IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
For memblock_cap_memory_range() to work properly, it should be called
after memory is detected and added to memblock with memblock_add() or
memblock_add_node(). If memblock_cap_memory_range() would be called
before memory is registered, we may silently corrupt memory later
because the crash kernel will see all memory as available.
Print a warning and bail out if ordering is not satisfied.
Suggested-by: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/r/aabc5bad008d49f07d542815c6c8d28ec90bb09e.1628672091.git.geert+renesas@glider.be
Commit b10d6bca87 ("arch, drivers: replace for_each_membock() with
for_each_mem_range()") didn't take into account that when there is
movable_node parameter in the kernel command line, for_each_mem_range()
would skip ranges marked with MEMBLOCK_HOTPLUG.
The page table setup code in POWER uses for_each_mem_range() to create
the linear mapping of the physical memory and since the regions marked
as MEMORY_HOTPLUG are skipped, they never make it to the linear map.
A later access to the memory in those ranges will fail:
BUG: Unable to handle kernel data access on write at 0xc000000400000000
Faulting instruction address: 0xc00000000008a3c0
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
CPU: 0 PID: 53 Comm: kworker/u2:0 Not tainted 5.13.0 #7
NIP: c00000000008a3c0 LR: c0000000003c1ed8 CTR: 0000000000000040
REGS: c000000008a57770 TRAP: 0300 Not tainted (5.13.0)
MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE> CR: 84222202 XER: 20040000
CFAR: c0000000003c1ed4 DAR: c000000400000000 DSISR: 42000000 IRQMASK: 0
GPR00: c0000000003c1ed8 c000000008a57a10 c0000000019da700 c000000400000000
GPR04: 0000000000000280 0000000000000180 0000000000000400 0000000000000200
GPR08: 0000000000000100 0000000000000080 0000000000000040 0000000000000300
GPR12: 0000000000000380 c000000001bc0000 c0000000001660c8 c000000006337e00
GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000040000000 0000000020000000 c000000001a81990 c000000008c30000
GPR24: c000000008c20000 c000000001a81998 000fffffffff0000 c000000001a819a0
GPR28: c000000001a81908 c00c000001000000 c000000008c40000 c000000008a64680
NIP clear_user_page+0x50/0x80
LR __handle_mm_fault+0xc88/0x1910
Call Trace:
__handle_mm_fault+0xc44/0x1910 (unreliable)
handle_mm_fault+0x130/0x2a0
__get_user_pages+0x248/0x610
__get_user_pages_remote+0x12c/0x3e0
get_arg_page+0x54/0xf0
copy_string_kernel+0x11c/0x210
kernel_execve+0x16c/0x220
call_usermodehelper_exec_async+0x1b0/0x2f0
ret_from_kernel_thread+0x5c/0x70
Instruction dump:
79280fa4 79271764 79261f24 794ae8e2 7ca94214 7d683a14 7c893a14 7d893050
7d4903a6 60000000 60000000 60000000 <7c001fec> 7c091fec 7c081fec 7c051fec
---[ end trace 490b8c67e6075e09 ]---
Making for_each_mem_range() include MEMBLOCK_HOTPLUG regions in the
traversal fixes this issue.
Link: https://bugzilla.redhat.com/show_bug.cgi?id=1976100
Link: https://lkml.kernel.org/r/20210712071132.20902-1-rppt@kernel.org
Fixes: b10d6bca87 ("arch, drivers: replace for_each_membock() with for_each_mem_range()")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [5.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull memblock updates from Mike Rapoport:
"Fix arm crashes caused by holes in the memory map.
The coordination between freeing of unused memory map, pfn_valid() and
core mm assumptions about validity of the memory map in various ranges
was not designed for complex layouts of the physical memory with a lot
of holes all over the place.
