokAxU2Igb/vK0+BN33NOYsBwLWWD4kUaTGS4KczsDOowkRRTMH /qiQUdca0X7ElR+VFl8rgB8PxuJcZ87aCdsMkErUA4sjxyp11VDIeEgirPNAcXtR b+1LIkn3k3l8JzkKyXwDuZuNBsh0idTY24IE+QDBMIGq+jE1N6N3t5gEwa2NeaiP 9O5QnS5XAJCo8a9+gp1aF5z94vwQwvf9TA80nGrnpxGmXEEEZ9PgXsc4JON1Blhn NtJDwBPzEjHCEYdE73/lRMsLmYeGhpRugKb+lQ+OTo2iZzxH2SjWn9vXKiN7vAp2 zysjzdPfkY5BLggH5cPg0fuRaf/Is00EeVqn3eA7QsFKDhrpoPFBO+aV5xeshsaz 8fjt7kkXFb+Vyy4SDvmPioJQ7/MFZ5Czn+BL1JwO4l/vYcEMUzM= =/yHv -----END PGP SIGNATURE----- Merge tag 'for-5.11-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more fixes for a late rc: - fix lockdep complaint on 32bit arches and also remove an unsafe memory use due to device vs filesystem lifetime - two fixes for free space tree: * race during log replay and cache rebuild, now more likely to happen due to changes in this dev cycle * possible free space tree corruption with online conversion during initial tree population" * tag 'for-5.11-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix log replay failure due to race with space cache rebuild btrfs: fix lockdep warning due to seqcount_mutex on 32bit arch btrfs: fix possible free space tree corruption with online conversion |
||
Josef Bacik
|
2f96e40212 |
btrfs: fix possible free space tree corruption with online conversion
While running btrfs/011 in a loop I would often ASSERT() while trying to
add a new free space entry that already existed, or get an EEXIST while
adding a new block to the extent tree, which is another indication of
double allocation.
This occurs because when we do the free space tree population, we create
the new root and then populate the tree and commit the transaction.
The problem is when you create a new root, the root node and commit root
node are the same. During this initial transaction commit we will run
all of the delayed refs that were paused during the free space tree
generation, and thus begin to cache block groups. While caching block
groups the caching thread will be reading from the main root for the
free space tree, so as we make allocations we'll be changing the free
space tree, which can cause us to add the same range twice which results
in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a
variety of different errors when running delayed refs because of a
double allocation.
Fix this by marking the fs_info as unsafe to load the free space tree,
and fall back on the old slow method. We could be smarter than this,
for example caching the block group while we're populating the free
space tree, but since this is a serious problem I've opted for the
simplest solution.
CC: stable@vger.kernel.org # 4.9+
Fixes:
|
||
Christian Brauner
|
549c729771
|
fs: make helpers idmap mount aware
Extend some inode methods with an additional user namespace argument. A filesystem that is aware of idmapped mounts will receive the user namespace the mount has been marked with. This can be used for additional permission checking and also to enable filesystems to translate between uids and gids if they need to. We have implemented all relevant helpers in earlier patches. As requested we simply extend the exisiting inode method instead of introducing new ones. This is a little more code churn but it's mostly mechanical and doesnt't leave us with additional inode methods. Link: https://lore.kernel.org/r/20210121131959.646623-25-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
||
Linus Torvalds
|
71c061d244 |
for-5.11-rc2-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl/0cI8ACgkQxWXV+ddt WDspQw/8DcC8zhGgunk0m2kcXd6dFOGbsr3hNGCsgUSKESRw6AgTZ0rJf/QLjayF /vaJWzQW9ijfZ92fWZS+mrmskk0N8RFOsEvkCRLesgRaasbrkchLBo5HGQasOBEV LXyU878GrBkNaHzClJz+JdU26i0d17BFdddgtZVQ1St9Wd9ecc7Q6iqG80RWFeE7 uVbhv+QjocM3EieOnwIy5Mz6jZgJLYwqw7/y2njKduBeJtbt1K1j/y7IJk0WFMUM 8eUpDL6vlAHB8FjV2wWOzO46bbEaUpaBADM6yabrq0lnM0kr7Rb+WV/WSLM/AZ3g Hzs4qROOEP+zjfZ5nYjJQDJRMpSipZomsUY5uMZnhRxlZuHPaoBotRRzs5AIZYj2 BnkfucOcjxS/JTBD//ltJXE8RxbMIyMBBBipbBwqmxOkR9gM9BPuJ6iJPfUX//gG 1GHJ+FPns8ua3JW21ih6H31xNEPS36tsywvE8yCEtEWMxCFCBwgGu+4D8KpGBjtY ySFxkxxAbTuFi9fqSE/mBC+6lpbVTO0OvizuoEQh8C2izkXRbDsDVgPN8d7rCW7h Cdox4DUp61sNf+G3ll9Dv9ceAXroZTVRTHGjlav6NAFpydz3yPo5x54Ex7S+k3oN BAcZEl1Tl3hz4WxF8Ywc+yJ8n8l9AVa3KcYRXVbyVjTGg+JjU94= =jlQf -----END PGP SIGNATURE----- Merge tag 'for-5.11-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more fixes that arrived before the end of the year: - a bunch of fixes related to transaction handle lifetime wrt various operations (umount, remount, qgroup scan, orphan cleanup) - async discard scheduling fixes - fix item size calculation when item keys collide for extend refs (hardlinks) - fix qgroup flushing from running transaction - fix send, wrong file path when there is an inode with a pending rmdir - fix deadlock when cloning inline extent and low on free metadata space" * tag 'for-5.11-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: run delayed iputs when remounting RO to avoid leaking them btrfs: add assertion for empty list of transactions at late stage of umount btrfs: fix race between RO remount and the cleaner task btrfs: fix transaction leak and crash after cleaning up orphans on RO mount btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan btrfs: merge critical sections of discard lock in workfn btrfs: fix racy access to discard_ctl data btrfs: fix async discard stall btrfs: tests: initialize test inodes location btrfs: send: fix wrong file path when there is an inode with a pending rmdir btrfs: qgroup: don't try to wait flushing if we're already holding a transaction btrfs: correctly calculate item size used when item key collision happens btrfs: fix deadlock when cloning inline extent and low on free metadata space |
