Commit Graph

268 Commits

Author SHA1 Message Date
Roman Gushchin
4330a26bc4 mm: memcg/slab: deprecate memory.kmem.slabinfo
Deprecate memory.kmem.slabinfo.

An empty file will be presented if corresponding config options are
enabled.

The interface is implementation dependent, isn't present in cgroup v2, and
is generally useful only for core mm debugging purposes.  In other words,
it doesn't provide any value for the absolute majority of users.

A drgn-based replacement can be found in
tools/cgroup/memcg_slabinfo.py.  It does support cgroup v1 and v2,
mimics memory.kmem.slabinfo output and also allows to get any
additional information without a need to recompile the kernel.

If a drgn-based solution is too slow for a task, a bpf-based tracing tool
can be used, which can easily keep track of all slab allocations belonging
to a memory cgroup.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-11-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin
d42f3245c7 mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert
NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes.

To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and
NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB).

Internally global and per-node counters are stored in pages, however memcg
and lruvec counters are stored in bytes.  This scheme may look weird, but
only for now.  As soon as slab pages will be shared between multiple
cgroups, global and node counters will reflect the total number of slab
pages.  However memcg and lruvec counters will be used for per-memcg slab
memory tracking, which will take separate kernel objects in the account.
Keeping global and node counters in pages helps to avoid additional
overhead.

The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it
will fit into atomic_long_t we use for vmstats.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Long Li
444050990d mm, slab: check GFP_SLAB_BUG_MASK before alloc_pages in kmalloc_order
kmalloc cannot allocate memory from HIGHMEM.  Allocating large amounts of
memory currently bypasses the check and will simply leak the memory when
page_address() returns NULL.  To fix this, factor the GFP_SLAB_BUG_MASK
check out of slab & slub, and call it from kmalloc_order() as well.  In
order to make the code clear, the warning message is put in one place.

Signed-off-by: Long Li <lonuxli.64@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200704035027.GA62481@lilong
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:22 -07:00
William Kucharski
fa9ba3aa89 mm: ksize() should silently accept a NULL pointer
Other mm routines such as kfree() and kzfree() silently do the right thing
if passed a NULL pointer, so ksize() should do the same.

Signed-off-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200616225409.4670-1-william.kucharski@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:22 -07:00
Waiman Long
453431a549 mm, treewide: rename kzfree() to kfree_sensitive()
As said by Linus:

  A symmetric naming is only helpful if it implies symmetries in use.
  Otherwise it's actively misleading.

  In "kzalloc()", the z is meaningful and an important part of what the
  caller wants.

  In "kzfree()", the z is actively detrimental, because maybe in the
  future we really _might_ want to use that "memfill(0xdeadbeef)" or
  something. The "zero" part of the interface isn't even _relevant_.

The main reason that kzfree() exists is to clear sensitive information
that should not be leaked to other future users of the same memory
objects.

Rename kzfree() to kfree_sensitive() to follow the example of the recently
added kvfree_sensitive() and make the intention of the API more explicit.
In addition, memzero_explicit() is used to clear the memory to make sure
that it won't get optimized away by the compiler.

The renaming is done by using the command sequence:

  git grep -w --name-only kzfree |\
  xargs sed -i 's/kzfree/kfree_sensitive/'

followed by some editing of the kfree_sensitive() kerneldoc and adding
a kzfree backward compatibility macro in slab.h.

[akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h]
[akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more]

Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:22 -07:00
Muchun Song
d38a2b7a9c mm: memcg/slab: fix memory leak at non-root kmem_cache destroy
If the kmem_cache refcount is greater than one, we should not mark the
root kmem_cache as dying.  If we mark the root kmem_cache dying
incorrectly, the non-root kmem_cache can never be destroyed.  It
resulted in memory leak when memcg was destroyed.  We can use the
following steps to reproduce.

  1) Use kmem_cache_create() to create a new kmem_cache named A.
  2) Coincidentally, the kmem_cache A is an alias for kmem_cache B,
     so the refcount of B is just increased.
  3) Use kmem_cache_destroy() to destroy the kmem_cache A, just
     decrease the B's refcount but mark the B as dying.
  4) Create a new memory cgroup and alloc memory from the kmem_cache
     B. It leads to create a non-root kmem_cache for allocating memory.
  5) When destroy the memory cgroup created in the step 4), the
     non-root kmem_cache can never be destroyed.

If we repeat steps 4) and 5), this will cause a lot of memory leak.  So
only when refcount reach zero, we mark the root kmem_cache as dying.

Fixes: 92ee383f6d ("mm: fix race between kmem_cache destroy, create and deactivate")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200716165103.83462-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-24 12:42:41 -07:00
Waiman Long
8982ae527f mm/slab: use memzero_explicit() in kzfree()
The kzfree() function is normally used to clear some sensitive
information, like encryption keys, in the buffer before freeing it back to
the pool.  Memset() is currently used for buffer clearing.  However
unlikely, there is still a non-zero probability that the compiler may
choose to optimize away the memory clearing especially if LTO is being
used in the future.

To make sure that this optimization will never happen,
memzero_explicit(), which is introduced in v3.18, is now used in
kzfree() to future-proof it.

Link: http://lkml.kernel.org/r/20200616154311.12314-2-longman@redhat.com
Fixes: 3ef0e5ba46 ("slab: introduce kzfree()")
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Vlastimil Babka
49f2d2419d usercopy: mark dma-kmalloc caches as usercopy caches
We have seen a "usercopy: Kernel memory overwrite attempt detected to
SLUB object 'dma-kmalloc-1 k' (offset 0, size 11)!" error on s390x, as
IUCV uses kmalloc() with __GFP_DMA because of memory address
restrictions.  The issue has been discussed [2] and it has been noted
that if all the kmalloc caches are marked as usercopy, there's little
reason not to mark dma-kmalloc caches too.  The 'dma' part merely means
that __GFP_DMA is used to restrict memory address range.

As Jann Horn put it [3]:
 "I think dma-kmalloc slabs should be handled the same way as normal
  kmalloc slabs. When a dma-kmalloc allocation is freshly created, it is
  just normal kernel memory - even if it might later be used for DMA -,
  and it should be perfectly fine to copy_from_user() into such
  allocations at that point, and to copy_to_user() out of them at the
  end. If you look at the places where such allocations are created, you
  can see things like kmemdup(), memcpy() and so on - all normal
  operations that shouldn't conceptually be different from usercopy in
  any relevant way."

Thus this patch marks the dma-kmalloc-* caches as usercopy.

[1] https://bugzilla.suse.com/show_bug.cgi?id=1156053
[2] https://lore.kernel.org/kernel-hardening/bfca96db-bbd0-d958-7732-76e36c667c68@suse.cz/
[3] https://lore.kernel.org/kernel-hardening/CAG48ez1a4waGk9kB0WLaSbs4muSoK0AYAVk8=XYaKj4_+6e6Hg@mail.gmail.com/

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Jiri Slaby <jslaby@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Julian Wiedmann <jwi@linux.ibm.com>
Cc: Ursula Braun <ubraun@linux.ibm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: David Windsor <dave@nullcore.net>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Luis de Bethencourt <luisbg@kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Matthew Garrett <mjg59@google.com>
Cc: Michal Kubecek <mkubecek@suse.cz>
Link: http://lkml.kernel.org/r/7d810f6d-8085-ea2f-7805-47ba3842dc50@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:06 -07:00
Qiujun Huang
b991cee567 mm, slab_common: fix a typo in comment "eariler"->"earlier"
There is a typo in comment, fix it.
s/eariler/earlier/

Signed-off-by: Qiujun Huang <hqjagain@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/20200405160544.1246-1-hqjagain@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-10 15:36:20 -07:00
Alexey Dobriyan
d919b33daf proc: faster open/read/close with "permanent" files
Now that "struct proc_ops" exist we can start putting there stuff which
could not fly with VFS "struct file_operations"...

Most of fs/proc/inode.c file is dedicated to make open/read/.../close
reliable in the event of disappearing /proc entries which usually happens
if module is getting removed.  Files like /proc/cpuinfo which never
disappear simply do not need such protection.

Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such
"permanent" files.

Enable "permanent" flag for

	/proc/cpuinfo
	/proc/kmsg
	/proc/modules
	/proc/slabinfo
	/proc/stat
	/proc/sysvipc/*
	/proc/swaps

More will come once I figure out foolproof way to prevent out module
authors from marking their stuff "permanent" for performance reasons
when it is not.

This should help with scalability: benchmark is "read /proc/cpuinfo R times
by N threads scattered over the system".

	N	R	t, s (before)	t, s (after)
	-----------------------------------------------------
	64	4096	1.582458	1.530502	-3.2%
	256	4096	6.371926	6.125168	-3.9%
	1024	4096	25.64888	24.47528	-4.6%

Benchmark source:

#include <chrono>
#include <iostream>
#include <thread>
#include <vector>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN);
int N;
const char *filename;
int R;

int xxx = 0;

int glue(int n)
{
	cpu_set_t m;
	CPU_ZERO(&m);
	CPU_SET(n, &m);
	return sched_setaffinity(0, sizeof(cpu_set_t), &m);
}

void f(int n)
{
	glue(n % NR_CPUS);

	while (*(volatile int *)&xxx == 0) {
	}

	for (int i = 0; i < R; i++) {
		int fd = open(filename, O_RDONLY);
		char buf[4096];
		ssize_t rv = read(fd, buf, sizeof(buf));
		asm volatile ("" :: "g" (rv));
		close(fd);
	}
}

int main(int argc, char *argv[])
{
	if (argc < 4) {
		std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R
";
		return 1;
	}

	N = atoi(argv[1]);
	filename = argv[2];
	R = atoi(argv[3]);

	for (int i = 0; i < NR_CPUS; i++) {
		if (glue(i) == 0)
			break;
	}

	std::vector<std::thread> T;
	T.reserve(N);
	for (int i = 0; i < N; i++) {
		T.emplace_back(f, i);
	}

	auto t0 = std::chrono::system_clock::now();
	{
		*(volatile int *)&xxx = 1;
		for (auto& t: T) {
			t.join();
		}
	}
	auto t1 = std::chrono::system_clock::now();
	std::chrono::duration<double> dt = t1 - t0;
	std::cout << dt.count() << '
';

	return 0;
}

P.S.:
Explicit randomization marker is added because adding non-function pointer
will silently disable structure layout randomization.

[akpm@linux-foundation.org: coding style fixes]
Reported-by: kbuild test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Joe Perches <joe@perches.com>
Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:42 -07:00
Yafang Shao
a87425a36f mm, memcg: fix build error around the usage of kmem_caches
When I manually set default n to MEMCG_KMEM in init/Kconfig, bellow error
occurs,

  mm/slab_common.c: In function 'memcg_slab_start':
  mm/slab_common.c:1530:30: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    return seq_list_start(&memcg->kmem_caches, *pos);
                                ^
  mm/slab_common.c: In function 'memcg_slab_next':
  mm/slab_common.c:1537:32: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    return seq_list_next(p, &memcg->kmem_caches, pos);
                                  ^
  mm/slab_common.c: In function 'memcg_slab_show':
  mm/slab_common.c:1551:16: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    if (p == memcg->kmem_caches.next)
                  ^
    CC      arch/x86/xen/smp.o
  mm/slab_common.c: In function 'memcg_slab_start':
  mm/slab_common.c:1531:1: warning: control reaches end of non-void function
  [-Wreturn-type]
   }
   ^
  mm/slab_common.c: In function 'memcg_slab_next':
  mm/slab_common.c:1538:1: warning: control reaches end of non-void function
  [-Wreturn-type]
   }
   ^

That's because kmem_caches is defined only when CONFIG_MEMCG_KMEM is set,
while memcg_slab_start() will use it no matter CONFIG_MEMCG_KMEM is defined
or not.

By the way, the reason I mannuly undefined CONFIG_MEMCG_KMEM is to verify
whether my some other code change is still stable when CONFIG_MEMCG_KMEM is
not set. Unfortunately, the existing code has been already unstable since
v4.11.

Fixes: bc2791f857 ("slab: link memcg kmem_caches on their associated memory cgroup")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/1580970260-2045-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Alexey Dobriyan
97a32539b9 proc: convert everything to "struct proc_ops"
The most notable change is DEFINE_SHOW_ATTRIBUTE macro split in
seq_file.h.

Conversion rule is:

	llseek		=> proc_lseek
	unlocked_ioctl	=> proc_ioctl

	xxx		=> proc_xxx

	delete ".owner = THIS_MODULE" line

[akpm@linux-foundation.org: fix drivers/isdn/capi/kcapi_proc.c]
[sfr@canb.auug.org.au: fix kernel/sched/psi.c]
  Link: http://lkml.kernel.org/r/20200122180545.36222f50@canb.auug.org.au
Link: http://lkml.kernel.org/r/20191225172546.GB13378@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:26 +00:00
Florian Westphal
1c948715a1 mm: remove __krealloc
Since 5.5-rc1 the last user of this function is gone, so remove the
functionality.

See commit
2ad9d7747c ("netfilter: conntrack: free extension area immediately")
for details.

Link: http://lkml.kernel.org/r/20191212223442.22141-1-fw@strlen.de
Signed-off-by: Florian Westphal <fw@strlen.de>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:24 +00:00
Adrian Huang
2fe20210fc mm: memcg/slab: call flush_memcg_workqueue() only if memcg workqueue is valid
When booting with amd_iommu=off, the following WARNING message
appears:

  AMD-Vi: AMD IOMMU disabled on kernel command-line
  ------------[ cut here ]------------
  WARNING: CPU: 0 PID: 0 at kernel/workqueue.c:2772 flush_workqueue+0x42e/0x450
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.5.0-rc3-amd-iommu #6
  Hardware name: Lenovo ThinkSystem SR655-2S/7D2WRCZ000, BIOS D8E101L-1.00 12/05/2019
  RIP: 0010:flush_workqueue+0x42e/0x450
  Code: ff 0f 0b e9 7a fd ff ff 4d 89 ef e9 33 fe ff ff 0f 0b e9 7f fd ff ff 0f 0b e9 bc fd ff ff 0f 0b e9 a8 fd ff ff e8 52 2c fe ff <0f> 0b 31 d2 48 c7 c6 e0 88 c5 95 48 c7 c7 d8 ad f0 95 e8 19 f5 04
  Call Trace:
   kmem_cache_destroy+0x69/0x260
   iommu_go_to_state+0x40c/0x5ab
   amd_iommu_prepare+0x16/0x2a
   irq_remapping_prepare+0x36/0x5f
   enable_IR_x2apic+0x21/0x172
   default_setup_apic_routing+0x12/0x6f
   apic_intr_mode_init+0x1a1/0x1f1
   x86_late_time_init+0x17/0x1c
   start_kernel+0x480/0x53f
   secondary_startup_64+0xb6/0xc0
  ---[ end trace 30894107c3749449 ]---
  x2apic: IRQ remapping doesn't support X2APIC mode
  x2apic disabled

The warning is caused by the calling of 'kmem_cache_destroy()'
in free_iommu_resources(). Here is the call path:

  free_iommu_resources
    kmem_cache_destroy
      flush_memcg_workqueue
        flush_workqueue

The root cause is that the IOMMU subsystem runs before the workqueue
subsystem, which the variable 'wq_online' is still 'false'.  This leads
to the statement 'if (WARN_ON(!wq_online))' in flush_workqueue() is
'true'.