Kefen Wang reported crashes in move_freepages() on a system with the
following memory layout [1]:
node 0: [mem 0x0000000080a00000-0x00000000855fffff]
node 0: [mem 0x0000000086a00000-0x0000000087dfffff]
node 0: [mem 0x000000008bd00000-0x000000008c4fffff]
node 0: [mem 0x000000008e300000-0x000000008ecfffff]
node 0: [mem 0x0000000090d00000-0x00000000bfffffff]
node 0: [mem 0x00000000cc000000-0x00000000dc9fffff]
node 0: [mem 0x00000000de700000-0x00000000de9fffff]
node 0: [mem 0x00000000e0800000-0x00000000e0bfffff]
node 0: [mem 0x00000000f4b00000-0x00000000f6ffffff]
node 0: [mem 0x00000000fda00000-0x00000000ffffefff]
These crashes can be mitigated by enabling CONFIG_HOLES_IN_ZONE on ARM
and essentially turning pfn_valid_within() to pfn_valid() instead of
having it hardwired to 1 on that architecture, but this would require
to keep CONFIG_HOLES_IN_ZONE solely for this purpose.
A cleaner approach is to update ARM's implementation of pfn_valid() to
take into accounting rounding of the freed memory map to pageblock
boundaries and make sure it returns true for PFNs that have memory map
entries even if there is no physical memory backing those PFNs"
Link: https://lore.kernel.org/lkml/2a1592ad-bc9d-4664-fd19-f7448a37edc0@huawei.com [1]
* tag 'memblock-v5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock:
arm: extend pfn_valid to take into account freed memory map alignment
memblock: ensure there is no overflow in memblock_overlaps_region()
memblock: align freed memory map on pageblock boundaries with SPARSEMEM
memblock: free_unused_memmap: use pageblock units instead of MAX_ORDER
The struct pages representing a reserved memory region are initialized
using reserve_bootmem_range() function. This function is called for each
reserved region just before the memory is freed from memblock to the buddy
page allocator.
The struct pages for MEMBLOCK_NOMAP regions are kept with the default
values set by the memory map initialization which makes it necessary to
have a special treatment for such pages in pfn_valid() and
pfn_valid_within().
Split out initialization of the reserved pages to a function with a
meaningful name and treat the MEMBLOCK_NOMAP regions the same way as the
reserved regions and mark struct pages for the NOMAP regions as
PageReserved.
Link: https://lkml.kernel.org/r/20210511100550.28178-3-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There maybe an overflow in memblock_overlaps_region() if it is called with
base and size such that
base + size > PHYS_ADDR_MAX
Make sure that memblock_overlaps_region() caps the size to prevent such
overflow and remove now duplicated call to memblock_cap_size() from
memblock_is_region_reserved().
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
When CONFIG_SPARSEMEM=y the ranges of the memory map that are freed are not
aligned to the pageblock boundaries which breaks assumptions about
homogeneity of the memory map throughout core mm code.
Make sure that the freed memory map is always aligned on pageblock
boundaries regardless of the memory model selection.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
The code that frees unused memory map uses rounds start and end of the
holes that are freed to MAX_ORDER_NR_PAGES to preserve continuity of the
memory map for MAX_ORDER regions.
Lots of core memory management functionality relies on homogeneity of the
memory map within each pageblock which size may differ from MAX_ORDER in
certain configurations.
Although currently, for the architectures that use free_unused_memmap(),
pageblock_order and MAX_ORDER are equivalent, it is cleaner to have common
notation thought mm code.