||
Filipe Manana
|
a0a1db70df |
btrfs: fix race between RO remount and the cleaner task
When we are remounting a filesystem in RO mode we can race with the cleaner task and result in leaking a transaction if the filesystem is unmounted shortly after, before the transaction kthread had a chance to commit that transaction. That also results in a crash during unmount, due to a use-after-free, if hardware acceleration is not available for crc32c. The following sequence of steps explains how the race happens. 1) The filesystem is mounted in RW mode and the cleaner task is running. This means that currently BTRFS_FS_CLEANER_RUNNING is set at fs_info->flags; 2) The cleaner task is currently running delayed iputs for example; 3) A filesystem RO remount operation starts; 4) The RO remount task calls btrfs_commit_super(), which commits any currently open transaction, and it finishes; 5) At this point the cleaner task is still running and it creates a new transaction by doing one of the following things: * When running the delayed iput() for an inode with a 0 link count, in which case at btrfs_evict_inode() we start a transaction through the call to evict_refill_and_join(), use it and then release its handle through btrfs_end_transaction(); * When deleting a dead root through btrfs_clean_one_deleted_snapshot(), a transaction is started at btrfs_drop_snapshot() and then its handle is released through a call to btrfs_end_transaction_throttle(); * When the remount task was still running, and before the remount task called btrfs_delete_unused_bgs(), the cleaner task also called btrfs_delete_unused_bgs() and it picked and removed one block group from the list of unused block groups. Before the cleaner task started a transaction, through btrfs_start_trans_remove_block_group() at btrfs_delete_unused_bgs(), the remount task had already called btrfs_commit_super(); 6) So at this point the filesystem is in RO mode and we have an open transaction that was started by the cleaner task; 7) Shortly after a filesystem unmount operation starts. At close_ctree() we stop the transaction kthread before it had a chance to commit the transaction, since less than 30 seconds (the default commit interval) have elapsed since the last transaction was committed; 8) We end up calling iput() against the btree inode at close_ctree() while there is an open transaction, and since that transaction was used to update btrees by the cleaner, we have dirty pages in the btree inode due to COW operations on metadata extents, and therefore writeback is triggered for the btree inode. So btree_write_cache_pages() is invoked to flush those dirty pages during the final iput() on the btree inode. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 9) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 10) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 So fix this by making the remount path to wait for the cleaner task before calling btrfs_commit_super(). The remount path now waits for the bit BTRFS_FS_CLEANER_RUNNING to be cleared from fs_info->flags before calling btrfs_commit_super() and this ensures the cleaner can not start a transaction after that, because it sleeps when the filesystem is in RO mode and we have already flagged the filesystem as RO before waiting for BTRFS_FS_CLEANER_RUNNING to be cleared. This also introduces a new flag BTRFS_FS_STATE_RO to be used for fs_info->fs_state when the filesystem is in RO mode. This is because we were doing the RO check using the flags of the superblock and setting the RO mode simply by ORing into the superblock's flags - those operations are not atomic and could result in the cleaner not seeing the update from the remount task after it clears BTRFS_FS_CLEANER_RUNNING. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
ethanwu
|
9a66497156 |
btrfs: correctly calculate item size used when item key collision happens
Item key collision is allowed for some item types, like dir item and
inode refs, but the overall item size is limited by the nodesize.
item size(ins_len) passed from btrfs_insert_empty_items to
btrfs_search_slot already contains size of btrfs_item.
When btrfs_search_slot reaches leaf, we'll see if we need to split leaf.
The check incorrectly reports that split leaf is required, because
it treats the space required by the newly inserted item as
btrfs_item + item data. But in item key collision case, only item data
is actually needed, the newly inserted item could merge into the existing
one. No new btrfs_item will be inserted.
And split_leaf return EOVERFLOW from following code:
if (extend && data_size + btrfs_item_size_nr(l, slot) +
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
return -EOVERFLOW;
In most cases, when callers receive EOVERFLOW, they either return
this error or handle in different ways. For example, in normal dir item
creation the userspace will get errno EOVERFLOW; in inode ref case
INODE_EXTREF is used instead.
However, this is not the case for rename. To avoid the unrecoverable
situation in rename, btrfs_check_dir_item_collision is called in
early phase of rename. In this function, when item key collision is
detected leaf space is checked:
data_size = sizeof(*di) + name_len;
if (data_size + btrfs_item_size_nr(leaf, slot) +
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root->fs_info))
the sizeof(struct btrfs_item) + btrfs_item_size_nr(leaf, slot) here
refers to existing item size, the condition here correctly calculates
the needed size for collision case rather than the wrong case above.