Since the variable 'memcg_kmem_cache_wq' is not allocated during the
time, it is unnecessary to call flush_memcg_workqueue().  This prevents
the WARNING message triggered by flush_workqueue().

Link: http://lkml.kernel.org/r/20200103085503.1665-1-ahuang12@lenovo.com
Fixes: 92ee383f6d ("mm: fix race between kmem_cache destroy, create and deactivate")
Signed-off-by: Adrian Huang <ahuang12@lenovo.com>
Reported-by: Xiaochun Lee <lixc17@lenovo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-13 18:19:02 -08:00
Roman Gushchin
a264df74df mm: memcg/slab: wait for !root kmem_cache refcnt killing on root kmem_cache destruction
Christian reported a warning like the following obtained during running
some KVM-related tests on s390:

    WARNING: CPU: 8 PID: 208 at lib/percpu-refcount.c:108 percpu_ref_exit+0x50/0x58
    Modules linked in: kvm(-) xt_CHECKSUM xt_MASQUERADE bonding xt_tcpudp ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ip6table_na>
    CPU: 8 PID: 208 Comm: kworker/8:1 Not tainted 5.2.0+ #66
    Hardware name: IBM 2964 NC9 712 (LPAR)
    Workqueue: events sysfs_slab_remove_workfn
    Krnl PSW : 0704e00180000000 0000001529746850 (percpu_ref_exit+0x50/0x58)
               R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
    Krnl GPRS: 00000000ffff8808 0000001529746740 000003f4e30e8e18 0036008100000000
               0000001f00000000 0035008100000000 0000001fb3573ab8 0000000000000000
               0000001fbdb6de00 0000000000000000 0000001529f01328 0000001fb3573b00
               0000001fbb27e000 0000001fbdb69300 000003e009263d00 000003e009263cd0
    Krnl Code: 0000001529746842: f0a0000407fe        srp        4(11,%r0),2046,0
               0000001529746848: 47000700            bc         0,1792
              #000000152974684c: a7f40001            brc        15,152974684e
              >0000001529746850: a7f4fff2            brc        15,1529746834
               0000001529746854: 0707                bcr        0,%r7
               0000001529746856: 0707                bcr        0,%r7
               0000001529746858: eb8ff0580024        stmg       %r8,%r15,88(%r15)
               000000152974685e: a738ffff            lhi        %r3,-1
    Call Trace:
    ([<000003e009263d00>] 0x3e009263d00)
     [<00000015293252ea>] slab_kmem_cache_release+0x3a/0x70
     [<0000001529b04882>] kobject_put+0xaa/0xe8
     [<000000152918cf28>] process_one_work+0x1e8/0x428
     [<000000152918d1b0>] worker_thread+0x48/0x460
     [<00000015291942c6>] kthread+0x126/0x160
     [<0000001529b22344>] ret_from_fork+0x28/0x30
     [<0000001529b2234c>] kernel_thread_starter+0x0/0x10
    Last Breaking-Event-Address:
     [<000000152974684c>] percpu_ref_exit+0x4c/0x58
    ---[ end trace b035e7da5788eb09 ]---

The problem occurs because kmem_cache_destroy() is called immediately
after deleting of a memcg, so it races with the memcg kmem_cache
deactivation.

flush_memcg_workqueue() at the beginning of kmem_cache_destroy() is
supposed to guarantee that all deactivation processes are finished, but
failed to do so.  It waits for an rcu grace period, after which all
children kmem_caches should be deactivated.  During the deactivation
percpu_ref_kill() is called for non root kmem_cache refcounters, but it
requires yet another rcu grace period to finish the transition to the
atomic (dead) state.

So in a rare case when not all children kmem_caches are destroyed at the
moment when the root kmem_cache is about to be gone, we need to wait
another rcu grace period before destroying the root kmem_cache.

This issue can be triggered only with dynamically created kmem_caches
which are used with memcg accounting.  In this case per-memcg child
kmem_caches are created.  They are deactivated from the cgroup removing
path.  If the destruction of the root kmem_cache is racing with the
removal of the cgroup (both are quite complicated multi-stage
processes), the described issue can occur.  The only known way to
trigger it in the real life, is to unload some kernel module which
creates a dedicated kmem_cache, used from different memory cgroups with
GFP_ACCOUNT flag.  If the unloading happens immediately after calling
rmdir on the corresponding cgroup, there is some chance to trigger the
issue.

Link: http://lkml.kernel.org/r/20191129025011.3076017-1-guro@fb.com
Fixes: f0a3a24b53 ("mm: memcg/slab: rework non-root kmem_cache lifecycle management")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-04 19:44:11 -08:00
Pengfei Li
13657d0ad9 mm, slab_common: use enum kmalloc_cache_type to iterate over kmalloc caches
The type of local variable *type* of new_kmalloc_cache() should be enum
kmalloc_cache_type instead of int, so correct it.

Link: http://lkml.kernel.org/r/1569241648-26908-4-git-send-email-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:17 -08:00
Pengfei Li
dc0a7f7558 mm, slab: remove unused kmalloc_size()
The size of kmalloc can be obtained from kmalloc_info[], so remove
kmalloc_size() that will not be used anymore.

Link: http://lkml.kernel.org/r/1569241648-26908-3-git-send-email-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:17 -08:00
Pengfei Li
cb5d9fb38c mm, slab: make kmalloc_info[] contain all types of names
Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6.

There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM
and KMALLOC_DMA.

The name of KMALLOC_NORMAL is contained in kmalloc_info[].name,
but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically
generated by kmalloc_cache_name().

Patch1 predefines the names of all types of kmalloc to save
the time spent dynamically generating names.

These changes make sense, and the time spent by new_kmalloc_cache()
has been reduced by approximately 36.3%.

                         Time spent by new_kmalloc_cache()
                                  (CPU cycles)
5.3-rc7                              66264
5.3-rc7+patch                        42188

This patch (of 3):

There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and
KMALLOC_DMA.

The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the
names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by
kmalloc_cache_name().

This patch predefines the names of all types of kmalloc to save the time
spent dynamically generating names.

Besides, remove the kmalloc_cache_name() that is no longer used.

Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:17 -08:00
Roman Gushchin
b749ecfaf6 mm: memcg/slab: fix panic in __free_slab() caused by premature memcg pointer release
Karsten reported the following panic in __free_slab() happening on a s390x
machine:

  Unable to handle kernel pointer dereference in virtual kernel address space
  Failing address: 0000000000000000 TEID: 0000000000000483
  Fault in home space mode while using kernel ASCE.
  AS:00000000017d4007 R3:000000007fbd0007 S:000000007fbff000 P:000000000000003d
  Oops: 0004 ilc:3 Ý#1¨ PREEMPT SMP
  Modules linked in: tcp_diag inet_diag xt_tcpudp ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ip6table_nat ip6table_mangle ip6table_raw ip6table_security iptable_at nf_nat
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.3.0-05872-g6133e3e4bada-dirty #14
  Hardware name: IBM 2964 NC9 702 (z/VM 6.4.0)
  Krnl PSW : 0704d00180000000 00000000003cadb6 (__free_slab+0x686/0x6b0)
             R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
  Krnl GPRS: 00000000f3a32928 0000000000000000 000000007fbf5d00 000000000117c4b8
             0000000000000000 000000009e3291c1 0000000000000000 0000000000000000
             0000000000000003 0000000000000008 000000002b478b00 000003d080a97600
             0000000000000003 0000000000000008 000000002b478b00 000003d080a97600
             000000000117ba00 000003e000057db0 00000000003cabcc 000003e000057c78
  Krnl Code: 00000000003cada6: e310a1400004        lg      %r1,320(%r10)
             00000000003cadac: c0e50046c286        brasl   %r14,ca32b8
            #00000000003cadb2: a7f4fe36            brc     15,3caa1e
            >00000000003cadb6: e32060800024        stg     %r2,128(%r6)
             00000000003cadbc: a7f4fd9e            brc     15,3ca8f8
             00000000003cadc0: c0e50046790c        brasl   %r14,c99fd8
             00000000003cadc6: a7f4fe2c            brc     15,3caa
             00000000003cadc6: a7f4fe2c            brc     15,3caa1e
             00000000003cadca: ecb1ffff00d9        aghik   %r11,%r1,-1
  Call Trace:
  (<00000000003cabcc> __free_slab+0x49c/0x6b0)
   <00000000001f5886> rcu_core+0x5a6/0x7e0
   <0000000000ca2dea> __do_softirq+0xf2/0x5c0
   <0000000000152644> irq_exit+0x104/0x130
   <000000000010d222> do_IRQ+0x9a/0xf0
   <0000000000ca2344> ext_int_handler+0x130/0x134
   <0000000000103648> enabled_wait+0x58/0x128
  (<0000000000103634> enabled_wait+0x44/0x128)
   <0000000000103b00> arch_cpu_idle+0x40/0x58
   <0000000000ca0544> default_idle_call+0x3c/0x68
   <000000000018eaa4> do_idle+0xec/0x1c0
   <000000000018ee0e> cpu_startup_entry+0x36/0x40
   <000000000122df34> arch_call_rest_init+0x5c/0x88
   <0000000000000000> 0x0
  INFO: lockdep is turned off.
  Last Breaking-Event-Address:
   <00000000003ca8f4> __free_slab+0x1c4/0x6b0
  Kernel panic - not syncing: Fatal exception in interrupt

The kernel panics on an attempt to dereference the NULL memcg pointer.
When shutdown_cache() is called from the kmem_cache_destroy() context, a
memcg kmem_cache might have empty slab pages in a partial list, which are
still charged to the memory cgroup.

These pages are released by free_partial() at the beginning of
shutdown_cache(): either directly or by scheduling a RCU-delayed work
(if the kmem_cache has the SLAB_TYPESAFE_BY_RCU flag).  The latter case
is when the reported panic can happen: memcg_unlink_cache() is called
immediately after shrinking partial lists, without waiting for scheduled
RCU works.  It sets the kmem_cache->memcg_params.memcg pointer to NULL,
and the following attempt to dereference it by __free_slab() from the
RCU work context causes the panic.

To fix the issue, let's postpone the release of the memcg pointer to
destroy_memcg_params().  It's called from a separate work context by
slab_caches_to_rcu_destroy_workfn(), which contains a full RCU barrier.
This guarantees that all scheduled page release RCU works will complete
before the memcg pointer will be zeroed.

Big thanks for Karsten for the perfect report containing all necessary
information, his help with the analysis of the problem and testing of the
fix.

Link: http://lkml.kernel.org/r/20191010160549.1584316-1-guro@fb.com
Fixes: fb2f2b0adb ("mm: memcg/slab: reparent memcg kmem_caches on cgroup removal")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Karsten Graul <kgraul@linux.ibm.com>
Tested-by: Karsten Graul <kgraul@linux.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Karsten Graul <kgraul@linux.ibm.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-19 06:32:32 -04:00
Vlastimil Babka
59bb47985c mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e.  aligned to the block size itself) blocks for power of two sizes.

That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned.  Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].

The topic has been discussed at LSF/MM 2019 [3].  Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment.  For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it.  That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).

Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations.  What this means for the three available allocators?

* SLAB object layout happens to be mostly unchanged by the patch.  The
  implicitly provided alignment could be compromised with
  CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
  caches with alignment larger than unsigned long long.  Practically on at
  least x86 this includes kmalloc caches as they use cache line alignment,
  which is larger than that.  Still, this patch ensures alignment on all
  arches and cache sizes.

* SLUB layout is also unchanged unless redzoning is enabled through
  CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
  With this patch, explicit alignment is guaranteed with redzoning as
  well.  This will result in more memory being wasted, but that should be
  acceptable in a debugging scenario.

* SLOB has no implicit alignment so this patch adds it explicitly for
  kmalloc().  The potential downside is increased fragmentation.  While
  pathological allocation scenarios are certainly possible, in my testing,
  after booting a x86_64 kernel+userspace with virtme, around 16MB memory
  was consumed by slab pages both before and after the patch, with
  difference in the noise.

[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/

[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 15:47:20 -07:00
Vlastimil Babka
6a486c0ad4 mm, sl[ou]b: improve memory accounting
Patch series "guarantee natural alignment for kmalloc()", v2.

This patch (of 2):

SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero.  Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for.  Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.

SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator.  As they also don't appear in /proc/slabinfo, it might look
like a memory leak.  For consistency, account them as well.  (SLAB
doesn't actually use page allocator directly, so no change there).

Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.

Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 15:47:20 -07:00
Waiman Long
04f768a39d mm, slab: extend slab/shrink to shrink all memcg caches
Currently, a value of '1" is written to /sys/kernel/slab/<slab>/shrink
file to shrink the slab by flushing out all the per-cpu slabs and free
slabs in partial lists.  This can be useful to squeeze out a bit more
memory under extreme condition as well as making the active object counts
in /proc/slabinfo more accurate.

This usually applies only to the root caches, as the SLUB_MEMCG_SYSFS_ON
option is usually not enabled and "slub_memcg_sysfs=1" not set.  Even if
memcg sysfs is turned on, it is too cumbersome and impractical to manage
all those per-memcg sysfs files in a real production system.

So there is no practical way to shrink memcg caches.  Fix this by enabling
a proper write to the shrink sysfs file of the root cache to scan all the
available memcg caches and shrink them as well.  For a non-root memcg
cache (when SLUB_MEMCG_SYSFS_ON or slub_memcg_sysfs is on), only that
cache will be shrunk when written.

On a 2-socket 64-core 256-thread arm64 system with 64k page after
a parallel kernel build, the the amount of memory occupied by slabs
before shrinking slabs were:

 # grep task_struct /proc/slabinfo
 task_struct        53137  53192   4288   61    4 : tunables    0    0
 0 : slabdata    872    872      0
 # grep "^S[lRU]" /proc/meminfo
 Slab:            3936832 kB
 SReclaimable:     399104 kB
 SUnreclaim:      3537728 kB

After shrinking slabs (by echoing "1" to all shrink files):

 # grep "^S[lRU]" /proc/meminfo
 Slab:            1356288 kB
 SReclaimable:     263296 kB
 SUnreclaim:      1092992 kB
 # grep task_struct /proc/slabinfo
 task_struct         2764   6832   4288   61    4 : tunables    0    0
 0 : slabdata    112    112      0

Link: http://lkml.kernel.org/r/20190723151445.7385-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:07 -07:00
Arnd Bergmann
a07057dce2 mm/slab_common.c: work around clang bug #42570
Clang gets rather confused about two variables in the same special
section when one of them is not initialized, leading to an assembler
warning later:

  /tmp/slab_common-18f869.s: Assembler messages:
  /tmp/slab_common-18f869.s:7526: Warning: ignoring changed section attributes for .data..ro_after_init

Adding an initialization to kmalloc_caches is rather silly here
but does avoid the issue.