Replace MAX_ORDER_NR_PAGES with pageblock_nr_pages and update the comments
to make it more clear why the alignment to pageblock boundaries is
required.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Pull memblock update from Mike Rapoport:
"Remove return value of memblock_free_all()
memblock_free_all() returns the total count of freed pages and its
callers used this value to update totalram_pages. This update is now
anyway a part of memblock_free_all() and its callers no longer check
the return value, so make memblock_free_all() void"
* tag 'memblock-v5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock:
mm: memblock: remove return value of memblock_free_all()
With kaslr the kernel image is placed at a random place, so starting the
bottom-up allocation with the kernel_end can result in an allocation
failure and a warning like this one:
hugetlb_cma: reserve 2048 MiB, up to 2048 MiB per node
------------[ cut here ]------------
memblock: bottom-up allocation failed, memory hotremove may be affected
WARNING: CPU: 0 PID: 0 at mm/memblock.c:332 memblock_find_in_range_node+0x178/0x25a
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 5.10.0+ #1169
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
RIP: 0010:memblock_find_in_range_node+0x178/0x25a
Code: e9 6d ff ff ff 48 85 c0 0f 85 da 00 00 00 80 3d 9b 35 df 00 00 75 15 48 c7 c7 c0 75 59 88 c6 05 8b 35 df 00 01 e8 25 8a fa ff <0f> 0b 48 c7 44 24 20 ff ff ff ff 44 89 e6 44 89 ea 48 c7 c1 70 5c
RSP: 0000:ffffffff88803d18 EFLAGS: 00010086 ORIG_RAX: 0000000000000000
RAX: 0000000000000000 RBX: 0000000240000000 RCX: 00000000ffffdfff
RDX: 00000000ffffdfff RSI: 00000000ffffffea RDI: 0000000000000046
RBP: 0000000100000000 R08: ffffffff88922788 R09: 0000000000009ffb
R10: 00000000ffffe000 R11: 3fffffffffffffff R12: 0000000000000000
R13: 0000000000000000 R14: 0000000080000000 R15: 00000001fb42c000
FS: 0000000000000000(0000) GS:ffffffff88f71000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffa080fb401000 CR3: 00000001fa80a000 CR4: 00000000000406b0
Call Trace:
memblock_alloc_range_nid+0x8d/0x11e
cma_declare_contiguous_nid+0x2c4/0x38c
hugetlb_cma_reserve+0xdc/0x128
flush_tlb_one_kernel+0xc/0x20
native_set_fixmap+0x82/0xd0
flat_get_apic_id+0x5/0x10
register_lapic_address+0x8e/0x97
setup_arch+0x8a5/0xc3f
start_kernel+0x66/0x547
load_ucode_bsp+0x4c/0xcd
secondary_startup_64_no_verify+0xb0/0xbb
random: get_random_bytes called from __warn+0xab/0x110 with crng_init=0
---[ end trace f151227d0b39be70 ]---
At the same time, the kernel image is protected with memblock_reserve(),
so we can just start searching at PAGE_SIZE. In this case the bottom-up
allocation has the same chances to success as a top-down allocation, so
there is no reason to fallback in the case of a failure. All together it
simplifies the logic.
Link: https://lkml.kernel.org/r/20201217201214.3414100-2-guro@fb.com
Fixes: 8fabc62323 ("powerpc: Ensure that swiotlb buffer is allocated from low memory")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Wonhyuk Yang <vvghjk1234@gmail.com>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memblock_phys_alloc_try_nid function's comments has typo NUMA as MUMA.
Correct this typo.
Signed-off-by: Levi Yun <ppbuk5246@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
No one checks the return value of memblock_free_all().
Make the return value void.
memblock_free_all() is used on mem_init() for each
architecture, and the total count of freed pages will be added
to _totalram_pages variable by calling totalram_pages_add().
so do not need to return total count of freed pages.
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Pull memblock updates from Mike Rapoport:
"memblock debug enhancements.
Improve tracking of early memory allocations when memblock debug is
enabled:
- Add memblock_dbg() to memblock_phys_alloc_range() to get details
about its usage
- Make memblock allocator wrappers actually inline to track their
callers in memblock debug messages"
* tag 'memblock-v5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock:
mm: memblock: drop __init from memblock functions to make it inline
mm: memblock: add more debug logs
It is useful to know the exact caller of memblock_phys_alloc_range() to
track early memory reservations during development.
Currently, when memblock debugging is enabled, the allocations done with
memblock_phys_alloc_range() are only reported at memblock_reserve():
[ 0.000000] memblock_reserve: [0x000000023fc6b000-0x000000023fc6bfff] memblock_alloc_range_nid+0xc0/0x188
Add memblock_dbg() to memblock_phys_alloc_range() to get details about
its usage.
For example:
[ 0.000000] memblock_phys_alloc_range: 4096 bytes align=0x1000 from=0x0000000000000000 max_addr=0x0000000000000000 early_pgtable_alloc+0x24/0x178
[ 0.000000] memblock_reserve: [0x000000023fc6b000-0x000000023fc6bfff] memblock_alloc_range_nid+0xc0/0x188
Signed-off-by: Faiyaz Mohammed <faiyazm@codeaurora.org>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
chanseset b3a7bb1851c8 ("docs: get rid of :c:type explicit declarations for structs")
removed several :c:type: markups, except by one.