The consequence of inconsistent condition check between
btrfs_check_dir_item_collision and btrfs_search_slot when item key
collision happens is that we might pass check here but fail
later at btrfs_search_slot. Rename fails and volume is forced readonly
[436149.586170] ------------[ cut here ]------------
[436149.586173] BTRFS: Transaction aborted (error -75)
[436149.586196] WARNING: CPU: 0 PID: 16733 at fs/btrfs/inode.c:9870 btrfs_rename2+0x1938/0x1b70 [btrfs]
[436149.586227] CPU: 0 PID: 16733 Comm: python Tainted: G D 4.18.0-rc5+ #1
[436149.586228] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/05/2016
[436149.586238] RIP: 0010:btrfs_rename2+0x1938/0x1b70 [btrfs]
[436149.586254] RSP: 0018:ffffa327043a7ce0 EFLAGS: 00010286
[436149.586255] RAX: 0000000000000000 RBX: ffff8d8a17d13340 RCX: 0000000000000006
[436149.586256] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8d8a7fc164b0
[436149.586257] RBP: ffffa327043a7da0 R08: 0000000000000560 R09: 7265282064657472
[436149.586258] R10: 0000000000000000 R11: 6361736e61725420 R12: ffff8d8a0d4c8b08
[436149.586258] R13: ffff8d8a17d13340 R14: ffff8d8a33e0a540 R15: 00000000000001fe
[436149.586260] FS: 00007fa313933740(0000) GS:ffff8d8a7fc00000(0000) knlGS:0000000000000000
[436149.586261] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[436149.586262] CR2: 000055d8d9c9a720 CR3: 000000007aae0003 CR4: 00000000003606f0
[436149.586295] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[436149.586296] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[436149.586296] Call Trace:
[436149.586311] vfs_rename+0x383/0x920
[436149.586313] ? vfs_rename+0x383/0x920
[436149.586315] do_renameat2+0x4ca/0x590
[436149.586317] __x64_sys_rename+0x20/0x30
[436149.586324] do_syscall_64+0x5a/0x120
[436149.586330] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[436149.586332] RIP: 0033:0x7fa3133b1d37
[436149.586348] RSP: 002b:00007fffd3e43908 EFLAGS: 00000246 ORIG_RAX: 0000000000000052
[436149.586349] RAX: ffffffffffffffda RBX: 00007fa3133b1d30 RCX: 00007fa3133b1d37
[436149.586350] RDX: 000055d8da06b5e0 RSI: 000055d8da225d60 RDI: 000055d8da2c4da0
[436149.586351] RBP: 000055d8da2252f0 R08: 00007fa313782000 R09: 00000000000177e0
[436149.586351] R10: 000055d8da010680 R11: 0000000000000246 R12: 00007fa313840b00
Thanks to Hans van Kranenburg for information about crc32 hash collision
tools, I was able to reproduce the dir item collision with following
python script.
https://github.com/wutzuchieh/misc_tools/blob/master/crc32_forge.py Run
it under a btrfs volume will trigger the abort transaction. It simply
creates files and rename them to forged names that leads to
hash collision.
There are two ways to fix this. One is to simply revert the patch
|
||
Filipe Manana
|
3d45f221ce |
btrfs: fix deadlock when cloning inline extent and low on free metadata space
When cloning an inline extent there are cases where we can not just copy
the inline extent from the source range to the target range (e.g. when the
target range starts at an offset greater than zero). In such cases we copy
the inline extent's data into a page of the destination inode and then
dirty that page. However, after that we will need to start a transaction
for each processed extent and, if we are ever low on available metadata
space, we may need to flush existing delalloc for all dirty inodes in an
attempt to release metadata space - if that happens we may deadlock:
* the async reclaim task queued a delalloc work to flush delalloc for
the destination inode of the clone operation;
* the task executing that delalloc work gets blocked waiting for the
range with the dirty page to be unlocked, which is currently locked
by the task doing the clone operation;
* the async reclaim task blocks waiting for the delalloc work to complete;
* the cloning task is waiting on the waitqueue of its reservation ticket
while holding the range with the dirty page locked in the inode's
io_tree;
* if metadata space is not released by some other task (like delalloc for
some other inode completing for example), the clone task waits forever
and as a consequence the delalloc work and async reclaim tasks will hang
forever as well. Releasing more space on the other hand may require
starting a transaction, which will hang as well when trying to reserve
metadata space, resulting in a deadlock between all these tasks.