Link: https://bugs.llvm.org/show_bug.cgi?id=42570
Link: http://lkml.kernel.org/r/20190712090455.266021-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-16 19:23:21 -07:00
Waiman Long
fcf8a1e483 mm, memcg: add a memcg_slabinfo debugfs file
There are concerns about memory leaks from extensive use of memory cgroups
as each memory cgroup creates its own set of kmem caches.  There is a
possiblity that the memcg kmem caches may remain even after the memory
cgroups have been offlined.  Therefore, it will be useful to show the
status of each of memcg kmem caches.

This patch introduces a new <debugfs>/memcg_slabinfo file which is
somewhat similar to /proc/slabinfo in format, but lists only information
about kmem caches that have child memcg kmem caches.  Information
available in /proc/slabinfo are not repeated in memcg_slabinfo.

A portion of a sample output of the file was:

  # <name> <css_id[:dead]> <active_objs> <num_objs> <active_slabs> <num_slabs>
  rpc_inode_cache   root          13     51      1      1
  rpc_inode_cache     48           0      0      0      0
  fat_inode_cache   root           1     45      1      1
  fat_inode_cache     41           2     45      1      1
  xfs_inode         root         770    816     24     24
  xfs_inode           92          22     34      1      1
  xfs_inode           88:dead      1     34      1      1
  xfs_inode           89:dead     23     34      1      1
  xfs_inode           85           4     34      1      1
  xfs_inode           84           9     34      1      1

The css id of the memcg is also listed. If a memcg is not online,
the tag ":dead" will be attached as shown above.

[longman@redhat.com: memcg: add ":deact" tag for reparented kmem caches in memcg_slabinfo]
  Link: http://lkml.kernel.org/r/20190621173005.31514-1-longman@redhat.com
[longman@redhat.com: set the flag in the common code as suggested by Roman]
  Link: http://lkml.kernel.org/r/20190627184324.5875-1-longman@redhat.com
Link: http://lkml.kernel.org/r/20190619171621.26209-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
fb2f2b0adb mm: memcg/slab: reparent memcg kmem_caches on cgroup removal
Let's reparent non-root kmem_caches on memcg offlining.  This allows us to
release the memory cgroup without waiting for the last outstanding kernel
object (e.g.  dentry used by another application).

Since the parent cgroup is already charged, everything we need to do is to
splice the list of kmem_caches to the parent's kmem_caches list, swap the
memcg pointer, drop the css refcounter for each kmem_cache and adjust the
parent's css refcounter.

Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer
anymore.  It's safe to read it under rcu_read_lock(), cgroup_mutex held,
or any other way that protects the memory cgroup from being released.

We can race with the slab allocation and deallocation paths.  It's not a
big problem: parent's charge and slab global stats are always correct, and
we don't care anymore about the child usage and global stats.  The child
cgroup is already offline, so we don't use or show it anywhere.

Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't
used anywhere except count_shadow_nodes().  But even there it won't break
anything: after reparenting "nodes" will be 0 on child level (because
we're already reparenting shrinker lists), and on parent level page stats
always were 0, and this patch won't change anything.

[guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup]
  Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com
Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
f0a3a24b53 mm: memcg/slab: rework non-root kmem_cache lifecycle management
Currently each charged slab page holds a reference to the cgroup to which
it's charged.  Kmem_caches are held by the memcg and are released all
together with the memory cgroup.  It means that none of kmem_caches are
released unless at least one reference to the memcg exists, which is very
far from optimal.

Let's rework it in a way that allows releasing individual kmem_caches as
soon as the cgroup is offline, the kmem_cache is empty and there are no
pending allocations.

To make it possible, let's introduce a new percpu refcounter for non-root
kmem caches.  The counter is initialized to the percpu mode, and is
switched to the atomic mode during kmem_cache deactivation.  The counter
is bumped for every charged page and also for every running allocation.
So the kmem_cache can't be released unless all allocations complete.

To shutdown non-active empty kmem_caches, let's reuse the work queue,
previously used for the kmem_cache deactivation.  Once the reference
counter reaches 0, let's schedule an asynchronous kmem_cache release.

* I used the following simple approach to test the performance
(stolen from another patchset by T. Harding):

    time find / -name fname-no-exist
    echo 2 > /proc/sys/vm/drop_caches
    repeat 10 times

Results:

        orig		patched

real	0m1.455s	real	0m1.355s
user	0m0.206s	user	0m0.219s
sys	0m0.855s	sys	0m0.807s

real	0m1.487s	real	0m1.699s
user	0m0.221s	user	0m0.256s
sys	0m0.806s	sys	0m0.948s

real	0m1.515s	real	0m1.505s
user	0m0.183s	user	0m0.215s
sys	0m0.876s	sys	0m0.858s

real	0m1.291s	real	0m1.380s
user	0m0.193s	user	0m0.198s
sys	0m0.843s	sys	0m0.786s

real	0m1.364s	real	0m1.374s
user	0m0.180s	user	0m0.182s
sys	0m0.868s	sys	0m0.806s

real	0m1.352s	real	0m1.312s
user	0m0.201s	user	0m0.212s
sys	0m0.820s	sys	0m0.761s

real	0m1.302s	real	0m1.349s
user	0m0.205s	user	0m0.203s
sys	0m0.803s	sys	0m0.792s

real	0m1.334s	real	0m1.301s
user	0m0.194s	user	0m0.201s
sys	0m0.806s	sys	0m0.779s

real	0m1.426s	real	0m1.434s
user	0m0.216s	user	0m0.181s
sys	0m0.824s	sys	0m0.864s

real	0m1.350s	real	0m1.295s
user	0m0.200s	user	0m0.190s
sys	0m0.842s	sys	0m0.811s

So it looks like the difference is not noticeable in this test.

[cai@lca.pw: fix an use-after-free in kmemcg_workfn()]
  Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
63b02ef7dc mm: memcg/slab: synchronize access to kmem_cache dying flag using a spinlock
Currently the memcg_params.dying flag and the corresponding workqueue used
for the asynchronous deactivation of kmem_caches is synchronized using the
slab_mutex.

It makes impossible to check this flag from the irq context, which will be
required in order to implement asynchronous release of kmem_caches.

So let's switch over to the irq-save flavor of the spinlock-based
synchronization.

Link: http://lkml.kernel.org/r/20190611231813.3148843-8-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
570332978e mm: memcg/slab: don't check the dying flag on kmem_cache creation
There is no point in checking the root_cache->memcg_params.dying flag on
kmem_cache creation path.  New allocations shouldn't be performed using a
dead root kmem_cache, so no new memcg kmem_cache creation can be scheduled
after the flag is set.  And if it was scheduled before,
flush_memcg_workqueue() will wait for it anyway.

So let's drop this check to simplify the code.

Link: http://lkml.kernel.org/r/20190611231813.3148843-7-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
4348669475 mm: memcg/slab: generalize postponed non-root kmem_cache deactivation
Currently SLUB uses a work scheduled after an RCU grace period to
deactivate a non-root kmem_cache.  This mechanism can be reused for
kmem_caches release, but requires generalization for SLAB case.

Introduce kmemcg_cache_deactivate() function, which calls
allocator-specific __kmem_cache_deactivate() and schedules execution of
__kmem_cache_deactivate_after_rcu() with all necessary locks in a worker
context after an rcu grace period.

Here is the new calling scheme:
  kmemcg_cache_deactivate()
    __kmemcg_cache_deactivate()                  SLAB/SLUB-specific
    kmemcg_rcufn()                               rcu
      kmemcg_workfn()                            work
        __kmemcg_cache_deactivate_after_rcu()    SLAB/SLUB-specific

instead of:
  __kmemcg_cache_deactivate()                    SLAB/SLUB-specific
    slab_deactivate_memcg_cache_rcu_sched()      SLUB-only
      kmemcg_rcufn()                             rcu
        kmemcg_workfn()                          work
          kmemcg_cache_deact_after_rcu()         SLUB-only

For consistency, all allocator-specific functions start with "__".

Link: http://lkml.kernel.org/r/20190611231813.3148843-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
0b14e8aa68 mm: memcg/slab: rename slab delayed deactivation functions and fields
The delayed work/rcu deactivation infrastructure of non-root kmem_caches
can be also used for asynchronous release of these objects.  Let's get rid
of the word "deactivation" in corresponding names to make the code look
better after generalization.

It's easier to make the renaming first, so that the generalized code will
look consistent from scratch.

Let's rename struct memcg_cache_params fields:
  deact_fn -> work_fn
  deact_rcu_head -> rcu_head
  deact_work -> work

And RCU/delayed work callbacks in slab common code:
  kmemcg_deactivate_rcufn -> kmemcg_rcufn
  kmemcg_deactivate_workfn -> kmemcg_workfn

This patch contains no functional changes, only renamings.

Link: http://lkml.kernel.org/r/20190611231813.3148843-3-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
c03914b7aa mm: memcg/slab: postpone kmem_cache memcg pointer initialization to memcg_link_cache()
Patch series "mm: reparent slab memory on cgroup removal", v7.

# Why do we need this?

We've noticed that the number of dying cgroups is steadily growing on most
of our hosts in production.  The following investigation revealed an issue
in the userspace memory reclaim code [1], accounting of kernel stacks [2],
and also the main reason: slab objects.

The underlying problem is quite simple: any page charged to a cgroup holds
a reference to it, so the cgroup can't be reclaimed unless all charged
pages are gone.  If a slab object is actively used by other cgroups, it
won't be reclaimed, and will prevent the origin cgroup from being
reclaimed.

Slab objects, and first of all vfs cache, is shared between cgroups, which
are using the same underlying fs, and what's even more important, it's
shared between multiple generations of the same workload.  So if something
is running periodically every time in a new cgroup (like how systemd
works), we do accumulate multiple dying cgroups.

Strictly speaking pagecache isn't different here, but there is a key
difference: we disable protection and apply some extra pressure on LRUs of
dying cgroups, and these LRUs contain all charged pages.  My experiments
show that with the disabled kernel memory accounting the number of dying
cgroups stabilizes at a relatively small number (~100, depends on memory
pressure and cgroup creation rate), and with kernel memory accounting it
grows pretty steadily up to several thousands.

Memory cgroups are quite complex and big objects (mostly due to percpu
stats), so it leads to noticeable memory losses.  Memory occupied by dying
cgroups is measured in hundreds of megabytes.  I've even seen a host with
more than 100Gb of memory wasted for dying cgroups.  It leads to a
degradation of performance with the uptime, and generally limits the usage
of cgroups.

My previous attempt [3] to fix the problem by applying extra pressure on
slab shrinker lists caused a regressions with xfs and ext4, and has been
reverted [4].  The following attempts to find the right balance [5, 6]
were not successful.

So instead of trying to find a maybe non-existing balance, let's do
reparent accounted slab caches to the parent cgroup on cgroup removal.

# Implementation approach

There is however a significant problem with reparenting of slab memory:
there is no list of charged pages.  Some of them are in shrinker lists,
but not all.  Introducing of a new list is really not an option.

But fortunately there is a way forward: every slab page has a stable
pointer to the corresponding kmem_cache.  So the idea is to reparent
kmem_caches instead of slab pages.

It's actually simpler and cheaper, but requires some underlying changes:
1) Make kmem_caches to hold a single reference to the memory cgroup,
   instead of a separate reference per every slab page.
2) Stop setting page->mem_cgroup pointer for memcg slab pages and use
   page->kmem_cache->memcg indirection instead. It's used only on
   slab page release, so performance overhead shouldn't be a big issue.
3) Introduce a refcounter for non-root slab caches. It's required to
   be able to destroy kmem_caches when they become empty and release
   the associated memory cgroup.

There is a bonus: currently we release all memcg kmem_caches all together
with the memory cgroup itself.  This patchset allows individual
kmem_caches to be released as soon as they become inactive and free.

Some additional implementation details are provided in corresponding
commit messages.

# Results

Below is the average number of dying cgroups on two groups of our
production hosts.  They do run some sort of web frontend workload, the
memory pressure is moderate.  As we can see, with the kernel memory
reparenting the number stabilizes in 60s range; however with the original
version it grows almost linearly and doesn't show any signs of plateauing.
The difference in slab and percpu usage between patched and unpatched
versions also grows linearly.  In 7 days it exceeded 200Mb.

day           0    1    2    3    4    5    6    7
original     56  362  628  752 1070 1250 1490 1560
patched      23   46   51   55   60   57   67   69
mem diff(Mb) 22   74  123  152  164  182  214  241

# Links

[1]: commit 68600f623d ("mm: don't miss the last page because of round-off error")
[2]: commit 9b6f7e163c ("mm: rework memcg kernel stack accounting")
[3]: commit 172b06c32b ("mm: slowly shrink slabs with a relatively small number of objects")
[4]: commit a9a238e83f ("Revert "mm: slowly shrink slabs with a relatively small number of objects")
[5]: https://lkml.org/lkml/2019/1/28/1865
[6]: https://marc.info/?l=linux-mm&m=155064763626437&w=2

This patch (of 10):

Initialize kmem_cache->memcg_params.memcg pointer in memcg_link_cache()
rather than in init_memcg_params().

Once kmem_cache will hold a reference to the memory cgroup, it will
simplify the refcounting.

For non-root kmem_caches memcg_link_cache() is always called before the
kmem_cache becomes visible to a user, so it's safe.

Link: http://lkml.kernel.org/r/20190611231813.3148843-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Marco Elver
0d4ca4c9ba mm/kasan: add object validation in ksize()
ksize() has been unconditionally unpoisoning the whole shadow memory
region associated with an allocation.  This can lead to various undetected
bugs, for example, double-kzfree().

Specifically, kzfree() uses ksize() to determine the actual allocation
size, and subsequently zeroes the memory.  Since ksize() used to just
unpoison the whole shadow memory region, no invalid free was detected.

This patch addresses this as follows:

1. Add a check in ksize(), and only then unpoison the memory region.

2. Preserve kasan_unpoison_slab() semantics by explicitly unpoisoning
   the shadow memory region using the size obtained from __ksize().

Tested:
1. With SLAB allocator: a) normal boot without warnings; b) verified the
   added double-kzfree() is detected.
2. With SLUB allocator: a) normal boot without warnings; b) verified the
   added double-kzfree() is detected.

[elver@google.com: s/BUG_ON/WARN_ON_ONCE/, per Kees]
  Link: http://lkml.kernel.org/r/20190627094445.216365-6-elver@google.com
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=199359
Link: http://lkml.kernel.org/r/20190626142014.141844-6-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:42 -07:00
Marco Elver
10d1f8cb39 mm/slab: refactor common ksize KASAN logic into slab_common.c
This refactors common code of ksize() between the various allocators into
slab_common.c: __ksize() is the allocator-specific implementation without
instrumentation, whereas ksize() includes the required KASAN logic.

Link: http://lkml.kernel.org/r/20190626142014.141844-5-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:42 -07:00
Nicolas Boichat
6d6ea1e967 mm: add support for kmem caches in DMA32 zone
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.

This is a followup to the discussion in [1], [2].

IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.

For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).