Now, Sphinx 3.x complains about it:
.../Documentation/core-api/boot-time-mm:26: ../mm/memblock.c:51: WARNING: Unparseable C cross-reference: 'struct\nmemblock_type'
Invalid C declaration: Expected identifier in nested name, got keyword: struct [error at 6]
struct
memblock_type
------^
As, on Sphinx 3.x, the right markup is c:struct:`foo`.
So, let's remove it, relying on automarkup.py to convert it.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
The :c:type:`foo` only works properly with structs before
Sphinx 3.x.
On Sphinx 3.x, structs should now be declared using the
.. c:struct, and referenced via :c:struct tag.
As we now have the automarkup.py macro, that automatically
convert:
struct foo
into cross-references, let's get rid of that, solving
several warnings when building docs with Sphinx 3.x.
Reviewed-by: André Almeida <andrealmeid@collabora.com> # blk-mq.rst
Reviewed-by: Takashi Iwai <tiwai@suse.de> # sound
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
The only user of memblock_dbg() outside memblock was s390 setup code and
it is converted to use pr_debug() instead. This allows to stop exposing
memblock_debug and memblock_dbg() to the rest of the kernel.
[akpm@linux-foundation.org: make memblock_dbg() safer and neater]
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Emil Renner Berthing <kernel@esmil.dk>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20200818151634.14343-10-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"physmem" in the memblock allocator is somewhat weird: it's not actually
used for allocation, it's simply information collected during boot, which
describes the unmodified physical memory map at boot time, without any
standby/hotplugged memory. It's only used on s390 and is currently the
only reason s390 keeps using CONFIG_ARCH_KEEP_MEMBLOCK.
Physmem isn't numa aware and current users don't specify any flags. Let's
hide it from the user, exposing only for_each_physmem(), and simplify. The
interface for physmem is now really minimalistic:
- memblock_physmem_add() to add ranges
- for_each_physmem() / __next_physmem_range() to walk physmem ranges
Don't place it into an __init section and don't discard it without
CONFIG_ARCH_KEEP_MEMBLOCK. As we're reusing __next_mem_range(), remove
the __meminit notifier to avoid section mismatch warnings once
CONFIG_ARCH_KEEP_MEMBLOCK is no longer used with
CONFIG_HAVE_MEMBLOCK_PHYS_MAP.
While fixing up the documentation, sneak in some related cleanups. We can
stop setting CONFIG_ARCH_KEEP_MEMBLOCK for s390 next.
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Message-Id: <20200701141830.18749-2-david@redhat.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
I've noticed that there is no interface exposed by CMA which would let
me to declare contigous memory on particular NUMA node.
This patchset adds the ability to try to allocate contiguous memory on a
specific node. It will fallback to other nodes if the specified one
doesn't work.
Implement a new method for declaring contigous memory on particular node
and keep cma_declare_contiguous() as a wrapper.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Aslan Bakirov <aslan@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Andreas Schaufler <andreas.schaufler@gmx.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse_buffer_init() use memblock_alloc_try_nid_raw() to allocate memory
for page management structure, if memory allocation fails from specified
node, it will fall back to allocate from other nodes.
Normally, the page management structure will not exceed 2% of the total
memory, but a large continuous block of allocation is needed. In most
cases, memory allocation from the specified node will succeed, but a
node memory become highly fragmented will fail. we expect to allocate
memory base section rather than by allocating a large block of memory
from other NUMA nodes
Add memblock_alloc_exact_nid_raw() for this situation, which allocate
boot memory block on the exact node. If a large contiguous block memory
allocate fail in sparse_buffer_init(), it will fall back to allocate
small block memory base section.
Link: http://lkml.kernel.org/r/66755ea7-ab10-8882-36fd-3e02b03775d5@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Until commit 92d12f9544 ("memblock: refactor internal allocation
functions") the maximal address for memblock allocations was forced to
memblock.current_limit only for the allocation functions returning
virtual address. The changes introduced by that commit moved the limit
enforcement into the allocation core and as a result the allocation
functions returning physical address also started to limit allocations
to memblock.current_limit.