When this happens, traces like the following show up in dmesg/syslog:
[87452.323003] INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
[87452.323644] Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
[87452.324248] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[87452.324852] task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
[87452.325520] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[87452.326136] Call Trace:
[87452.326737] __schedule+0x5d1/0xcf0
[87452.327390] schedule+0x45/0xe0
[87452.328174] lock_extent_bits+0x1e6/0x2d0 [btrfs]
[87452.328894] ? finish_wait+0x90/0x90
[87452.329474] btrfs_invalidatepage+0x32c/0x390 [btrfs]
[87452.330133] ? __mod_memcg_state+0x8e/0x160
[87452.330738] __extent_writepage+0x2d4/0x400 [btrfs]
[87452.331405] extent_write_cache_pages+0x2b2/0x500 [btrfs]
[87452.332007] ? lock_release+0x20e/0x4c0
[87452.332557] ? trace_hardirqs_on+0x1b/0xf0
[87452.333127] extent_writepages+0x43/0x90 [btrfs]
[87452.333653] ? lock_acquire+0x1a3/0x490
[87452.334177] do_writepages+0x43/0xe0
[87452.334699] ? __filemap_fdatawrite_range+0xa4/0x100
[87452.335720] __filemap_fdatawrite_range+0xc5/0x100
[87452.336500] btrfs_run_delalloc_work+0x17/0x40 [btrfs]
[87452.337216] btrfs_work_helper+0xf1/0x600 [btrfs]
[87452.337838] process_one_work+0x24e/0x5e0
[87452.338437] worker_thread+0x50/0x3b0
[87452.339137] ? process_one_work+0x5e0/0x5e0
[87452.339884] kthread+0x153/0x170
[87452.340507] ? kthread_mod_delayed_work+0xc0/0xc0
[87452.341153] ret_from_fork+0x22/0x30
[87452.341806] INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
[87452.342487] Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
[87452.343274] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[87452.344049] task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
[87452.344974] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[87452.345655] Call Trace:
[87452.346305] __schedule+0x5d1/0xcf0
[87452.346947] ? kvm_clock_read+0x14/0x30
[87452.347676] ? wait_for_completion+0x81/0x110
[87452.348389] schedule+0x45/0xe0
[87452.349077] schedule_timeout+0x30c/0x580
[87452.349718] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[87452.350340] ? lock_acquire+0x1a3/0x490
[87452.351006] ? try_to_wake_up+0x7a/0xa20
[87452.351541] ? lock_release+0x20e/0x4c0
[87452.352040] ? lock_acquired+0x199/0x490
[87452.352517] ? wait_for_completion+0x81/0x110
[87452.353000] wait_for_completion+0xab/0x110
[87452.353490] start_delalloc_inodes+0x2af/0x390 [btrfs]
[87452.353973] btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
[87452.354455] flush_space+0x24f/0x660 [btrfs]
[87452.355063] btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
[87452.355565] process_one_work+0x24e/0x5e0
[87452.356024] worker_thread+0x20f/0x3b0
[87452.356487] ? process_one_work+0x5e0/0x5e0
[87452.356973] kthread+0x153/0x170
[87452.357434] ? kthread_mod_delayed_work+0xc0/0xc0
[87452.357880] ret_from_fork+0x22/0x30
(...)
< stack traces of several tasks waiting for the locks of the inodes of the
clone operation >
(...)
[92867.444138] RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000246 ORIG_RAX: 0000000000000052
[92867.444624] RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73f97
[92867.445116] RDX: 0000000000000000 RSI: 0000560fbd5d7a40 RDI: 0000560fbd5d8960
[92867.445595] RBP: 00007ffc3371beb0 R08: 0000000000000001 R09: 0000000000000003
[92867.446070] R10: 00007ffc3371b996 R11: 0000000000000246 R12: 0000000000000000
[92867.446820] R13: 000000000000001f R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
[92867.447361] task:fsstress state:D stack: 0 pid:2508238 ppid:2508153 flags:0x00004000
[92867.447920] Call Trace:
[92867.448435] __schedule+0x5d1/0xcf0
[92867.448934] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[92867.449423] schedule+0x45/0xe0
[92867.449916] __reserve_bytes+0x4a4/0xb10 [btrfs]
[92867.450576] ? finish_wait+0x90/0x90
[92867.451202] btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
[92867.451815] btrfs_block_rsv_add+0x1f/0x50 [btrfs]
[92867.452412] start_transaction+0x2d1/0x760 [btrfs]
[92867.453216] clone_copy_inline_extent+0x333/0x490 [btrfs]
[92867.453848] ? lock_release+0x20e/0x4c0
[92867.454539] ? btrfs_search_slot+0x9a7/0xc30 [btrfs]
[92867.455218] btrfs_clone+0x569/0x7e0 [btrfs]
[92867.455952] btrfs_clone_files+0xf6/0x150 [btrfs]
[92867.456588] btrfs_remap_file_range+0x324/0x3d0 [btrfs]
[92867.457213] do_clone_file_range+0xd4/0x1f0
[92867.457828] vfs_clone_file_range+0x4d/0x230
[92867.458355] ? lock_release+0x20e/0x4c0
[92867.458890] ioctl_file_clone+0x8f/0xc0
[92867.459377] do_vfs_ioctl+0x342/0x750
[92867.459913] __x64_sys_ioctl+0x62/0xb0
[92867.460377] do_syscall_64+0x33/0x80
[92867.460842] entry_SYSCALL_64_after_hwframe+0x44/0xa9
(...)
< stack traces of more tasks blocked on metadata reservation like the clone
task above, because the async reclaim task has deadlocked >
(...)
Another thing to notice is that the worker task that is deadlocked when
trying to flush the destination inode of the clone operation is at
btrfs_invalidatepage(). This is simply because the clone operation has a
destination offset greater than the i_size and we only update the i_size
of the destination file after cloning an extent (just like we do in the
buffered write path).
Since the async reclaim path uses btrfs_start_delalloc_roots() to trigger
the flushing of delalloc for all inodes that have delalloc, add a runtime
flag to an inode to signal it should not be flushed, and for inodes with
that flag set, start_delalloc_inodes() will simply skip them. When the
cloning code needs to dirty a page to copy an inline extent, set that flag
on the inode and then clear it when the clone operation finishes.