For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
 1. This series, adding support for GFP_DMA32 slab caches.
 2. genalloc, which requires pre-allocating the maximum number of L2 page
    tables (4096, so 4MB of memory).
 3. page_frag, which is not very memory-efficient as it is unable to reuse
    freed fragments until the whole page is freed. [3]

This series is the most memory-efficient approach.

stable@ note:
  We confirmed that this is a regression, and IOMMU errors happen on 4.19
  and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
  most likely starts from commit ad67f5a654 ("arm64: replace ZONE_DMA
  with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek
  platforms (and maybe others?).

[1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html
[2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html
[3] https://patchwork.codeaurora.org/patch/671639/

This patch (of 3):

IOMMUs using ARMv7 short-descriptor format require page tables to be
allocated within the first 4GB of RAM, even on 64-bit systems.  On arm64,
this is done by passing GFP_DMA32 flag to memory allocation functions.

For IOMMU L2 tables that only take 1KB, it would be a waste to allocate
a full page using get_free_pages, so we considered 3 approaches:
 1. This patch, adding support for GFP_DMA32 slab caches.
 2. genalloc, which requires pre-allocating the maximum number of L2
    page tables (4096, so 4MB of memory).
 3. page_frag, which is not very memory-efficient as it is unable
    to reuse freed fragments until the whole page is freed.

This change makes it possible to create a custom cache in DMA32 zone using
kmem_cache_create, then allocate memory using kmem_cache_alloc.

We do not create a DMA32 kmalloc cache array, as there are currently no
users of kmalloc(..., GFP_DMA32).  These calls will continue to trigger a
warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK.

This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32
kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and
unnecessary).

Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Sasha Levin <Alexander.Levin@microsoft.com>
Cc: Huaisheng Ye <yehs1@lenovo.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yong Wu <yong.wu@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Tomasz Figa <tfiga@google.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 10:01:37 -07:00
Mike Rapoport
a862f68a8b docs/core-api/mm: fix return value descriptions in mm/
Many kernel-doc comments in mm/ have the return value descriptions
either misformatted or omitted at all which makes kernel-doc script
unhappy:

$ make V=1 htmldocs
...
./mm/util.c:36: info: Scanning doc for kstrdup
./mm/util.c:41: warning: No description found for return value of 'kstrdup'
./mm/util.c:57: info: Scanning doc for kstrdup_const
./mm/util.c:66: warning: No description found for return value of 'kstrdup_const'
./mm/util.c:75: info: Scanning doc for kstrndup
./mm/util.c:83: warning: No description found for return value of 'kstrndup'
...

Fixing the formatting and adding the missing return value descriptions
eliminates ~100 such warnings.

Link: http://lkml.kernel.org/r/1549549644-4903-4-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:20 -08:00
Chris Down
aa9694bb78 mm, memcg: create mem_cgroup_from_seq
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).

There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css.  It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).

Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Andrey Konovalov
a2f775751d kmemleak: account for tagged pointers when calculating pointer range
kmemleak keeps two global variables, min_addr and max_addr, which store
the range of valid (encountered by kmemleak) pointer values, which it
later uses to speed up pointer lookup when scanning blocks.

With tagged pointers this range will get bigger than it needs to be.  This
patch makes kmemleak untag pointers before saving them to min_addr and
max_addr and when performing a lookup.

Link: http://lkml.kernel.org/r/16e887d442986ab87fe87a755815ad92fa431a5f.1550066133.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Qian Cai <cai@lca.pw>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:01:00 -08:00
Andrey Konovalov
53128245b4 kasan, kmemleak: pass tagged pointers to kmemleak
Right now we call kmemleak hooks before assigning tags to pointers in
KASAN hooks.  As a result, when an objects gets allocated, kmemleak sees a
differently tagged pointer, compared to the one it sees when the object
gets freed.  Fix it by calling KASAN hooks before kmemleak's ones.

Link: http://lkml.kernel.org/r/cd825aa4897b0fc37d3316838993881daccbe9f5.1549921721.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Qian Cai <cai@lca.pw>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:01:00 -08:00
Linus Torvalds
3868772b99 A fairly normal cycle for documentation stuff. We have a new
document on perf security, more Italian translations, more
 improvements to the memory-management docs, improvements to the
 pathname lookup documentation, and the usual array of smaller
 fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlwmSPkPHGNvcmJldEBs
 d24ubmV0AAoJEBdDWhNsDH5Y9ZoH/joPnMFykOxS0SmdfI7Z+F4EiJct/ZwF9bHx
 T673T0RC30IgnUXGmBl5OtktfWqVh9aGqHOGwgh65ybp2QvzemdP0k6Lu6RtwNk9
 6LfkpvuUb8FzaQmCHnSMzMSDmXtZUw3Z/mOjCBcQtfGAsUULNT08xl+Dr+gwWIWt
 H+gPEEP+MCXTOQO1jm2dHOHW8NGm6XOijMTpOxp/pkoEY5tUxkVB1T//8EeX7LVh
 c1QHzFrufE3bmmubCLtIuyVqZbm/V5l6rHREDQ46fnH/G9fM4gojzsrAL/Y2m4bt
 E4y0XJHycjLMRDimAnYhbPm1ryTFAX1lNzHP3M/EF6Heqx8YHAk=
 =vtwu
 -----END PGP SIGNATURE-----

Merge tag 'docs-5.0' of git://git.lwn.net/linux

Pull documentation update from Jonathan Corbet:
 "A fairly normal cycle for documentation stuff. We have a new document
  on perf security, more Italian translations, more improvements to the
  memory-management docs, improvements to the pathname lookup
  documentation, and the usual array of smaller fixes.

  As is often the case, there are a few reaches outside of
  Documentation/ to adjust kerneldoc comments"

* tag 'docs-5.0' of git://git.lwn.net/linux: (38 commits)
  docs: improve pathname-lookup document structure
  configfs: fix wrong name of struct in documentation
  docs/mm-api: link slab_common.c to "The Slab Cache" section
  slab: make kmem_cache_create{_usercopy} description proper kernel-doc
  doc:process: add links where missing
  docs/core-api: make mm-api.rst more structured
  x86, boot: documentation whitespace fixup
  Documentation: devres: note checking needs when converting
  doc🇮🇹 add some process/* translations
  doc🇮🇹 fixes in process/1.Intro
  Documentation: convert path-lookup from markdown to resturctured text
  Documentation/admin-guide: update admin-guide index.rst
  Documentation/admin-guide: introduce perf-security.rst file
  scripts/kernel-doc: Fix struct and struct field attribute processing
  Documentation: dev-tools: Fix typos in index.rst
  Correct gen_init_cpio tool's documentation
  Document /proc/pid PID reuse behavior
  Documentation: update path-lookup.md for parallel lookups
  Documentation: Use "while" instead of "whilst"
  dmaengine: Add mailing list address to the documentation
  ...
2018-12-29 11:21:49 -08:00
Yangtao Li
221d7da66c mm, slab: remove unnecessary unlikely()
WARN_ON() already contains an unlikely(), so it's not necessary to use
unlikely.

Also change WARN_ON() back to WARN_ON_ONCE() to avoid potentially
spamming dmesg with user-triggerable large allocations.

[akpm@linux-foundation.org: s/WARN_ON/WARN_ON_ONCE/, per Vlastimil]
Link: http://lkml.kernel.org/r/20181104125028.3572-1-tiny.windzz@gmail.com
Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Andrey Konovalov
772a2fa50f kasan, mm: perform untagged pointers comparison in krealloc
The krealloc function checks where the same buffer was reused or a new one
allocated by comparing kernel pointers.  Tag-based KASAN changes memory
tag on the krealloc'ed chunk of memory and therefore also changes the
pointer tag of the returned pointer.  Therefore we need to perform
comparison on untagged (with tags reset) pointers to check whether it's
the same memory region or not.

Link: http://lkml.kernel.org/r/14f6190d7846186a3506cd66d82446646fe65090.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:43 -08:00
Andrey Konovalov
0116523cff kasan, mm: change hooks signatures
Patch series "kasan: add software tag-based mode for arm64", v13.

This patchset adds a new software tag-based mode to KASAN [1].  (Initially
this mode was called KHWASAN, but it got renamed, see the naming rationale
at the end of this section).

The plan is to implement HWASan [2] for the kernel with the incentive,
that it's going to have comparable to KASAN performance, but in the same
time consume much less memory, trading that off for somewhat imprecise bug
detection and being supported only for arm64.

The underlying ideas of the approach used by software tag-based KASAN are:

1. By using the Top Byte Ignore (TBI) arm64 CPU feature, we can store
   pointer tags in the top byte of each kernel pointer.

2. Using shadow memory, we can store memory tags for each chunk of kernel
   memory.

3. On each memory allocation, we can generate a random tag, embed it into
   the returned pointer and set the memory tags that correspond to this
   chunk of memory to the same value.

4. By using compiler instrumentation, before each memory access we can add
   a check that the pointer tag matches the tag of the memory that is being
   accessed.

5. On a tag mismatch we report an error.

With this patchset the existing KASAN mode gets renamed to generic KASAN,
with the word "generic" meaning that the implementation can be supported
by any architecture as it is purely software.

The new mode this patchset adds is called software tag-based KASAN.  The
word "tag-based" refers to the fact that this mode uses tags embedded into
the top byte of kernel pointers and the TBI arm64 CPU feature that allows
to dereference such pointers.  The word "software" here means that shadow
memory manipulation and tag checking on pointer dereference is done in
software.  As it is the only tag-based implementation right now, "software
tag-based" KASAN is sometimes referred to as simply "tag-based" in this
patchset.

A potential expansion of this mode is a hardware tag-based mode, which
would use hardware memory tagging support (announced by Arm [3]) instead
of compiler instrumentation and manual shadow memory manipulation.

Same as generic KASAN, software tag-based KASAN is strictly a debugging
feature.

[1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html

[2] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html

[3] https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a

====== Rationale

On mobile devices generic KASAN's memory usage is significant problem.
One of the main reasons to have tag-based KASAN is to be able to perform a
similar set of checks as the generic one does, but with lower memory
requirements.

Comment from Vishwath Mohan <vishwath@google.com>:

I don't have data on-hand, but anecdotally both ASAN and KASAN have proven
problematic to enable for environments that don't tolerate the increased
memory pressure well.  This includes

(a) Low-memory form factors - Wear, TV, Things, lower-tier phones like Go,
(c) Connected components like Pixel's visual core [1].

These are both places I'd love to have a low(er) memory footprint option at
my disposal.

Comment from Evgenii Stepanov <eugenis@google.com>:

Looking at a live Android device under load, slab (according to
/proc/meminfo) + kernel stack take 8-10% available RAM (~350MB).  KASAN's
overhead of 2x - 3x on top of it is not insignificant.

Not having this overhead enables near-production use - ex.  running
KASAN/KHWASAN kernel on a personal, daily-use device to catch bugs that do
not reproduce in test configuration.  These are the ones that often cost
the most engineering time to track down.

CPU overhead is bad, but generally tolerable.  RAM is critical, in our
experience.  Once it gets low enough, OOM-killer makes your life
miserable.

[1] https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/

====== Technical details

Software tag-based KASAN mode is implemented in a very similar way to the
generic one. This patchset essentially does the following:

1. TCR_TBI1 is set to enable Top Byte Ignore.

2. Shadow memory is used (with a different scale, 1:16, so each shadow
   byte corresponds to 16 bytes of kernel memory) to store memory tags.

3. All slab objects are aligned to shadow scale, which is 16 bytes.

4. All pointers returned from the slab allocator are tagged with a random
   tag and the corresponding shadow memory is poisoned with the same value.

5. Compiler instrumentation is used to insert tag checks. Either by
   calling callbacks or by inlining them (CONFIG_KASAN_OUTLINE and
   CONFIG_KASAN_INLINE flags are reused).

6. When a tag mismatch is detected in callback instrumentation mode
   KASAN simply prints a bug report. In case of inline instrumentation,
   clang inserts a brk instruction, and KASAN has it's own brk handler,
   which reports the bug.

7. The memory in between slab objects is marked with a reserved tag, and
   acts as a redzone.

8. When a slab object is freed it's marked with a reserved tag.

Bug detection is imprecise for two reasons:

1. We won't catch some small out-of-bounds accesses, that fall into the
   same shadow cell, as the last byte of a slab object.

2. We only have 1 byte to store tags, which means we have a 1/256
   probability of a tag match for an incorrect access (actually even
   slightly less due to reserved tag values).

Despite that there's a particular type of bugs that tag-based KASAN can
detect compared to generic KASAN: use-after-free after the object has been
allocated by someone else.

====== Testing

Some kernel developers voiced a concern that changing the top byte of
kernel pointers may lead to subtle bugs that are difficult to discover.
To address this concern deliberate testing has been performed.

It doesn't seem feasible to do some kind of static checking to find
potential issues with pointer tagging, so a dynamic approach was taken.
All pointer comparisons/subtractions have been instrumented in an LLVM
compiler pass and a kernel module that would print a bug report whenever
two pointers with different tags are being compared/subtracted (ignoring
comparisons with NULL pointers and with pointers obtained by casting an
error code to a pointer type) has been used.  Then the kernel has been
booted in QEMU and on an Odroid C2 board and syzkaller has been run.

This yielded the following results.

The two places that look interesting are:

is_vmalloc_addr in include/linux/mm.h
is_kernel_rodata in mm/util.c

Here we compare a pointer with some fixed untagged values to make sure
that the pointer lies in a particular part of the kernel address space.
Since tag-based KASAN doesn't add tags to pointers that belong to rodata
or vmalloc regions, this should work as is.  To make sure debug checks to
those two functions that check that the result doesn't change whether we
operate on pointers with or without untagging has been added.

A few other cases that don't look that interesting:

Comparing pointers to achieve unique sorting order of pointee objects
(e.g. sorting locks addresses before performing a double lock):

tty_ldisc_lock_pair_timeout in drivers/tty/tty_ldisc.c
pipe_double_lock in fs/pipe.c
unix_state_double_lock in net/unix/af_unix.c
lock_two_nondirectories in fs/inode.c
mutex_lock_double in kernel/events/core.c

ep_cmp_ffd in fs/eventpoll.c
fsnotify_compare_groups fs/notify/mark.c

Nothing needs to be done here, since the tags embedded into pointers
don't change, so the sorting order would still be unique.

Checks that a pointer belongs to some particular allocation:

is_sibling_entry in lib/radix-tree.c
object_is_on_stack in include/linux/sched/task_stack.h

Nothing needs to be done here either, since two pointers can only belong
to the same allocation if they have the same tag.

Overall, since the kernel boots and works, there are no critical bugs.
As for the rest, the traditional kernel testing way (use until fails) is
the only one that looks feasible.

Another point here is that tag-based KASAN is available under a separate
config option that needs to be deliberately enabled. Even though it might
be used in a "near-production" environment to find bugs that are not found
during fuzzing or running tests, it is still a debug tool.

====== Benchmarks

The following numbers were collected on Odroid C2 board. Both generic and
tag-based KASAN were used in inline instrumentation mode.