This caused breakage of etnaviv GPU driver:
etnaviv etnaviv: bound 130000.gpu (ops gpu_ops)
etnaviv etnaviv: bound 134000.gpu (ops gpu_ops)
etnaviv etnaviv: bound 2204000.gpu (ops gpu_ops)
etnaviv-gpu 130000.gpu: model: GC2000, revision: 5108
etnaviv-gpu 130000.gpu: command buffer outside valid memory window
etnaviv-gpu 134000.gpu: model: GC320, revision: 5007
etnaviv-gpu 134000.gpu: command buffer outside valid memory window
etnaviv-gpu 2204000.gpu: model: GC355, revision: 1215
etnaviv-gpu 2204000.gpu: Ignoring GPU with VG and FE2.0
Restore the behaviour of memblock_phys* family so that these functions
will not enforce memblock.current_limit.
Link: http://lkml.kernel.org/r/1570915861-17633-1-git-send-email-rppt@kernel.org
Fixes: 92d12f9544 ("memblock: refactor internal allocation functions")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reported-by: Adam Ford <aford173@gmail.com>
Tested-by: Adam Ford <aford173@gmail.com> [imx6q-logicpd]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Fabio Estevam <festevam@gmail.com>
Cc: Lucas Stach <l.stach@pengutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull printk updates from Petr Mladek:
- Allow state reset of printk_once() calls.
- Prevent crashes when dereferencing invalid pointers in vsprintf().
Only the first byte is checked for simplicity.
- Make vsprintf warnings consistent and inlined.
- Treewide conversion of obsolete %pf, %pF to %ps, %pF printf
modifiers.
- Some clean up of vsprintf and test_printf code.
* tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk:
lib/vsprintf: Make function pointer_string static
vsprintf: Limit the length of inlined error messages
vsprintf: Avoid confusion between invalid address and value
vsprintf: Prevent crash when dereferencing invalid pointers
vsprintf: Consolidate handling of unknown pointer specifiers
vsprintf: Factor out %pO handler as kobject_string()
vsprintf: Factor out %pV handler as va_format()
vsprintf: Factor out %p[iI] handler as ip_addr_string()
vsprintf: Do not check address of well-known strings
vsprintf: Consistent %pK handling for kptr_restrict == 0
vsprintf: Shuffle restricted_pointer()
printk: Tie printk_once / printk_deferred_once into .data.once for reset
treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively
lib/test_printf: Switch to bitmap_zalloc()
Currently, memblock has several internal functions with overlapping
functionality. They all call memblock_find_in_range_node() to find free
memory and then reserve the allocated range and mark it with kmemleak.
However, there is difference in the allocation constraints and in
fallback strategies.
The allocations returning physical address first attempt to find free
memory on the specified node within mirrored memory regions, then retry
on the same node without the requirement for memory mirroring and
finally fall back to all available memory.
The allocations returning virtual address start with clamping the
allowed range to memblock.current_limit, attempt to allocate from the
specified node from regions with mirroring and with user defined minimal
address. If such allocation fails, next attempt is done with node
restriction lifted. Next, the allocation is retried with minimal
address reset to zero and at last without the requirement for mirrored
regions.
Let's consolidate various fallbacks handling and make them more
consistent for physical and virtual variants. Most of the fallback
handling is moved to memblock_alloc_range_nid() and it now handles node
and mirror fallbacks.
The memblock_alloc_internal() uses memblock_alloc_range_nid() to get a
physical address of the allocated range and converts it to virtual
address.
The fallback for allocation below the specified minimal address remains
in memblock_alloc_internal() because memblock_alloc_range_nid() is used
by CMA with exact requirement for lower bounds.
The memblock_phys_alloc_nid() function is completely dropped as it is not
used anywhere outside memblock and its only usage can be replaced by a
call to memblock_alloc_range_nid().
[rppt@linux.ibm.com: fix parameter order in memblock_phys_alloc_try_nid()]
Link: http://lkml.kernel.org/r/20190203113915.GC8620@rapoport-lnx
Link: http://lkml.kernel.org/r/1548057848-15136-11-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>