This could be sporadically triggered with test case generic/269 from
fstests, which exercises many fsstress processes running in parallel with
several dd processes filling up the entire filesystem.
CC: stable@vger.kernel.org # 5.9+
Fixes:
|
||
Linus Torvalds
|
f1ee3b8829 |
for-5.11-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl/XdB4ACgkQxWXV+ddt WDv41g//dOkrwjAVBfDUwRT/yKqojyEsZB1aNyHlPHFw8KEw5oIW7wxR4oqXi2ed /i9KIJe4E9AfqAiexhLvA+Wyt/Sgwz+k4ys82PKhhRNQn7LE4tvhSBUu6JYJDU09 6I1jagya7ILa8akFXZTmVbXdliI4Ab+pcXWAmQYK/xPVDxYTSsBf4o4MilNBA9FS lTwwBh5GTEtIkubr2yVd3pKfF4fT2g1hd+yglpHaOzpcrLMNN4hj4sUFlLbx/FlJ MWo+914cSNKJoebbnqhK9djD9hggaaXnNooqfBOXUhZN0VN9rQoKb5tW+TREQmFm shrmBSqN7CaqKfSOMZs7WOnTuTvmV/825PnLqDqcTUaLw+BgdyacpO9WflgfSs16 Cdvagr1SqbrSQ/3WYCpbqPLDNP3XuZ6+m5OWizf6fhyo8xdFcUHZgRC8qejDlycy V/zP0c5OYOMi5vo6x/zhrD7Uft7xoFUVcSJCe8WPri082d9LbA2BqwCsullD60PQ K/fsmlHs5Uxxy3MFgBPVDdWGgaa9rQ2vXequezbozBIIeeVL+Q9zkeyBFSYuFeE8 HToRE9B9BUEUh+p1JxPjOdFH/m+sKe1WMdmRLQthMzfOiNWW7pp/nL5rl4BUVmjm 58dQS73Cj/YNdBomRJXPPtgKIJPAWRrzU/JBcwAdMoKy57oh9NQ= =5YAS -----END PGP SIGNATURE----- Merge tag 'for-5.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "We have a mix of all kinds of changes, feature updates, core stuff, performance improvements and lots of cleanups and preparatory changes. User visible: - export filesystem generation in sysfs - new features for mount option 'rescue': - what's currently supported is exported in sysfs - 'ignorebadroots'/'ibadroots' - continue even if some essential tree roots are not usable (extent, uuid, data reloc, device, csum, free space) - 'ignoredatacsums'/'idatacsums' - skip checksum verification on data - 'all' - now enables 'ignorebadroots' + 'ignoredatacsums' + 'nologreplay' - export read mirror policy settings to sysfs, new policies will be added in the future - remove inode number cache feature (mount -o inode_cache), obsoleted in 5.9 User visible fixes: - async discard scheduling fixes on high loads - update inode byte counter atomically so stat() does not report wrong value in some cases - free space tree fixes: - correctly report status of v2 after remount - clear v1 cache inodes when v2 is newly enabled after remount Core: - switch own tree lock implementation to standard rw semaphore: - one-level lock nesting is not required anymore, the last use of this was in free space that's now loaded asynchronously - own implementation of adaptive spinning before taking mutex has been part of rwsem - performance seems to be better in general, much better (+tens of percents) for some workloads - lockdep does not complain - finish direct IO conversion to iomap infrastructure, remove temporary workaround for DSYNC after iomap API updates - preparatory work to support data and metadata blocks smaller than page: - generalize code that assumes sectorsize == PAGE_SIZE, lots of refactoring - planned namely for 64K pages (eg. arm64, ppc64) - scrub read-only support - preparatory work for zoned allocation mode (SMR/ZBC/ZNS friendly): - disable incompatible features - round-robin superblock write - free space cache (v1) is loaded asynchronously, remove tree path recursion - slightly improved time tacking for transaction kthread wake ups Performance improvements (note that the numbers depend on load type or other features and weren't run on the same machine): - skip unnecessary work: - do not start readahead for csum tree when scrubbing non-data block groups - do not start and wait for delalloc on snapshot roots on transaction commit - fix race when defragmenting leads to unnecessary IO - dbench speedups (+throughput%/-max latency%): - skip unnecessary searches for xattrs when logging an inode (+10.8/-8.2) - stop incrementing log batch when joining log transaction (1-2) - unlock path before checking if extent is shared during nocow writeback (+5.0/-20.5), on fio load +9.7% throughput/-9.8% runtime - several tree log improvements, eg. removing unnecessary operations, fixing races that lead to additional work (+12.7/-8.2) - tree-checker error branches annotated with unlikely() (+3% throughput) Other: - cleanups - lockdep fixes - more btrfs_inode conversions - error variable cleanups" * tag 'for-5.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (198 commits) btrfs: scrub: allow scrub to work with subpage sectorsize btrfs: scrub: support subpage data scrub btrfs: scrub: support subpage tree block scrub btrfs: scrub: always allocate one full page for one sector for RAID56 btrfs: scrub: reduce width of extent_len/stripe_len from 64 to 32 bits btrfs: refactor btrfs_lookup_bio_sums to handle out-of-order bvecs btrfs: remove btrfs_find_ordered_sum call from btrfs_lookup_bio_sums btrfs: handle sectorsize < PAGE_SIZE case for extent buffer accessors btrfs: update num_extent_pages to support subpage sized extent buffer btrfs: don't allow tree block to cross page boundary for subpage support btrfs: calculate inline extent buffer page size based on page size btrfs: factor out btree page submission code to a helper btrfs: make btrfs_verify_data_csum follow sector size btrfs: pass bio_offset to check_data_csum() directly btrfs: rename bio_offset of extent_submit_bio_start_t to dio_file_offset btrfs: fix lockdep warning when creating free space tree btrfs: skip space_cache v1 setup when not using it btrfs: remove free space items when disabling space cache v1 btrfs: warn when remount will not change the free space tree btrfs: use superblock state to print space_cache mount option ... |