Boot time [1]:
* ~1.7 sec for clean kernel
* ~5.0 sec for generic KASAN
* ~5.0 sec for tag-based KASAN

Network performance [2]:
* 8.33 Gbits/sec for clean kernel
* 3.17 Gbits/sec for generic KASAN
* 2.85 Gbits/sec for tag-based KASAN

Slab memory usage after boot [3]:
* ~40 kb for clean kernel
* ~105 kb (~260% overhead) for generic KASAN
* ~47 kb (~20% overhead) for tag-based KASAN

KASAN memory overhead consists of three main parts:
1. Increased slab memory usage due to redzones.
2. Shadow memory (the whole reserved once during boot).
3. Quaratine (grows gradually until some preset limit; the more the limit,
   the more the chance to detect a use-after-free).

Comparing tag-based vs generic KASAN for each of these points:
1. 20% vs 260% overhead.
2. 1/16th vs 1/8th of physical memory.
3. Tag-based KASAN doesn't require quarantine.

[1] Time before the ext4 driver is initialized.
[2] Measured as `iperf -s & iperf -c 127.0.0.1 -t 30`.
[3] Measured as `cat /proc/meminfo | grep Slab`.

====== Some notes

A few notes:

1. The patchset can be found here:
   https://github.com/xairy/kasan-prototype/tree/khwasan

2. Building requires a recent Clang version (7.0.0 or later).

3. Stack instrumentation is not supported yet and will be added later.

This patch (of 25):

Tag-based KASAN changes the value of the top byte of pointers returned
from the kernel allocation functions (such as kmalloc).  This patch
updates KASAN hooks signatures and their usage in SLAB and SLUB code to
reflect that.

Link: http://lkml.kernel.org/r/aec2b5e3973781ff8a6bb6760f8543643202c451.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:43 -08:00
Mike Rapoport
f496990f1f slab: make kmem_cache_create{_usercopy} description proper kernel-doc
Add the description for kmem_cache_create, fixup the return value paragraph
and make both kmem_cache_create and add the second '*' to the comment
opening.

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2018-12-20 08:33:16 -07:00
Paul E. McKenney
6564a25e6c slab: Replace synchronize_sched() with synchronize_rcu()
Now that synchronize_rcu() waits for preempt-disable regions of code
as well as RCU read-side critical sections, synchronize_sched() can be
replaced by synchronize_rcu().  This commit therefore makes this change.

Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
2018-11-27 09:21:45 -08:00
Vlastimil Babka
f0d7787414 mm, slab: shorten kmalloc cache names for large sizes
Kmalloc cache names can get quite long for large object sizes, when the
sizes are expressed in bytes.  Use 'k' and 'M' prefixes to make the names
as short as possible e.g.  in /proc/slabinfo.  This works, as we mostly
use power-of-two sizes, with exceptions only below 1k.

Example: 'kmalloc-4194304' becomes 'kmalloc-4M'

Link: http://lkml.kernel.org/r/20180731090649.16028-7-vbabka@suse.cz
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:32 -07:00
Vlastimil Babka
1291523f2c mm, slab/slub: introduce kmalloc-reclaimable caches
Kmem caches can be created with a SLAB_RECLAIM_ACCOUNT flag, which
indicates they contain objects which can be reclaimed under memory
pressure (typically through a shrinker).  This makes the slab pages
accounted as NR_SLAB_RECLAIMABLE in vmstat, which is reflected also the
MemAvailable meminfo counter and in overcommit decisions.  The slab pages
are also allocated with __GFP_RECLAIMABLE, which is good for
anti-fragmentation through grouping pages by mobility.

The generic kmalloc-X caches are created without this flag, but sometimes
are used also for objects that can be reclaimed, which due to varying size
cannot have a dedicated kmem cache with SLAB_RECLAIM_ACCOUNT flag.  A
prominent example are dcache external names, which prompted the creation
of a new, manually managed vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES
in commit f1782c9bc5 ("dcache: account external names as indirectly
reclaimable memory").

To better handle this and any other similar cases, this patch introduces
SLAB_RECLAIM_ACCOUNT variants of kmalloc caches, named kmalloc-rcl-X.
They are used whenever the kmalloc() call passes __GFP_RECLAIMABLE among
gfp flags.  They are added to the kmalloc_caches array as a new type.
Allocations with both __GFP_DMA and __GFP_RECLAIMABLE will use a dma type
cache.

This change only applies to SLAB and SLUB, not SLOB.  This is fine, since
SLOB's target are tiny system and this patch does add some overhead of
kmem management objects.

Link: http://lkml.kernel.org/r/20180731090649.16028-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:31 -07:00
Vlastimil Babka
cc252eae85 mm, slab: combine kmalloc_caches and kmalloc_dma_caches
Patch series "kmalloc-reclaimable caches", v4.

As discussed at LSF/MM [1] here's a patchset that introduces
kmalloc-reclaimable caches (more details in the second patch) and uses
them for dcache external names.  That allows us to repurpose the
NR_INDIRECTLY_RECLAIMABLE_BYTES counter later in the series.

With patch 3/6, dcache external names are allocated from kmalloc-rcl-*
caches, eliminating the need for manual accounting.  More importantly, it
also ensures the reclaimable kmalloc allocations are grouped in pages
separate from the regular kmalloc allocations.  The need for proper
accounting of dcache external names has shown it's easy for misbehaving
process to allocate lots of them, causing premature OOMs.  Without the
added grouping, it's likely that a similar workload can interleave the
dcache external names allocations with regular kmalloc allocations (note:
I haven't searched myself for an example of such regular kmalloc
allocation, but I would be very surprised if there wasn't some).  A
pathological case would be e.g.  one 64byte regular allocations with 63
external dcache names in a page (64x64=4096), which means the page is not
freed even after reclaiming after all dcache names, and the process can
thus "steal" the whole page with single 64byte allocation.

If other kmalloc users similar to dcache external names become identified,
they can also benefit from the new functionality simply by adding
__GFP_RECLAIMABLE to the kmalloc calls.

Side benefits of the patchset (that could be also merged separately)
include removed branch for detecting __GFP_DMA kmalloc(), and shortening
kmalloc cache names in /proc/slabinfo output.  The latter is potentially
an ABI break in case there are tools parsing the names and expecting the
values to be in bytes.

This is how /proc/slabinfo looks like after booting in virtme:

...
kmalloc-rcl-4M         0      0 4194304    1 1024 : tunables    1    1    0 : slabdata      0      0      0
...
kmalloc-rcl-96         7     32    128   32    1 : tunables  120   60    8 : slabdata      1      1      0
kmalloc-rcl-64        25    128     64   64    1 : tunables  120   60    8 : slabdata      2      2      0
kmalloc-rcl-32         0      0     32  124    1 : tunables  120   60    8 : slabdata      0      0      0
kmalloc-4M             0      0 4194304    1 1024 : tunables    1    1    0 : slabdata      0      0      0
kmalloc-2M             0      0 2097152    1  512 : tunables    1    1    0 : slabdata      0      0      0
kmalloc-1M             0      0 1048576    1  256 : tunables    1    1    0 : slabdata      0      0      0
...

/proc/vmstat with renamed nr_indirectly_reclaimable_bytes counter:

...
nr_slab_reclaimable 2817
nr_slab_unreclaimable 1781
...
nr_kernel_misc_reclaimable 0
...

/proc/meminfo with new KReclaimable counter:

...
Shmem:               564 kB
KReclaimable:      11260 kB
Slab:              18368 kB
SReclaimable:      11260 kB
SUnreclaim:         7108 kB
KernelStack:        1248 kB
...

This patch (of 6):

The kmalloc caches currently mainain separate (optional) array
kmalloc_dma_caches for __GFP_DMA allocations.  There are tests for
__GFP_DMA in the allocation hotpaths.  We can avoid the branches by
combining kmalloc_caches and kmalloc_dma_caches into a single
two-dimensional array where the outer dimension is cache "type".  This
will also allow to add kmalloc-reclaimable caches as a third type.

Link: http://lkml.kernel.org/r/20180731090649.16028-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:31 -07:00
Dmitry Vyukov
61448479a9 mm: don't warn about large allocations for slab
Slub does not call kmalloc_slab() for sizes > KMALLOC_MAX_CACHE_SIZE,
instead it falls back to kmalloc_large().

For slab KMALLOC_MAX_CACHE_SIZE == KMALLOC_MAX_SIZE and it calls
kmalloc_slab() for all allocations relying on NULL return value for
over-sized allocations.

This inconsistency leads to unwanted warnings from kmalloc_slab() for
over-sized allocations for slab.  Returning NULL for failed allocations is
the expected behavior.

Make slub and slab code consistent by checking size >
KMALLOC_MAX_CACHE_SIZE in slab before calling kmalloc_slab().

While we are here also fix the check in kmalloc_slab().  We should check
against KMALLOC_MAX_CACHE_SIZE rather than KMALLOC_MAX_SIZE.  It all kinda
worked because for slab the constants are the same, and slub always checks
the size against KMALLOC_MAX_CACHE_SIZE before kmalloc_slab().  But if we
get there with size > KMALLOC_MAX_CACHE_SIZE anyhow bad things will
happen.  For example, in case of a newly introduced bug in slub code.

Also move the check in kmalloc_slab() from function entry to the size >
192 case.  This partially compensates for the additional check in slab
code and makes slub code a bit faster (at least theoretically).

Also drop __GFP_NOWARN in the warning check.  This warning means a bug in
slab code itself, user-passed flags have nothing to do with it.

Nothing of this affects slob.

Link: http://lkml.kernel.org/r/20180927171502.226522-1-dvyukov@gmail.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: syzbot+87829a10073277282ad1@syzkaller.appspotmail.com
Reported-by: syzbot+ef4e8fc3a06e9019bb40@syzkaller.appspotmail.com
Reported-by: syzbot+6e438f4036df52cbb863@syzkaller.appspotmail.com
Reported-by: syzbot+8574471d8734457d98aa@syzkaller.appspotmail.com
Reported-by: syzbot+af1504df0807a083dbd9@syzkaller.appspotmail.com
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Kirill Tkhai
84c07d11aa mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern.  Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.

Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Mikulas Patocka
d50d82faa0 slub: fix failure when we delete and create a slab cache
In kernel 4.17 I removed some code from dm-bufio that did slab cache
merging (commit 21bb132767: "dm bufio: remove code that merges slab
caches") - both slab and slub support merging caches with identical
attributes, so dm-bufio now just calls kmem_cache_create and relies on
implicit merging.

This uncovered a bug in the slub subsystem - if we delete a cache and
immediatelly create another cache with the same attributes, it fails
because of duplicate filename in /sys/kernel/slab/.  The slub subsystem
offloads freeing the cache to a workqueue - and if we create the new
cache before the workqueue runs, it complains because of duplicate
filename in sysfs.

This patch fixes the bug by moving the call of kobject_del from
sysfs_slab_remove_workfn to shutdown_cache.  kobject_del must be called
while we hold slab_mutex - so that the sysfs entry is deleted before a
cache with the same attributes could be created.

Running device-mapper-test-suite with:

  dmtest run --suite thin-provisioning -n /commit_failure_causes_fallback/

triggered:

  Buffer I/O error on dev dm-0, logical block 1572848, async page read
  device-mapper: thin: 253:1: metadata operation 'dm_pool_alloc_data_block' failed: error = -5
  device-mapper: thin: 253:1: aborting current metadata transaction
  sysfs: cannot create duplicate filename '/kernel/slab/:a-0000144'
  CPU: 2 PID: 1037 Comm: kworker/u48:1 Not tainted 4.17.0.snitm+ #25
  Hardware name: Supermicro SYS-1029P-WTR/X11DDW-L, BIOS 2.0a 12/06/2017
  Workqueue: dm-thin do_worker [dm_thin_pool]
  Call Trace:
   dump_stack+0x5a/0x73
   sysfs_warn_dup+0x58/0x70
   sysfs_create_dir_ns+0x77/0x80
   kobject_add_internal+0xba/0x2e0
   kobject_init_and_add+0x70/0xb0
   sysfs_slab_add+0xb1/0x250
   __kmem_cache_create+0x116/0x150
   create_cache+0xd9/0x1f0
   kmem_cache_create_usercopy+0x1c1/0x250
   kmem_cache_create+0x18/0x20
   dm_bufio_client_create+0x1ae/0x410 [dm_bufio]
   dm_block_manager_create+0x5e/0x90 [dm_persistent_data]
   __create_persistent_data_objects+0x38/0x940 [dm_thin_pool]
   dm_pool_abort_metadata+0x64/0x90 [dm_thin_pool]
   metadata_operation_failed+0x59/0x100 [dm_thin_pool]
   alloc_data_block.isra.53+0x86/0x180 [dm_thin_pool]
   process_cell+0x2a3/0x550 [dm_thin_pool]
   do_worker+0x28d/0x8f0 [dm_thin_pool]
   process_one_work+0x171/0x370
   worker_thread+0x49/0x3f0
   kthread+0xf8/0x130
   ret_from_fork+0x35/0x40
  kobject_add_internal failed for :a-0000144 with -EEXIST, don't try to register things with the same name in the same directory.
  kmem_cache_create(dm_bufio_buffer-16) failed with error -17

Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1806151817130.6333@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reported-by: Mike Snitzer <snitzer@redhat.com>
Tested-by: Mike Snitzer <snitzer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-28 11:16:44 -07:00
Joe Perches
0825a6f986 mm: use octal not symbolic permissions
mm/*.c files use symbolic and octal styles for permissions.

Using octal and not symbolic permissions is preferred by many as more
readable.

https://lkml.org/lkml/2016/8/2/1945

Prefer the direct use of octal for permissions.

Done using
$ scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace mm/*.c
and some typing.

Before:	 $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
44
After:	 $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
86

Miscellanea:

o Whitespace neatening around these conversions.

Link: http://lkml.kernel.org/r/2e032ef111eebcd4c5952bae86763b541d373469.1522102887.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:25 +09:00
Shakeel Butt
92ee383f6d mm: fix race between kmem_cache destroy, create and deactivate
The memcg kmem cache creation and deactivation (SLUB only) is
asynchronous.  If a root kmem cache is destroyed whose memcg cache is in
the process of creation or deactivation, the kernel may crash.

Example of one such crash:
	general protection fault: 0000 [#1] SMP PTI
	CPU: 1 PID: 1721 Comm: kworker/14:1 Not tainted 4.17.0-smp
	...
	Workqueue: memcg_kmem_cache kmemcg_deactivate_workfn
	RIP: 0010:has_cpu_slab
	...
	Call Trace:
	? on_each_cpu_cond
	__kmem_cache_shrink
	kmemcg_cache_deact_after_rcu
	kmemcg_deactivate_workfn
	process_one_work
	worker_thread
	kthread
	ret_from_fork+0x35/0x40

To fix this race, on root kmem cache destruction, mark the cache as
dying and flush the workqueue used for memcg kmem cache creation and
deactivation.  SLUB's memcg kmem cache deactivation also includes RCU
callback and thus make sure all previous registered RCU callbacks have
completed as well.

[shakeelb@google.com: handle the RCU callbacks for SLUB deactivation]
  Link: http://lkml.kernel.org/r/20180611192951.195727-1-shakeelb@google.com
[shakeelb@google.com: add more documentation, rename fields for readability]
  Link: http://lkml.kernel.org/r/20180522201336.196994-1-shakeelb@google.com
[akpm@linux-foundation.org: fix build, per Shakeel]
[shakeelb@google.com: v3.  Instead of refcount, flush the workqueue]
  Link: http://lkml.kernel.org/r/20180530001204.183758-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180521174116.171846-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:23 +09:00
Howard McLauchlan
4f6923fbb3 mm: make should_failslab always available for fault injection
should_failslab() is a convenient function to hook into for directed
error injection into kmalloc().  However, it is only available if a
config flag is set.

The following BCC script, for example, fails kmalloc() calls after a
btrfs umount:

    from bcc import BPF

    prog = r"""
    BPF_HASH(flag);

    #include <linux/mm.h>

    int kprobe__btrfs_close_devices(void *ctx) {
            u64 key = 1;
            flag.update(&key, &key);
            return 0;
    }

    int kprobe__should_failslab(struct pt_regs *ctx) {
            u64 key = 1;
            u64 *res;
            res = flag.lookup(&key);
            if (res != 0) {
                bpf_override_return(ctx, -ENOMEM);
            }
            return 0;
    }
    """
    b = BPF(text=prog)

    while 1:
        b.kprobe_poll()

This patch refactors the should_failslab implementation so that the
function is always available for error injection, independent of flags.

This change would be similar in nature to commit f5490d3ec921 ("block:
Add should_fail_bio() for bpf error injection").

Link: http://lkml.kernel.org/r/20180222020320.6944-1-hmclauchlan@fb.com
Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
Mikulas Patocka
1ba586de22 mm/slab_common.c: remove test if cache name is accessible
Since commit db265eca77 ("mm/sl[aou]b: Move duping of slab name to
slab_common.c"), the kernel always duplicates the slab cache name when
creating a slab cache, so the test if the slab name is accessible is
useless.

Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1803231133310.22626@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Shakeel Butt
613a5eb567 slab, slub: remove size disparity on debug kernel
I have noticed on debug kernel with SLAB, the size of some non-root
slabs were larger than their corresponding root slabs.

e.g. for radix_tree_node:
  $cat /proc/slabinfo | grep radix
  name     <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ...
  radix_tree_node 15052    15075      4096         1             1 ...

  $cat /cgroup/memory/temp/memory.kmem.slabinfo | grep radix
  name     <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ...
  radix_tree_node 1581      158       4120         1             2 ...

However for SLUB in debug kernel, the sizes were same.  On further
inspection it is found that SLUB always use kmem_cache.object_size to
measure the kmem_cache.size while SLAB use the given kmem_cache.size.
In the debug kernel the slab's size can be larger than its object_size.
Thus in the creation of non-root slab, the SLAB uses the root's size as
base to calculate the non-root slab's size and thus non-root slab's size
can be larger than the root slab's size.  For SLUB, the non-root slab's
size is measured based on the root's object_size and thus the size will
remain same for root and non-root slab.

This patch makes slab's object_size the default base to measure the
slab's size.

Link: http://lkml.kernel.org/r/20180313165428.58699-1-shakeelb@google.com
Fixes: 794b1248be ("memcg, slab: separate memcg vs root cache creation paths")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
302d55d51d slab: use 32-bit arithmetic in freelist_randomize()
SLAB doesn't support 4GB+ of objects per slab, therefore randomization
doesn't need size_t.

Link: http://lkml.kernel.org/r/20180305200730.15812-25-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
7bbdb81ee3 slab: make usercopy region 32-bit
If kmem case sizes are 32-bit, then usecopy region should be too.

Link: http://lkml.kernel.org/r/20180305200730.15812-21-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
1b473f29d5 slub: make ->object_size unsigned int
Linux doesn't support negative length objects.

Link: http://lkml.kernel.org/r/20180305200730.15812-17-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
ac914d08bb slab: make size_index_elem() unsigned int
size_index_elem() always works with small sizes (kmalloc caches are
32-bit) and returns small indexes.

Link: http://lkml.kernel.org/r/20180305200730.15812-8-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
d5f866550d slab: make size_index[] array u8
All those small numbers are reverse indexes into kmalloc caches array
and can't be negative.

On x86_64 "unsigned int = fls()" can drop CDQE instruction:

	add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-2 (-2)
	Function                                     old     new   delta
	kmalloc_slab                                 101      99      -2

Link: http://lkml.kernel.org/r/20180305200730.15812-7-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
f4957d5bd0 slab: make kmem_cache_create() work with 32-bit sizes
struct kmem_cache::size and ::align were always 32-bit.

Out of curiosity I created 4GB kmem_cache, it oopsed with division by 0.
kmem_cache_create(1UL<<32+1) created 1-byte cache as expected.

size_t doesn't work and never did.

Link: http://lkml.kernel.org/r/20180305200730.15812-6-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
361d575e5c slab: make create_boot_cache() work with 32-bit sizes
struct kmem_cache::size has always been "int", all those
"size_t size" are fake.

Link: http://lkml.kernel.org/r/20180305200730.15812-5-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
55de8b9c60 slab: make create_kmalloc_cache() work with 32-bit sizes
KMALLOC_MAX_CACHE_SIZE is 32-bit so is the largest kmalloc cache size.

Christoph said:
:
: Ok SLABs maximum allocation size is limited to 32M (see
: include/linux/slab.h:
:
: #define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
:                                 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
:
: And SLUB/SLOB pass all larger requests to the page allocator anyways.

Link: http://lkml.kernel.org/r/20180305200730.15812-4-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
0be70327ec slab: make kmalloc_size() return "unsigned int"
kmalloc_size() derives size of kmalloc cache from internal index, which
can't be negative.

Propagate unsignedness a bit.

Link: http://lkml.kernel.org/r/20180305200730.15812-3-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
c86305743b slab: fixup calculate_alignment() argument type
Link: http://lkml.kernel.org/r/20180305200730.15812-1-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
1c99ba2918 mm/slab_common.c: mark kmalloc machinery as __ro_after_init
kmalloc caches aren't relocated after being set up neither does
"size_index" array.

Link: http://lkml.kernel.org/r/20180226203519.GA6886@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Linus Torvalds
617aebe6a9 Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
 available to be copied to/from userspace in the face of bugs. To further
 restrict what memory is available for copying, this creates a way to
 whitelist specific areas of a given slab cache object for copying to/from
 userspace, allowing much finer granularity of access control. Slab caches
 that are never exposed to userspace can declare no whitelist for their
 objects, thereby keeping them unavailable to userspace via dynamic copy
 operations. (Note, an implicit form of whitelisting is the use of constant
 sizes in usercopy operations and get_user()/put_user(); these bypass all
 hardened usercopy checks since these sizes cannot change at runtime.)
 
 This new check is WARN-by-default, so any mistakes can be found over the
 next several releases without breaking anyone's system.
 
 The series has roughly the following sections:
 - remove %p and improve reporting with offset
 - prepare infrastructure and whitelist kmalloc
 - update VFS subsystem with whitelists
 - update SCSI subsystem with whitelists
 - update network subsystem with whitelists
 - update process memory with whitelists
 - update per-architecture thread_struct with whitelists
 - update KVM with whitelists and fix ioctl bug
 - mark all other allocations as not whitelisted
 - update lkdtm for more sensible test overage
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4
 43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq
 cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ
 NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q
 9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm
 uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1
 gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr
 C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug
 d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H
 jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi
 Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc
 JgOmUnQNJWCTwUUw5AS1
 =tzmJ
 -----END PGP SIGNATURE-----

Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull hardened usercopy whitelisting from Kees Cook:
 "Currently, hardened usercopy performs dynamic bounds checking on slab
  cache objects. This is good, but still leaves a lot of kernel memory
  available to be copied to/from userspace in the face of bugs.

  To further restrict what memory is available for copying, this creates
  a way to whitelist specific areas of a given slab cache object for
  copying to/from userspace, allowing much finer granularity of access
  control.

  Slab caches that are never exposed to userspace can declare no
  whitelist for their objects, thereby keeping them unavailable to
  userspace via dynamic copy operations. (Note, an implicit form of
  whitelisting is the use of constant sizes in usercopy operations and
  get_user()/put_user(); these bypass all hardened usercopy checks since
  these sizes cannot change at runtime.)

  This new check is WARN-by-default, so any mistakes can be found over
  the next several releases without breaking anyone's system.

  The series has roughly the following sections:
   - remove %p and improve reporting with offset
   - prepare infrastructure and whitelist kmalloc
   - update VFS subsystem with whitelists
   - update SCSI subsystem with whitelists
   - update network subsystem with whitelists
   - update process memory with whitelists
   - update per-architecture thread_struct with whitelists
   - update KVM with whitelists and fix ioctl bug
   - mark all other allocations as not whitelisted
   - update lkdtm for more sensible test overage"

* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
  lkdtm: Update usercopy tests for whitelisting
  usercopy: Restrict non-usercopy caches to size 0
  kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
  kvm: whitelist struct kvm_vcpu_arch
  arm: Implement thread_struct whitelist for hardened usercopy
  arm64: Implement thread_struct whitelist for hardened usercopy
  x86: Implement thread_struct whitelist for hardened usercopy
  fork: Provide usercopy whitelisting for task_struct
  fork: Define usercopy region in thread_stack slab caches
  fork: Define usercopy region in mm_struct slab caches
  net: Restrict unwhitelisted proto caches to size 0
  sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
  sctp: Define usercopy region in SCTP proto slab cache
  caif: Define usercopy region in caif proto slab cache
  ip: Define usercopy region in IP proto slab cache
  net: Define usercopy region in struct proto slab cache
  scsi: Define usercopy region in scsi_sense_cache slab cache
  cifs: Define usercopy region in cifs_request slab cache
  vxfs: Define usercopy region in vxfs_inode slab cache
  ufs: Define usercopy region in ufs_inode_cache slab cache
  ...
2018-02-03 16:25:42 -08:00
Byongho Lee
692ae74aaf mm/slab_common.c: make calculate_alignment() static
calculate_alignment() function is only used inside slab_common.c.  So
make it static and let the compiler do more optimizations.

After this patch there's a small improvement in text and data size.

  $ gcc --version
    gcc (GCC) 7.2.1 20171128

Before:
  text	   data	    bss	    dec	     hex	filename
  9890457  3828702  1212364 14931523 e3d643	vmlinux

After:
  text	   data	    bss	    dec	     hex	filename
  9890437  3828670  1212364 14931471 e3d60f	vmlinux

Also I fixed a style problem reported by checkpatch.

  WARNING: Missing a blank line after declarations
  #53: FILE: mm/slab_common.c:286:
  +		unsigned long ralign = cache_line_size();
  +		while (size <= ralign / 2)

Link: http://lkml.kernel.org/r/20171210080132.406-1-bhlee.kernel@gmail.com
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:35 -08:00
Kees Cook
6d07d1cd30 usercopy: Restrict non-usercopy caches to size 0
With all known usercopied cache whitelists now defined in the
kernel, switch the default usercopy region of kmem_cache_create()
to size 0. Any new caches with usercopy regions will now need to use
kmem_cache_create_usercopy() instead of kmem_cache_create().

This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code are
mine and don't reflect the original grsecurity/PaX code.

Cc: David Windsor <dave@nullcore.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-01-15 12:08:08 -08:00
David Windsor
6c0c21adc7 usercopy: Mark kmalloc caches as usercopy caches
Mark the kmalloc slab caches as entirely whitelisted. These caches
are frequently used to fulfill kernel allocations that contain data
to be copied to/from userspace. Internal-only uses are also common,
but are scattered in the kernel. For now, mark all the kmalloc caches
as whitelisted.

This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code are
mine and don't reflect the original grsecurity/PaX code.

Signed-off-by: David Windsor <dave@nullcore.net>
[kees: merged in moved kmalloc hunks, adjust commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
2018-01-15 12:07:49 -08:00
Kees Cook
2d891fbc3b usercopy: Allow strict enforcement of whitelists
This introduces CONFIG_HARDENED_USERCOPY_FALLBACK to control the
behavior of hardened usercopy whitelist violations. By default, whitelist
violations will continue to WARN() so that any bad or missing usercopy
whitelists can be discovered without being too disruptive.

If this config is disabled at build time or a system is booted with
"slab_common.usercopy_fallback=0", usercopy whitelists will BUG() instead
of WARN(). This is useful for admins that want to use usercopy whitelists
immediately.

Suggested-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-01-15 12:07:48 -08:00
David Windsor
8eb8284b41 usercopy: Prepare for usercopy whitelisting
This patch prepares the slab allocator to handle caches having annotations
(useroffset and usersize) defining usercopy regions.

This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on
my understanding of the code. Changes or omissions from the original
code are mine and don't reflect the original grsecurity/PaX code.

Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass
hardened usercopy checks since these sizes cannot change at runtime.)

To support this whitelist annotation, usercopy region offset and size
members are added to struct kmem_cache. The slab allocator receives a
new function, kmem_cache_create_usercopy(), that creates a new cache
with a usercopy region defined, suitable for declaring spans of fields
within the objects that get copied to/from userspace.

In this patch, the default kmem_cache_create() marks the entire allocation
as whitelisted, leaving it semantically unchanged. Once all fine-grained
whitelists have been added (in subsequent patches), this will be changed
to a usersize of 0, making caches created with kmem_cache_create() not
copyable to/from userspace.

After the entire usercopy whitelist series is applied, less than 15%
of the slab cache memory remains exposed to potential usercopy bugs
after a fresh boot:

Total Slab Memory:           48074720
Usercopyable Memory:          6367532  13.2%
         task_struct                    0.2%         4480/1630720
         RAW                            0.3%            300/96000
         RAWv6                          2.1%           1408/64768
         ext4_inode_cache               3.0%       269760/8740224
         dentry                        11.1%       585984/5273856
         mm_struct                     29.1%         54912/188448
         kmalloc-8                    100.0%          24576/24576
         kmalloc-16                   100.0%          28672/28672
         kmalloc-32                   100.0%          81920/81920
         kmalloc-192                  100.0%          96768/96768
         kmalloc-128                  100.0%        143360/143360
         names_cache                  100.0%        163840/163840
         kmalloc-64                   100.0%        167936/167936
         kmalloc-256                  100.0%        339968/339968
         kmalloc-512                  100.0%        350720/350720
         kmalloc-96                   100.0%        455616/455616
         kmalloc-8192                 100.0%        655360/655360
         kmalloc-1024                 100.0%        812032/812032
         kmalloc-4096                 100.0%        819200/819200
         kmalloc-2048                 100.0%      1310720/1310720

After some kernel build workloads, the percentage (mainly driven by
dentry and inode caches expanding) drops under 10%:

Total Slab Memory:           95516184
Usercopyable Memory:          8497452   8.8%
         task_struct                    0.2%         4000/1456000
         RAW                            0.3%            300/96000
         RAWv6                          2.1%           1408/64768
         ext4_inode_cache               3.0%     1217280/39439872
         dentry                        11.1%     1623200/14608800
         mm_struct                     29.1%         73216/251264
         kmalloc-8                    100.0%          24576/24576
         kmalloc-16                   100.0%          28672/28672
         kmalloc-32                   100.0%          94208/94208
         kmalloc-192                  100.0%          96768/96768
         kmalloc-128                  100.0%        143360/143360
         names_cache                  100.0%        163840/163840
         kmalloc-64                   100.0%        245760/245760
         kmalloc-256                  100.0%        339968/339968
         kmalloc-512                  100.0%        350720/350720
         kmalloc-96                   100.0%        563520/563520
         kmalloc-8192                 100.0%        655360/655360
         kmalloc-1024                 100.0%        794624/794624
         kmalloc-4096                 100.0%        819200/819200
         kmalloc-2048                 100.0%      1257472/1257472

Signed-off-by: David Windsor <dave@nullcore.net>
[kees: adjust commit log, split out a few extra kmalloc hunks]
[kees: add field names to function declarations]
[kees: convert BUGs to WARNs and fail closed]
[kees: add attack surface reduction analysis to commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
2018-01-15 12:07:47 -08:00
Levin, Alexander (Sasha Levin)
75f296d93b kmemcheck: stop using GFP_NOTRACK and SLAB_NOTRACK
Convert all allocations that used a NOTRACK flag to stop using it.

Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:04 -08:00
Alexey Dobriyan
d50112edde slab, slub, slob: add slab_flags_t
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON,
etc).

SLAB is bloated temporarily by switching to "unsigned long", but only
temporarily.

Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Yang Shi
852d8be0ad mm: oom: show unreclaimable slab info when unreclaimable slabs > user memory
The kernel may panic when an oom happens without killable process
sometimes it is caused by huge unreclaimable slabs used by kernel.

Although kdump could help debug such problem, however, kdump is not
available on all architectures and it might be malfunction sometime.
And, since kernel already panic it is worthy capturing such information
in dmesg to aid touble shooting.

Print out unreclaimable slab info (used size and total size) which
actual memory usage is not zero (num_objs * size != 0) when
unreclaimable slabs amount is greater than total user memory (LRU
pages).

The output looks like:

  Unreclaimable slab info:
  Name                      Used          Total
  rpc_buffers               31KB         31KB
  rpc_tasks                  7KB          7KB
  ebitmap_node            1964KB       1964KB
  avtab_node              5024KB       5024KB
  xfs_buf                 1402KB       1402KB
  xfs_ili                  134KB        134KB
  xfs_efi_item             115KB        115KB
  xfs_efd_item             115KB        115KB
  xfs_buf_item             134KB        134KB
  xfs_log_item_desc        342KB        342KB
  xfs_trans               1412KB       1412KB
  xfs_ifork                212KB        212KB

[yang.s@alibaba-inc.com: v11]
  Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com
Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Yang Shi
5b36577109 mm: slabinfo: remove CONFIG_SLABINFO
According to discussion with Christoph
(https://marc.info/?l=linux-kernel&m=150695909709711&w=2), it sounds like
it is pointless to keep CONFIG_SLABINFO around.

This patch removes the CONFIG_SLABINFO config option, but /proc/slabinfo
is still available.

[yang.s@alibaba-inc.com: v11]
  Link: http://lkml.kernel.org/r/1507656303-103845-3-git-send-email-yang.s@alibaba-inc.com
Link: http://lkml.kernel.org/r/1507152550-46205-3-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Johannes Weiner
f80c7dab95 mm: memcontrol: use vmalloc fallback for large kmem memcg arrays
For quick per-memcg indexing, slab caches and list_lru structures
maintain linear arrays of descriptors.  As the number of concurrent
memory cgroups in the system goes up, this requires large contiguous
allocations (8k cgroups = order-5, 16k cgroups = order-6 etc.) for every
existing slab cache and list_lru, which can easily fail on loaded
systems.  E.g.:

  mkdir: page allocation failure: order:5, mode:0x14040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null)
  CPU: 1 PID: 6399 Comm: mkdir Not tainted 4.13.0-mm1-00065-g720bbe532b7c-dirty #481
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
  Call Trace:
   ? __alloc_pages_direct_compact+0x4c/0x110
   __alloc_pages_nodemask+0xf50/0x1430
   alloc_pages_current+0x60/0xc0
   kmalloc_order_trace+0x29/0x1b0
   __kmalloc+0x1f4/0x320
   memcg_update_all_list_lrus+0xca/0x2e0
   mem_cgroup_css_alloc+0x612/0x670
   cgroup_apply_control_enable+0x19e/0x360
   cgroup_mkdir+0x322/0x490
   kernfs_iop_mkdir+0x55/0x80
   vfs_mkdir+0xd0/0x120
   SyS_mkdirat+0x6c/0xe0
   SyS_mkdir+0x14/0x20
   entry_SYSCALL_64_fastpath+0x18/0xad
  Mem-Info:
  active_anon:2965 inactive_anon:19 isolated_anon:0
   active_file:100270 inactive_file:98846 isolated_file:0
   unevictable:0 dirty:0 writeback:0 unstable:0
   slab_reclaimable:7328 slab_unreclaimable:16402
   mapped:771 shmem:52 pagetables:278 bounce:0
   free:13718 free_pcp:0 free_cma:0

This output is from an artificial reproducer, but we have repeatedly
observed order-7 failures in production in the Facebook fleet.  These
systems become useless as they cannot run more jobs, even though there
is plenty of memory to allocate 128 individual pages.

Use kvmalloc and kvzalloc to fall back to vmalloc space if these arrays
prove too large for allocating them physically contiguous.

Link: http://lkml.kernel.org/r/20170918184919.20644-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:25 -07:00
Kees Cook
7660a6fddc mm: allow slab_nomerge to be set at build time
Some hardened environments want to build kernels with slab_nomerge
already set (so that they do not depend on remembering to set the kernel
command line option).  This is desired to reduce the risk of kernel heap
overflows being able to overwrite objects from merged caches and changes
the requirements for cache layout control, increasing the difficulty of
these attacks.  By keeping caches unmerged, these kinds of exploits can
usually only damage objects in the same cache (though the risk to
metadata exploitation is unchanged).

Link: http://lkml.kernel.org/r/20170620230911.GA25238@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: David Windsor <dave@nullcore.net>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: David Windsor <dave@nullcore.net>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Daniel Mack <daniel@zonque.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Paul E. McKenney
5f0d5a3ae7 mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU
A group of Linux kernel hackers reported chasing a bug that resulted
from their assumption that SLAB_DESTROY_BY_RCU provided an existence
guarantee, that is, that no block from such a slab would be reallocated
during an RCU read-side critical section.  Of course, that is not the
case.  Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire
slab of blocks.

However, there is a phrase for this, namely "type safety".  This commit
therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order
to avoid future instances of this sort of confusion.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
[ paulmck: Add comments mentioning the old name, as requested by Eric
  Dumazet, in order to help people familiar with the old name find
  the new one. ]
Acked-by: David Rientjes <rientjes@google.com>
2017-04-18 11:42:36 -07:00
Greg Thelen
f9fa1d919c kasan: drain quarantine of memcg slab objects
Per memcg slab accounting and kasan have a problem with kmem_cache
destruction.
 - kmem_cache_create() allocates a kmem_cache, which is used for
   allocations from processes running in root (top) memcg.
 - Processes running in non root memcg and allocating with either
   __GFP_ACCOUNT or from a SLAB_ACCOUNT cache use a per memcg
   kmem_cache.
 - Kasan catches use-after-free by having kfree() and kmem_cache_free()
   defer freeing of objects. Objects are placed in a quarantine.
 - kmem_cache_destroy() destroys root and non root kmem_caches. It takes
   care to drain the quarantine of objects from the root memcg's
   kmem_cache, but ignores objects associated with non root memcg. This
   causes leaks because quarantined per memcg objects refer to per memcg
   kmem cache being destroyed.

To see the problem:

 1) create a slab cache with kmem_cache_create(,,,SLAB_ACCOUNT,)
 2) from non root memcg, allocate and free a few objects from cache
 3) dispose of the cache with kmem_cache_destroy() kmem_cache_destroy()
    will trigger a "Slab cache still has objects" warning indicating
    that the per memcg kmem_cache structure was leaked.

Fix the leak by draining kasan quarantined objects allocated from non
root memcg.

Racing memcg deletion is tricky, but handled.  kmem_cache_destroy() =>
shutdown_memcg_caches() => __shutdown_memcg_cache() => shutdown_cache()
flushes per memcg quarantined objects, even if that memcg has been
rmdir'd and gone through memcg_deactivate_kmem_caches().

This leak only affects destroyed SLAB_ACCOUNT kmem caches when kasan is
enabled.  So I don't think it's worth patching stable kernels.

Link: http://lkml.kernel.org/r/1482257462-36948-1-git-send-email-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Tejun Heo
17cc4dfeda slab: use memcg_kmem_cache_wq for slab destruction operations
If there's contention on slab_mutex, queueing the per-cache destruction
work item on the system_wq can unnecessarily create and tie up a lot of
kworkers.

Rename memcg_kmem_cache_create_wq to memcg_kmem_cache_wq and make it
global and use that workqueue for the destruction work items too.  While
at it, convert the workqueue from an unbound workqueue to a per-cpu one
with concurrency limited to 1.  It's generally preferable to use per-cpu
workqueues and concurrency limit of 1 is safe enough.

This is suggested by Joonsoo Kim.

Link: http://lkml.kernel.org/r/20170117235411.9408-11-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov@tarantool.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
01fb58bcba slab: remove synchronous synchronize_sched() from memcg cache deactivation path
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

slub uses synchronize_sched() to deactivate a memcg cache.
synchronize_sched() is an expensive and slow operation and doesn't scale
when a huge number of caches are destroyed back-to-back.  While there
used to be a simple batching mechanism, the batching was too restricted
to be helpful.

This patch implements slab_deactivate_memcg_cache_rcu_sched() which slub
can use to schedule sched RCU callback instead of performing
synchronize_sched() synchronously while holding cgroup_mutex.  While
this adds online cpus, mems and slab_mutex operations, operating on
these locks back-to-back from the same kworker, which is what's gonna
happen when there are many to deactivate, isn't expensive at all and
this gets rid of the scalability problem completely.

Link: http://lkml.kernel.org/r/20170117235411.9408-9-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
c9fc586403 slab: introduce __kmemcg_cache_deactivate()
__kmem_cache_shrink() is called with %true @deactivate only for memcg
caches.  Remove @deactivate from __kmem_cache_shrink() and introduce
__kmemcg_cache_deactivate() instead.  Each memcg-supporting allocator
should implement it and it should deactivate and drain the cache.

This is to allow memcg cache deactivation behavior to further deviate
from simple shrinking without messing up __kmem_cache_shrink().

This is pure reorganization and doesn't introduce any observable
behavior changes.

v2: Dropped unnecessary ifdef in mm/slab.h as suggested by Vladimir.

Link: http://lkml.kernel.org/r/20170117235411.9408-8-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
510ded33e0 slab: implement slab_root_caches list
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

slab_caches currently lists all caches including root and memcg ones.
This is the only data structure which lists the root caches and
iterating root caches can only be done by walking the list while
skipping over memcg caches.  As there can be a huge number of memcg
caches, this can become very expensive.

This also can make /proc/slabinfo behave very badly.  seq_file processes
reads in 4k chunks and seeks to the previous Nth position on slab_caches
list to resume after each chunk.  With a lot of memcg cache churns on
the list, reading /proc/slabinfo can become very slow and its content
often ends up with duplicate and/or missing entries.

This patch adds a new list slab_root_caches which lists only the root
caches.  When memcg is not enabled, it becomes just an alias of
slab_caches.  memcg specific list operations are collected into
memcg_[un]link_cache().

Link: http://lkml.kernel.org/r/20170117235411.9408-7-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov@tarantool.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
bc2791f857 slab: link memcg kmem_caches on their associated memory cgroup
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

While a memcg kmem_cache is listed on its root cache's ->children list,
there is no direct way to iterate all kmem_caches which are assocaited
with a memory cgroup.  The only way to iterate them is walking all
caches while filtering out caches which don't match, which would be most
of them.

This makes memcg destruction operations O(N^2) where N is the total
number of slab caches which can be huge.  This combined with the
synchronous RCU operations can tie up a CPU and affect the whole machine
for many hours when memory reclaim triggers offlining and destruction of
the stale memcgs.

This patch adds mem_cgroup->kmem_caches list which goes through
memcg_cache_params->kmem_caches_node of all kmem_caches which are
associated with the memcg.  All memcg specific iterations, including
stat file access, are updated to use the new list instead.

Link: http://lkml.kernel.org/r/20170117235411.9408-6-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
9eeadc8b6e slab: reorganize memcg_cache_params
We're going to change how memcg caches are iterated.  In preparation,
clean up and reorganize memcg_cache_params.

* The shared ->list is replaced by ->children in root and
  ->children_node in children.

* ->is_root_cache is removed.  Instead ->root_cache is moved out of
  the child union and now used by both root and children.  NULL
  indicates root cache.  Non-NULL a memcg one.

This patch doesn't cause any observable behavior changes.

Link: http://lkml.kernel.org/r/20170117235411.9408-5-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
657dc2f972 slab: remove synchronous rcu_barrier() call in memcg cache release path
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before
destruction because slab pages are freed through RCU and they need to be
able to dereference the associated kmem_cache.  Currently, it's done
synchronously with rcu_barrier().  As rcu_barrier() is expensive
time-wise, slab implements a batching mechanism so that rcu_barrier()
can be done for multiple caches at the same time.

Unfortunately, the rcu_barrier() is in synchronous path which is called
while holding cgroup_mutex and the batching is too limited to be
actually helpful.

This patch updates the cache release path so that the batching is
asynchronous and global.  All SLAB_DESTORY_BY_RCU caches are queued
globally and a work item consumes the list.  The work item calls
rcu_barrier() only once for all caches that are currently queued.

* release_caches() is removed and shutdown_cache() now either directly
  release the cache or schedules a RCU callback to do that.  This
  makes the cache inaccessible once shutdown_cache() is called and
  makes it impossible for shutdown_memcg_caches() to do memcg-specific
  cleanups afterwards.  Move memcg-specific part into a helper,
  unlink_memcg_cache(), and make shutdown_cache() call it directly.

Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov@tarantool.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
bf5eb3de38 slub: separate out sysfs_slab_release() from sysfs_slab_remove()
Separate out slub sysfs removal and release, and call the former earlier
from __kmem_cache_shutdown().  There's no reason to defer sysfs removal
through RCU and this will later allow us to remove sysfs files way
earlier during memory cgroup offline instead of release.

Link: http://lkml.kernel.org/r/20170117235411.9408-3-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
290b6a58b7 Revert "slub: move synchronize_sched out of slab_mutex on shrink"
Patch series "slab: make memcg slab destruction scalable", v3.

With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.

I've seen machines which end up with hundred thousands of caches and
many millions of kernfs_nodes.  The current code is O(N^2) on the total
number of caches and has synchronous rcu_barrier() and
synchronize_sched() in cgroup offline / release path which is executed
while holding cgroup_mutex.  Combined, this leads to very expensive and
slow cache destruction operations which can easily keep running for half
a day.

This also messes up /proc/slabinfo along with other cache iterating
operations.  seq_file operates on 4k chunks and on each 4k boundary
tries to seek to the last position in the list.  With a huge number of
caches on the list, this becomes very slow and very prone to the list
content changing underneath it leading to a lot of missing and/or
duplicate entries.

This patchset addresses the scalability problem.

* Add root and per-memcg lists.  Update each user to use the
  appropriate list.

* Make rcu_barrier() for SLAB_DESTROY_BY_RCU caches globally batched
  and asynchronous.

* For dying empty slub caches, remove the sysfs files after
  deactivation so that we don't end up with millions of sysfs files
  without any useful information on them.

This patchset contains the following nine patches.

 0001-Revert-slub-move-synchronize_sched-out-of-slab_mutex.patch
 0002-slub-separate-out-sysfs_slab_release-from-sysfs_slab.patch
 0003-slab-remove-synchronous-rcu_barrier-call-in-memcg-ca.patch
 0004-slab-reorganize-memcg_cache_params.patch
 0005-slab-link-memcg-kmem_caches-on-their-associated-memo.patch
 0006-slab-implement-slab_root_caches-list.patch
 0007-slab-introduce-__kmemcg_cache_deactivate.patch
 0008-slab-remove-synchronous-synchronize_sched-from-memcg.patch
 0009-slab-remove-slub-sysfs-interface-files-early-for-emp.patch
 0010-slab-use-memcg_kmem_cache_wq-for-slab-destruction-op.patch

0001 reverts an existing optimization to prepare for the following
changes.  0002 is a prep patch.  0003 makes rcu_barrier() in release
path batched and asynchronous.  0004-0006 separate out the lists.
0007-0008 replace synchronize_sched() in slub destruction path with
call_rcu_sched().  0009 removes sysfs files early for empty dying
caches.  0010 makes destruction work items use a workqueue with limited
concurrency.

This patch (of 10):

Revert 89e364db71 ("slub: move synchronize_sched out of slab_mutex on
shrink").

With kmem cgroup support enabled, kmem_caches can be created and destroyed
frequently and a great number of near empty kmem_caches can accumulate if
there are a lot of transient cgroups and the system is not under memory
pressure.  When memory reclaim starts under such conditions, it can lead
to consecutive deactivation and destruction of many kmem_caches, easily
hundreds of thousands on moderately large systems, exposing scalability
issues in the current slab management code.  This is one of the patches to
address the issue.

Moving synchronize_sched() out of slab_mutex isn't enough as it's still
inside cgroup_mutex.  The whole deactivation / release path will be
updated to avoid all synchronous RCU operations.  Revert this insufficient
optimization in preparation to ease future changes.

Link: http://lkml.kernel.org/r/20170117235411.9408-2-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Vlastimil Babka
af3b5f8764 mm, slab: rename kmalloc-node cache to kmalloc-<size>
SLAB as part of its bootstrap pre-creates one kmalloc cache that can fit
the kmem_cache_node management structure, and puts it into the generic
kmalloc cache array (e.g. for 128b objects).  The name of this cache is
"kmalloc-node", which is confusing for readers of /proc/slabinfo as the
cache is used for generic allocations (and not just the kmem_cache_node
struct) and it appears as the kmalloc-128 cache is missing.

An easy solution is to use the kmalloc-<size> name when pre-creating the
cache, which we can get from the kmalloc_info array.

Example /proc/slabinfo before the patch:

  ...
  kmalloc-256         1647   1984    256   16    1 : tunables  120   60    8 : slabdata    124    124    828
  kmalloc-192         1974   1974    192   21    1 : tunables  120   60    8 : slabdata     94     94    133
  kmalloc-96          1332   1344    128   32    1 : tunables  120   60    8 : slabdata     42     42    219
  kmalloc-64          2505   5952     64   64    1 : tunables  120   60    8 : slabdata     93     93    715
  kmalloc-32          4278   4464     32  124    1 : tunables  120   60    8 : slabdata     36     36    346
  kmalloc-node        1352   1376    128   32    1 : tunables  120   60    8 : slabdata     43     43     53
  kmem_cache           132    147    192   21    1 : tunables  120   60    8 : slabdata      7      7      0

After the patch:

  ...
  kmalloc-256         1672   2160    256   16    1 : tunables  120   60    8 : slabdata    135    135    807
  kmalloc-192         1992   2016    192   21    1 : tunables  120   60    8 : slabdata     96     96    203
  kmalloc-96          1159   1184    128   32    1 : tunables  120   60    8 : slabdata     37     37    116
  kmalloc-64          2561   4864     64   64    1 : tunables  120   60    8 : slabdata     76     76    785
  kmalloc-32          4253   4340     32  124    1 : tunables  120   60    8 : slabdata     35     35    270
  kmalloc-128         1256   1280    128   32    1 : tunables  120   60    8 : slabdata     40     40     39
  kmem_cache           125    147    192   21    1 : tunables  120   60    8 : slabdata      7      7      0

[vbabka@suse.cz: export the whole kmalloc_info structure instead of just a name accessor, per Christoph Lameter]
  Link: http://lkml.kernel.org/r/54e80303-b814-4232-66d4-95b34d3eb9d0@suse.cz
Link: http://lkml.kernel.org/r/20170203181008.24898-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Grygorii Maistrenko
c6e28895a4 slub: do not merge cache if slub_debug contains a never-merge flag
In case CONFIG_SLUB_DEBUG_ON=n, find_mergeable() gets debug features from
commandline but never checks if there are features from the
SLAB_NEVER_MERGE set.

As a result selected by slub_debug caches are always mergeable if they
have been created without a custom constructor set or without one of the
SLAB_* debug features on.

This moves the SLAB_NEVER_MERGE check below the flags update from
commandline to make sure it won't merge the slab cache if one of the debug
features is on.

Link: http://lkml.kernel.org/r/20170101124451.GA4740@lp-laptop-d
Signed-off-by: Grygorii Maistrenko <grygoriimkd@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Thomas Garnier
e70954fd6d mm/slab_common.c: check kmem_create_cache flags are common
Verify that kmem_create_cache flags are not allocator specific.  It is
done before removing flags that are not available with the current
configuration.

The current kmem_cache_create removes incorrect flags but do not
validate the callers are using them right.  This change will ensure that
callers are not trying to create caches with flags that won't be used
because allocator specific.

Link: http://lkml.kernel.org/r/1478553075-120242-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:06 -08:00
Vladimir Davydov
89e364db71 slub: move synchronize_sched out of slab_mutex on shrink
synchronize_sched() is a heavy operation and calling it per each cache
owned by a memory cgroup being destroyed may take quite some time.  What
is worse, it's currently called under the slab_mutex, stalling all works
doing cache creation/destruction.

Actually, there isn't much point in calling synchronize_sched() for each
cache - it's enough to call it just once - after setting cpu_partial for
all caches and before shrinking them.  This way, we can also move it out
of the slab_mutex, which we have to hold for iterating over the slab
cache list.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=172991
Link: http://lkml.kernel.org/r/0a10d71ecae3db00fb4421bcd3f82bcc911f4be4.1475329751.git.vdavydov.dev@gmail.com
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:06 -08:00
Greg Thelen
f773e36de3 memcg: prevent memcg caches to be both OFF_SLAB & OBJFREELIST_SLAB
While testing OBJFREELIST_SLAB integration with pagealloc, we found a
bug where kmem_cache(sys) would be created with both CFLGS_OFF_SLAB &
CFLGS_OBJFREELIST_SLAB.  When it happened, critical allocations needed
for loading drivers or creating new caches will fail.

The original kmem_cache is created early making OFF_SLAB not possible.
When kmem_cache(sys) is created, OFF_SLAB is possible and if pagealloc
is enabled it will try to enable it first under certain conditions.
Given kmem_cache(sys) reuses the original flag, you can have both flags
at the same time resulting in allocation failures and odd behaviors.

This fix discards allocator specific flags from memcg before calling
create_cache.

The bug exists since 4.6-rc1 and affects testing debug pagealloc
configurations.

Fixes: b03a017beb ("mm/slab: introduce new slab management type, OBJFREELIST_SLAB")
Link: http://lkml.kernel.org/r/1478553075-120242-1-git-send-email-thgarnie@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Tested-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-11 08:12:37 -08:00
Vladimir Davydov
4949148ad4 mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag.  A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.

This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e.  when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.

To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e.  to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers.  This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends.  A charged page will be
automatically uncharged on free.

To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages.  Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine.  There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.

In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths.  If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.

Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Thomas Garnier
7c00fce98c mm: reorganize SLAB freelist randomization
The kernel heap allocators are using a sequential freelist making their
allocation predictable.  This predictability makes kernel heap overflow
easier to exploit.  An attacker can careful prepare the kernel heap to
control the following chunk overflowed.

For example these attacks exploit the predictability of the heap:
 - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
 - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)

***Problems that needed solving:
 - Randomize the Freelist (singled linked) used in the SLUB allocator.
 - Ensure good performance to encourage usage.
 - Get best entropy in early boot stage.

***Parts:
 - 01/02 Reorganize the SLAB Freelist randomization to share elements
   with the SLUB implementation.
 - 02/02 The SLUB Freelist randomization implementation. Similar approach
   than the SLAB but tailored to the singled freelist used in SLUB.

***Performance data:

slab_test impact is between 3% to 4% on average for 100000 attempts
without smp.  It is a very focused testing, kernbench show the overall
impact on the system is way lower.

Before:

  Single thread testing
  =====================
  1. Kmalloc: Repeatedly allocate then free test
  100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
  100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
  100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
  100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
  100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
  100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
  100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
  100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
  100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
  100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
  2. Kmalloc: alloc/free test
  100000 times kmalloc(8)/kfree -> 70 cycles
  100000 times kmalloc(16)/kfree -> 70 cycles
  100000 times kmalloc(32)/kfree -> 70 cycles
  100000 times kmalloc(64)/kfree -> 70 cycles
  100000 times kmalloc(128)/kfree -> 70 cycles
  100000 times kmalloc(256)/kfree -> 69 cycles
  100000 times kmalloc(512)/kfree -> 70 cycles
  100000 times kmalloc(1024)/kfree -> 73 cycles
  100000 times kmalloc(2048)/kfree -> 72 cycles
  100000 times kmalloc(4096)/kfree -> 71 cycles

After:

  Single thread testing
  =====================
  1. Kmalloc: Repeatedly allocate then free test
  100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
  100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
  100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
  100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
  100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
  100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
  100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
  100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
  100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
  100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
  2. Kmalloc: alloc/free test
  100000 times kmalloc(8)/kfree -> 66 cycles
  100000 times kmalloc(16)/kfree -> 66 cycles
  100000 times kmalloc(32)/kfree -> 66 cycles
  100000 times kmalloc(64)/kfree -> 66 cycles
  100000 times kmalloc(128)/kfree -> 65 cycles
  100000 times kmalloc(256)/kfree -> 67 cycles
  100000 times kmalloc(512)/kfree -> 67 cycles
  100000 times kmalloc(1024)/kfree -> 64 cycles
  100000 times kmalloc(2048)/kfree -> 67 cycles
  100000 times kmalloc(4096)/kfree -> 67 cycles

Kernbench, before:

  Average Optimal load -j 12 Run (std deviation):
  Elapsed Time 101.873 (1.16069)
  User Time 1045.22 (1.60447)
  System Time 88.969 (0.559195)
  Percent CPU 1112.9 (13.8279)
  Context Switches 189140 (2282.15)
  Sleeps 99008.6 (768.091)

After:

  Average Optimal load -j 12 Run (std deviation):
  Elapsed Time 102.47 (0.562732)
  User Time 1045.3 (1.34263)
  System Time 88.311 (0.342554)
  Percent CPU 1105.8 (6.49444)
  Context Switches 189081 (2355.78)
  Sleeps 99231.5 (800.358)

This patch (of 2):

This commit reorganizes the previous SLAB freelist randomization to
prepare for the SLUB implementation.  It moves functions that will be
shared to slab_common.

The entropy functions are changed to align with the SLUB implementation,
now using get_random_(int|long) functions.  These functions were chosen
because they provide a bit more entropy early on boot and better
performance when specific arch instructions are not available.

[akpm@linux-foundation.org: fix build]
Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Johannes Weiner
73f576c04b mm: memcontrol: fix cgroup creation failure after many small jobs
The memory controller has quite a bit of state that usually outlives the
cgroup and pins its CSS until said state disappears.  At the same time
it imposes a 16-bit limit on the CSS ID space to economically store IDs
in the wild.  Consequently, when we use cgroups to contain frequent but
small and short-lived jobs that leave behind some page cache, we quickly
run into the 64k limitations of outstanding CSSs.  Creating a new cgroup
fails with -ENOSPC while there are only a few, or even no user-visible
cgroups in existence.

Although pinning CSSs past cgroup removal is common, there are only two
instances that actually need an ID after a cgroup is deleted: cache
shadow entries and swapout records.

Cache shadow entries reference the ID weakly and can deal with the CSS
having disappeared when it's looked up later.  They pose no hurdle.

Swap-out records do need to pin the css to hierarchically attribute
swapins after the cgroup has been deleted; though the only pages that
remain swapped out after offlining are tmpfs/shmem pages.  And those
references are under the user's control, so they are manageable.

This patch introduces a private 16-bit memcg ID and switches swap and
cache shadow entries over to using that.  This ID can then be recycled
after offlining when the CSS remains pinned only by objects that don't
specifically need it.

This script demonstrates the problem by faulting one cache page in a new
cgroup and deleting it again:

  set -e
  mkdir -p pages
  for x in `seq 128000`; do
    [ $((x % 1000)) -eq 0 ] && echo $x
    mkdir /cgroup/foo
    echo $$ >/cgroup/foo/cgroup.procs
    echo trex >pages/$x
    echo $$ >/cgroup/cgroup.procs
    rmdir /cgroup/foo
  done

When run on an unpatched kernel, we eventually run out of possible IDs
even though there are no visible cgroups:

  [root@ham ~]# ./cssidstress.sh
  [...]
  65000
  mkdir: cannot create directory '/cgroup/foo': No space left on device

After this patch, the IDs get released upon cgroup destruction and the
cache and css objects get released once memory reclaim kicks in.

[hannes@cmpxchg.org: init the IDR]
  Link: http://lkml.kernel.org/r/20160621154601.GA22431@cmpxchg.org
Fixes: b2052564e6 ("mm: memcontrol: continue cache reclaim from offlined groups")
Link: http://lkml.kernel.org/r/20160617162516.GD19084@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: John Garcia <john.garcia@mesosphere.io>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Nikolay Borisov <kernel@kyup.com>
Cc: <stable@vger.kernel.org>	[3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-23 10:25:54 +09:00
Alexander Potapenko
55834c5909 mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE.  The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.

When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator.  From now on the
allocator may reuse it for another allocation.  Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).

When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped.  Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.

Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.

Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

Freed objects are first added to per-cpu quarantine queues.  When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue.  Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).

As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased.  Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.

Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.

This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov.  A number of improvements have been
suggested by Andrey Ryabinin.

[glider@google.com: v9]
  Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Alexander Potapenko
505f5dcb1c mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00