||
Linus Torvalds
|
edd7ab7684 |
The new preemtible kmap_local() implementation:
- Consolidate all kmap_atomic() internals into a generic implementation which builds the base for the kmap_local() API and make the kmap_atomic() interface wrappers which handle the disabling/enabling of preemption and pagefaults. - Switch the storage from per-CPU to per task and provide scheduler support for clearing mapping when scheduling out and restoring them when scheduling back in. - Merge the migrate_disable/enable() code, which is also part of the scheduler pull request. This was required to make the kmap_local() interface available which does not disable preemption when a mapping is established. It has to disable migration instead to guarantee that the virtual address of the mapped slot is the same accross preemption. - Provide better debug facilities: guard pages and enforced utilization of the mapping mechanics on 64bit systems when the architecture allows it. - Provide the new kmap_local() API which can now be used to cleanup the kmap_atomic() usage sites all over the place. Most of the usage sites do not require the implicit disabling of preemption and pagefaults so the penalty on 64bit and 32bit non-highmem systems is removed and quite some of the code can be simplified. A wholesale conversion is not possible because some usage depends on the implicit side effects and some need to be cleaned up because they work around these side effects. The migrate disable side effect is only effective on highmem systems and when enforced debugging is enabled. On 64bit and 32bit non-highmem systems the overhead is completely avoided. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XyQwTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoUolD/9+R+BX96fGir+I8rG9dc3cbLw5meSi 0I/Nq3PToZMs2Iqv50DsoaPYHHz/M6fcAO9LRIgsE9jRbnY93GnsBM0wU9Y8yQaT 4wUzOG5WHaLDfqIkx/CN9coUl458oEiwOEbn79A2FmPXFzr7IpkufnV3ybGDwzwP p73bjMJMPPFrsa9ig87YiYfV/5IAZHi82PN8Cq1v4yNzgXRP3Tg6QoAuCO84ZnWF RYlrfKjcJ2xPdn+RuYyXolPtxr1hJQ0bOUpe4xu/UfeZjxZ7i1wtwLN9kWZe8CKH +x4Lz8HZZ5QMTQ9sCHOLtKzu2MceMcpISzoQH4/aFQCNMgLn1zLbS790XkYiQCuR ne9Cua+IqgYfGMG8cq8+bkU9HCNKaXqIBgPEKE/iHYVmqzCOqhW5Cogu4KFekf6V Wi7pyyUdX2en8BAWpk5NHc8de9cGcc+HXMq2NIcgXjVWvPaqRP6DeITERTZLJOmz XPxq5oPLGl7wdm7z+ICIaNApy8zuxpzb6sPLNcn7l5OeorViORlUu08AN8587wAj FiVjp6ZYomg+gyMkiNkDqFOGDH5TMENpOFoB0hNNEyJwwS0xh6CgWuwZcv+N8aPO HuS/P+tNANbD8ggT4UparXYce7YCtgOf3IG4GA3JJYvYmJ6pU+AZOWRoDScWq4o+ +jlfoJhMbtx5Gg== =n71I -----END PGP SIGNATURE----- Merge tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull kmap updates from Thomas Gleixner: "The new preemtible kmap_local() implementation: - Consolidate all kmap_atomic() internals into a generic implementation which builds the base for the kmap_local() API and make the kmap_atomic() interface wrappers which handle the disabling/enabling of preemption and pagefaults. - Switch the storage from per-CPU to per task and provide scheduler support for clearing mapping when scheduling out and restoring them when scheduling back in. - Merge the migrate_disable/enable() code, which is also part of the scheduler pull request. This was required to make the kmap_local() interface available which does not disable preemption when a mapping is established. It has to disable migration instead to guarantee that the virtual address of the mapped slot is the same across preemption. - Provide better debug facilities: guard pages and enforced utilization of the mapping mechanics on 64bit systems when the architecture allows it. - Provide the new kmap_local() API which can now be used to cleanup the kmap_atomic() usage sites all over the place. Most of the usage sites do not require the implicit disabling of preemption and pagefaults so the penalty on 64bit and 32bit non-highmem systems is removed and quite some of the code can be simplified. A wholesale conversion is not possible because some usage depends on the implicit side effects and some need to be cleaned up because they work around these side effects. The migrate disable side effect is only effective on highmem systems and when enforced debugging is enabled. On 64bit and 32bit non-highmem systems the overhead is completely avoided" * tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) ARM: highmem: Fix cache_is_vivt() reference x86/crashdump/32: Simplify copy_oldmem_page() io-mapping: Provide iomap_local variant mm/highmem: Provide kmap_local* sched: highmem: Store local kmaps in task struct x86: Support kmap_local() forced debugging mm/highmem: Provide CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP mm/highmem: Provide and use CONFIG_DEBUG_KMAP_LOCAL microblaze/mm/highmem: Add dropped #ifdef back xtensa/mm/highmem: Make generic kmap_atomic() work correctly mm/highmem: Take kmap_high_get() properly into account highmem: High implementation details and document API Documentation/io-mapping: Remove outdated blurb io-mapping: Cleanup atomic iomap mm/highmem: Remove the old kmap_atomic cruft highmem: Get rid of kmap_types.h xtensa/mm/highmem: Switch to generic kmap atomic sparc/mm/highmem: Switch to generic kmap atomic powerpc/mm/highmem: Switch to generic kmap atomic nds32/mm/highmem: Switch to generic kmap atomic ... |
||
Qu Wenruo
|
6275193ef1 |
btrfs: refactor btrfs_lookup_bio_sums to handle out-of-order bvecs
Refactor btrfs_lookup_bio_sums() by: - Remove the @file_offset parameter There are two factors making the @file_offset parameter useless: * For csum lookup in csum tree, file offset makes no sense We only need disk_bytenr, which is unrelated to file_offset * page_offset (file offset) of each bvec is not contiguous. Pages can be added to the same bio as long as their on-disk bytenr is contiguous, meaning we could have pages at different file offsets in the same bio. Thus passing file_offset makes no sense any more. The only user of file_offset is for data reloc inode, we will use a new function, search_file_offset_in_bio(), to handle it. - Extract the csum tree lookup into search_csum_tree() The new function will handle the csum search in csum tree. The return value is the same as btrfs_find_ordered_sum(), returning the number of found sectors which have checksum. - Change how we do the main loop The only needed info from bio is: * the on-disk bytenr * the length After extracting the above info, we can do the search without bio at all, which makes the main loop much simpler: for (cur_disk_bytenr = orig_disk_bytenr; cur_disk_bytenr < orig_disk_bytenr + orig_len; cur_disk_bytenr += count * sectorsize) { /* Lookup csum tree */ count = search_csum_tree(fs_info, path, cur_disk_bytenr, search_len, csum_dst); if (!count) { /* Csum hole handling */ } } - Use single variable as the source to calculate all other offsets Instead of all different type of variables, we use only one main variable, cur_disk_bytenr, which represents the current disk bytenr. All involved values can be calculated from that variable, and all those variable will only be visible in the inner loop. The above refactoring makes btrfs_lookup_bio_sums() way more robust than it used to be, especially related to the file offset lookup. Now file_offset lookup is only related to data reloc inode, otherwise we don't need to bother file_offset at all. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
884b07d0f4 |
btrfs: handle sectorsize < PAGE_SIZE case for extent buffer accessors
To support sectorsize < PAGE_SIZE case, we need to take extra care of extent buffer accessors. Since sectorsize is smaller than PAGE_SIZE, one page can contain multiple tree blocks, we must use eb->start to determine the real offset to read/write for extent buffer accessors. This patch introduces two helpers to do this: - get_eb_page_index() This is to calculate the index to access extent_buffer::pages. It's just a simple wrapper around "start >> PAGE_SHIFT". For sectorsize == PAGE_SIZE case, nothing is changed. For sectorsize < PAGE_SIZE case, we always get index as 0, and the existing page shift also works. - get_eb_offset_in_page() This is to calculate the offset to access extent_buffer::pages. This needs to take extent_buffer::start into consideration. For sectorsize == PAGE_SIZE case, extent_buffer::start is always aligned to PAGE_SIZE, thus adding extent_buffer::start to offset_in_page() won't change the result. For sectorsize < PAGE_SIZE case, adding extent_buffer::start gives us the correct offset to access. This patch will touch the following parts to cover all extent buffer accessors: - BTRFS_SETGET_HEADER_FUNCS() - read_extent_buffer() - read_extent_buffer_to_user() - memcmp_extent_buffer() - write_extent_buffer_chunk_tree_uuid() - write_extent_buffer_fsid() - write_extent_buffer() - memzero_extent_buffer() - copy_extent_buffer_full() - copy_extent_buffer() - memcpy_extent_buffer() - memmove_extent_buffer() - btrfs_get_token_##bits() - btrfs_get_##bits() - btrfs_set_token_##bits() - btrfs_set_##bits() - generic_bin_search() Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
deb6789553 |
btrfs: calculate inline extent buffer page size based on page size
Btrfs only support 64K as maximum node size, thus for 4K page system, we would have at most 16 pages for one extent buffer. For a system using 64K page size, we would really have just one page. While we always use 16 pages for extent_buffer::pages, this means for systems using 64K pages, we are wasting memory for 15 page pointers which will never be used. Calculate the array size based on page size and the node size maximum. - for systems using 4K page size, it will stay 16 pages - for systems using 64K page size, it will be 1 page Move the definition of BTRFS_MAX_METADATA_BLOCKSIZE to btrfs_tree.h, to avoid circular inclusion of ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
7ffd27e378 |
btrfs: pass bio_offset to check_data_csum() directly
Parameter icsum for check_data_csum() is a little hard to understand. So is the phy_offset for btrfs_verify_data_csum(). Both parameters are calculated values for csum lookup. Instead of some calculated value, just pass bio_offset and let the final and only user, check_data_csum(), calculate whatever it needs. Since we are here, also make the bio_offset parameter and some related variables to be u32 (unsigned int). As bio size is limited by its bi_size, which is unsigned int, and has extra size limit check during various bio operations. Thus we are ensured that bio_offset won't overflow u32. Thus for all involved functions, not only rename the parameter from @phy_offset to @bio_offset, but also reduce its width to u32, so we won't have suspicious "u32 = u64 >> sector_bits;" lines anymore. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Boris Burkov
|
9484622945 |
btrfs: keep sb cache_generation consistent with space_cache
When mounting, btrfs uses the cache_generation in the super block to determine if space cache v1 is in use. However, by mounting with nospace_cache or space_cache=v2, it is possible to disable space cache v1, which does not result in un-setting cache_generation back to 0. In order to base some logic, like mount option printing in /proc/mounts, on the current state of the space cache rather than just the values of the mount option, keep the value of cache_generation consistent with the status of space cache v1. We ensure that cache_generation > 0 iff the file system is using space_cache v1. This requires committing a transaction on any mount which changes whether we are using v1. (v1->nospace_cache, v1->v2, nospace_cache->v1, v2->v1). Since the mechanism for writing out the cache generation is transaction commit, but we want some finer grained control over when we un-set it, we can't just rely on the SPACE_CACHE mount option, and introduce an fs_info flag that mount can use when it wants to unset the generation. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
47876f7cef |
btrfs: do not block inode logging for so long during transaction commit
Early on during a transaction commit we acquire the tree_log_mutex and hold it until after we write the super blocks. But before writing the extent buffers dirtied by the transaction and the super blocks we unblock the transaction by setting its state to TRANS_STATE_UNBLOCKED and setting fs_info->running_transaction to NULL. This means that after that and before writing the super blocks, new transactions can start. However if any transaction wants to log an inode, it will block waiting for the transaction commit to write its dirty extent buffers and the super blocks because the tree_log_mutex is only released after those operations are complete, and starting a new log transaction blocks on that mutex (at start_log_trans()). Writing the dirty extent buffers and the super blocks can take a very significant amount of time to complete, but we could allow the tasks wanting to log an inode to proceed with most of their steps: 1) create the log trees 2) log metadata in the trees 3) write their dirty extent buffers They only need to wait for the previous transaction commit to complete (write its super blocks) before they attempt to write their super blocks, otherwise we could end up with a corrupt filesystem after a crash. So change start_log_trans() to use the root tree's log_mutex to serialize for the creation of the log root tree instead of using the tree_log_mutex, and make btrfs_sync_log() acquire the tree_log_mutex before writing the super blocks. This allows for inode logging to wait much less time when there is a previous transaction that is still committing, often not having to wait at all, as by the time when we try to sync the log the previous transaction already wrote its super blocks. This patch belongs to a patch set that is comprised of the following patches: btrfs: fix race causing unnecessary inode logging during link and rename btrfs: fix race that results in logging old extents during a fast fsync btrfs: fix race that causes unnecessary logging of ancestor inodes btrfs: fix race that makes inode logging fallback to transaction commit btrfs: fix race leading to unnecessary transaction commit when logging inode btrfs: do not block inode logging for so long during transaction commit The following script that uses dbench was used to measure the impact of the whole patchset: $ cat test-dbench.sh #!/bin/bash DEV=/dev/nvme0n1 MNT=/mnt/btrfs MOUNT_OPTIONS="-o ssd" echo "performance" | \ tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor mkfs.btrfs -f -m single -d single $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -D $MNT -t 300 64 umount $MNT The test was run on a machine with 12 cores, 64G of ram, using a NVMe device and a non-debug kernel configuration (Debian's default). Before patch set: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 11277211 0.250 85.340 Close 8283172 0.002 6.479 Rename 477515 1.935 86.026 Unlink 2277936 0.770 87.071 Deltree 256 15.732 81.379 Mkdir 128 0.003 0.009 Qpathinfo 10221180 0.056 44.404 Qfileinfo 1789967 0.002 4.066 Qfsinfo 1874399 0.003 9.176 Sfileinfo 918589 0.061 10.247 Find 3951758 0.341 54.040 WriteX 5616547 0.047 85.079 ReadX 17676028 0.005 9.704 LockX 36704 0.003 1.800 UnlockX 36704 0.002 0.687 Flush 790541 14.115 676.236 Throughput 1179.19 MB/sec 64 clients 64 procs max_latency=676.240 ms After patch set: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 12687926 0.171 86.526 Close 9320780 0.002 8.063 Rename 537253 1.444 78.576 Unlink 2561827 0.559 87.228 Deltree 374 11.499 73.549 Mkdir 187 0.003 0.005 Qpathinfo 11500300 0.061 36.801 Qfileinfo 2017118 0.002 7.189 Qfsinfo 2108641 0.003 4.825 Sfileinfo 1033574 0.008 8.065 Find 4446553 0.408 47.835 WriteX 6335667 0.045 84.388 ReadX 19887312 0.003 9.215 LockX 41312 0.003 1.394 UnlockX 41312 0.002 1.425 Flush 889233 13.014 623.259 Throughput 1339.32 MB/sec 64 clients 64 procs max_latency=623.265 ms +12.7% throughput, -8.2% max latency Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |