1091 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Qi Zheng
|
bce8cb3c04 |
mm: use update_mmu_tlb() on the second thread
As message in commit 7df676974359 ("mm/memory.c: Update local TLB if PTE entry exists") said, we should update local TLB only on the second thread. So in the do_anonymous_page() here, we should use update_mmu_tlb() instead of update_mmu_cache() on the second thread. As David pointed out, this is a performance improvement, not a correctness fix. Link: https://lkml.kernel.org/r/20220929112318.32393-2-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Bibo Mao <maobibo@loongson.cn> Cc: Chris Zankel <chris@zankel.net> Cc: Huacai Chen <chenhuacai@loongson.cn> Cc: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Alistair Popple
|
16ce101db8 |
mm/memory.c: fix race when faulting a device private page
Patch series "Fix several device private page reference counting issues", v2 This series aims to fix a number of page reference counting issues in drivers dealing with device private ZONE_DEVICE pages. These result in use-after-free type bugs, either from accessing a struct page which no longer exists because it has been removed or accessing fields within the struct page which are no longer valid because the page has been freed. During normal usage it is unlikely these will cause any problems. However without these fixes it is possible to crash the kernel from userspace. These crashes can be triggered either by unloading the kernel module or unbinding the device from the driver prior to a userspace task exiting. In modules such as Nouveau it is also possible to trigger some of these issues by explicitly closing the device file-descriptor prior to the task exiting and then accessing device private memory. This involves some minor changes to both PowerPC and AMD GPU code. Unfortunately I lack hardware to test either of those so any help there would be appreciated. The changes mimic what is done in for both Nouveau and hmm-tests though so I doubt they will cause problems. This patch (of 8): When the CPU tries to access a device private page the migrate_to_ram() callback associated with the pgmap for the page is called. However no reference is taken on the faulting page. Therefore a concurrent migration of the device private page can free the page and possibly the underlying pgmap. This results in a race which can crash the kernel due to the migrate_to_ram() function pointer becoming invalid. It also means drivers can't reliably read the zone_device_data field because the page may have been freed with memunmap_pages(). Close the race by getting a reference on the page while holding the ptl to ensure it has not been freed. Unfortunately the elevated reference count will cause the migration required to handle the fault to fail. To avoid this failure pass the faulting page into the migrate_vma functions so that if an elevated reference count is found it can be checked to see if it's expected or not. [mpe@ellerman.id.au: fix build] Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Lyude Paul <lyude@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
515778e2d7 |
mm/uffd: fix warning without PTE_MARKER_UFFD_WP compiled in
When PTE_MARKER_UFFD_WP not configured, it's still possible to reach pte marker code and trigger an warning. Add a few CONFIG_PTE_MARKER_UFFD_WP ifdefs to make sure the code won't be reached when not compiled in. Link: https://lkml.kernel.org/r/YzeR+R6b4bwBlBHh@x1n Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Reported-by: <syzbot+2b9b4f0895be09a6dec3@syzkaller.appspotmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Edward Liaw <edliaw@google.com> Cc: Liu Shixin <liushixin2@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Kravetz
|
131a79b474 |
hugetlb: fix vma lock handling during split vma and range unmapping
Patch series "hugetlb: fixes for new vma lock series". In review of the series "hugetlb: Use new vma lock for huge pmd sharing synchronization", Miaohe Lin pointed out two key issues: 1) There is a race in the routine hugetlb_unmap_file_folio when locks are dropped and reacquired in the correct order [1]. 2) With the switch to using vma lock for fault/truncate synchronization, we need to make sure lock exists for all VM_MAYSHARE vmas, not just vmas capable of pmd sharing. These two issues are addressed here. In addition, having a vma lock present in all VM_MAYSHARE vmas, uncovered some issues around vma splitting. Those are also addressed. [1] https://lore.kernel.org/linux-mm/01f10195-7088-4462-6def-909549c75ef4@huawei.com/ This patch (of 3): The hugetlb vma lock hangs off the vm_private_data field and is specific to the vma. When vm_area_dup() is called as part of vma splitting, the vma lock pointer is copied to the new vma. This will result in issues such as double freeing of the structure. Update the hugetlb open vm_ops to allocate a new vma lock for the new vma. The routine __unmap_hugepage_range_final unconditionally unset VM_MAYSHARE to prevent subsequent pmd sharing. hugetlb_vma_lock_free attempted to anticipate this by checking both VM_MAYSHARE and VM_SHARED. However, if only VM_MAYSHARE was set we would miss the free. With the introduction of the vma lock, a vma can not participate in pmd sharing if vm_private_data is NULL. Instead of clearing VM_MAYSHARE in __unmap_hugepage_range_final, free the vma lock to prevent sharing. Also, update the sharing code to make sure vma lock is indeed a condition for pmd sharing. hugetlb_vma_lock_free can then key off VM_MAYSHARE and not miss any vmas. Link: https://lkml.kernel.org/r/20221005011707.514612-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20221005011707.514612-2-mike.kravetz@oracle.com Fixes: "hugetlb: add vma based lock for pmd sharing" Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Alexander Potapenko
|
b073d7f8ae |
mm: kmsan: maintain KMSAN metadata for page operations
Insert KMSAN hooks that make the necessary bookkeeping changes: - poison page shadow and origins in alloc_pages()/free_page(); - clear page shadow and origins in clear_page(), copy_user_highpage(); - copy page metadata in copy_highpage(), wp_page_copy(); - handle vmap()/vunmap()/iounmap(); Link: https://lkml.kernel.org/r/20220915150417.722975-15-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Ilya Leoshkevich <iii@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Kravetz
|
40549ba8f8 |
hugetlb: use new vma_lock for pmd sharing synchronization
The new hugetlb vma lock is used to address this race: Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... The vma_lock is used as follows: - During fault processing. The lock is acquired in read mode before doing a page table lock and allocation (huge_pte_alloc). The lock is held until code is finished with the page table entry (ptep). - The lock must be held in write mode whenever huge_pmd_unshare is called. Lock ordering issues come into play when unmapping a page from all vmas mapping the page. The i_mmap_rwsem must be held to search for the vmas, and the vma lock must be held before calling unmap which will call huge_pmd_unshare. This is done today in: - try_to_migrate_one and try_to_unmap_ for page migration and memory error handling. In these routines we 'try' to obtain the vma lock and fail to unmap if unsuccessful. Calling routines already deal with the failure of unmapping. - hugetlb_vmdelete_list for truncation and hole punch. This routine also tries to acquire the vma lock. If it fails, it skips the unmapping. However, we can not have file truncation or hole punch fail because of contention. After hugetlb_vmdelete_list, truncation and hole punch call remove_inode_hugepages. remove_inode_hugepages checks for mapped pages and call hugetlb_unmap_file_page to unmap them. hugetlb_unmap_file_page is designed to drop locks and reacquire in the correct order to guarantee unmap success. Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Cheng Li
|
14455eabd8 |
mm: use nth_page instead of mem_map_offset mem_map_next
To handle the discontiguous case, mem_map_next() has a parameter named `offset`. As a function caller, one would be confused why "get next entry" needs a parameter named "offset". The other drawback of mem_map_next() is that the callers must take care of the map between parameter "iter" and "offset", otherwise we may get an hole or duplication during iteration. So we use nth_page instead of mem_map_next. And replace mem_map_offset with nth_page() per Matthew's comments. Link: https://lkml.kernel.org/r/1662708669-9395-1-git-send-email-lic121@chinatelecom.cn Signed-off-by: Cheng Li <lic121@chinatelecom.cn> Fixes: 69d177c2fc70 ("hugetlbfs: handle pages higher order than MAX_ORDER") Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
19672a9e4a |
mm: convert lock_page_or_retry() to folio_lock_or_retry()
Remove a call to compound_head() in each of the two callers. Link: https://lkml.kernel.org/r/20220902194653.1739778-58-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
3b344157c0 |
mm: remove try_to_free_swap()
All callers have now been converted to folio_free_swap() and we can remove this wrapper. Link: https://lkml.kernel.org/r/20220902194653.1739778-49-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
9202d527b7 |
memcg: convert mem_cgroup_swap_full() to take a folio
All callers now have a folio, so convert the function to take a folio. Saves a couple of calls to compound_head(). Link: https://lkml.kernel.org/r/20220902194653.1739778-48-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
a160e5377b |
mm: convert do_swap_page() to use folio_free_swap()
Also convert should_try_to_free_swap() to use a folio. This removes a few calls to compound_head(). Link: https://lkml.kernel.org/r/20220902194653.1739778-47-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
e4a2ed9490 |
mm: convert do_wp_page() to use a folio
Saves many calls to compound_head(). Link: https://lkml.kernel.org/r/20220902194653.1739778-42-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
5a423081b2 |
mm: convert do_swap_page() to use swap_cache_get_folio()
Saves a folio->page->folio conversion. Link: https://lkml.kernel.org/r/20220902194653.1739778-38-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
6599591816 |
memcg: convert mem_cgroup_swapin_charge_page() to mem_cgroup_swapin_charge_folio()
All callers now have a folio, so pass it in here and remove an unnecessary call to page_folio(). Link: https://lkml.kernel.org/r/20220902194653.1739778-17-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
d4f9565ae5 |
mm: convert do_swap_page()'s swapcache variable to a folio
The 'swapcache' variable is used to track whether the page is from the swapcache or not. It can do this equally well by being the folio of the page rather than the page itself, and this saves a number of calls to compound_head(). Link: https://lkml.kernel.org/r/20220902194653.1739778-16-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
63ad4add38 |
mm: convert do_swap_page() to use a folio
Removes quite a lot of calls to compound_head(). Link: https://lkml.kernel.org/r/20220902194653.1739778-15-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Liam R. Howlett
|
763ecb0350 |
mm: remove the vma linked list
Replace any vm_next use with vma_find(). Update free_pgtables(), unmap_vmas(), and zap_page_range() to use the maple tree. Use the new free_pgtables() and unmap_vmas() in do_mas_align_munmap(). At the same time, alter the loop to be more compact. Now that free_pgtables() and unmap_vmas() take a maple tree as an argument, rearrange do_mas_align_munmap() to use the new tree to hold the vmas to remove. Remove __vma_link_list() and __vma_unlink_list() as they are exclusively used to update the linked list. Drop linked list update from __insert_vm_struct(). Rework validation of tree as it was depending on the linked list. [yang.lee@linux.alibaba.com: fix one kernel-doc comment] Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=1949 Link: https://lkml.kernel.org/r/20220824021918.94116-1-yang.lee@linux.alibaba.comLink: https://lkml.kernel.org/r/20220906194824.2110408-69-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Signed-off-by: Yang Li <yang.lee@linux.alibaba.com> Tested-by: Yu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Aneesh Kumar K.V
|
467b171af8 |
mm/demotion: update node_is_toptier to work with memory tiers
With memory tier support we can have memory only NUMA nodes in the top tier from which we want to avoid promotion tracking NUMA faults. Update node_is_toptier to work with memory tiers. All NUMA nodes are by default top tier nodes. With lower(slower) memory tiers added we consider all memory tiers above a memory tier having CPU NUMA nodes as a top memory tier [sj@kernel.org: include missed header file, memory-tiers.h] Link: https://lkml.kernel.org/r/20220820190720.248704-1-sj@kernel.org [akpm@linux-foundation.org: mm/memory.c needs linux/memory-tiers.h] [aneesh.kumar@linux.ibm.com: make toptier_distance inclusive upper bound of toptiers] Link: https://lkml.kernel.org/r/20220830081457.118960-1-aneesh.kumar@linux.ibm.com Link: https://lkml.kernel.org/r/20220818131042.113280-10-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Wei Xu <weixugc@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hesham Almatary <hesham.almatary@huawei.com> Cc: Jagdish Gediya <jvgediya.oss@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
ec1c86b25f |
mm: multi-gen LRU: groundwork
Evictable pages are divided into multiple generations for each lruvec. The youngest generation number is stored in lrugen->max_seq for both anon and file types as they are aged on an equal footing. The oldest generation numbers are stored in lrugen->min_seq[] separately for anon and file types as clean file pages can be evicted regardless of swap constraints. These three variables are monotonically increasing. Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits in order to fit into the gen counter in folio->flags. Each truncated generation number is an index to lrugen->lists[]. The sliding window technique is used to track at least MIN_NR_GENS and at most MAX_NR_GENS generations. The gen counter stores a value within [1, MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it stores 0. There are two conceptually independent procedures: "the aging", which produces young generations, and "the eviction", which consumes old generations. They form a closed-loop system, i.e., "the page reclaim". Both procedures can be invoked from userspace for the purposes of working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. To avoid confusion, the terms "hot" and "cold" will be applied to the multi-gen LRU, as a new convention; the terms "active" and "inactive" will be applied to the active/inactive LRU, as usual. The protection of hot pages and the selection of cold pages are based on page access channels and patterns. There are two access channels: one through page tables and the other through file descriptors. The protection of the former channel is by design stronger because: 1. The uncertainty in determining the access patterns of the former channel is higher due to the approximation of the accessed bit. 2. The cost of evicting the former channel is higher due to the TLB flushes required and the likelihood of encountering the dirty bit. 3. The penalty of underprotecting the former channel is higher because applications usually do not prepare themselves for major page faults like they do for blocked I/O. E.g., GUI applications commonly use dedicated I/O threads to avoid blocking rendering threads. There are also two access patterns: one with temporal locality and the other without. For the reasons listed above, the former channel is assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is present; the latter channel is assumed to follow the latter pattern unless outlying refaults have been observed [3][4]. The next patch will address the "outlying refaults". Three macros, i.e., LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in this patch to make the entire patchset less diffy. A page is added to the youngest generation on faulting. The aging needs to check the accessed bit at least twice before handing this page over to the eviction. The first check takes care of the accessed bit set on the initial fault; the second check makes sure this page has not been used since then. This protocol, AKA second chance, requires a minimum of two generations, hence MIN_NR_GENS. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 [3] https://lwn.net/Articles/495543/ [4] https://lwn.net/Articles/815342/ Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
e1fd09e3d1 |
mm: x86, arm64: add arch_has_hw_pte_young()
Patch series "Multi-Gen LRU Framework", v14. What's new ========== 1. OpenWrt, in addition to Android, Arch Linux Zen, Armbian, ChromeOS, Liquorix, post-factum and XanMod, is now shipping MGLRU on 5.15. 2. Fixed long-tailed direct reclaim latency seen on high-memory (TBs) machines. The old direct reclaim backoff, which tries to enforce a minimum fairness among all eligible memcgs, over-swapped by about (total_mem>>DEF_PRIORITY)-nr_to_reclaim. The new backoff, which pulls the plug on swapping once the target is met, trades some fairness for curtailed latency: https://lore.kernel.org/r/20220918080010.2920238-10-yuzhao@google.com/ 3. Fixed minior build warnings and conflicts. More comments and nits. TLDR ==== The current page reclaim is too expensive in terms of CPU usage and it often makes poor choices about what to evict. This patchset offers an alternative solution that is performant, versatile and straightforward. Patchset overview ================= The design and implementation overview is in patch 14: https://lore.kernel.org/r/20220918080010.2920238-15-yuzhao@google.com/ 01. mm: x86, arm64: add arch_has_hw_pte_young() 02. mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG Take advantage of hardware features when trying to clear the accessed bit in many PTEs. 03. mm/vmscan.c: refactor shrink_node() 04. Revert "include/linux/mm_inline.h: fold __update_lru_size() into its sole caller" Minor refactors to improve readability for the following patches. 05. mm: multi-gen LRU: groundwork Adds the basic data structure and the functions that insert pages to and remove pages from the multi-gen LRU (MGLRU) lists. 06. mm: multi-gen LRU: minimal implementation A minimal implementation without optimizations. 07. mm: multi-gen LRU: exploit locality in rmap Exploits spatial locality to improve efficiency when using the rmap. 08. mm: multi-gen LRU: support page table walks Further exploits spatial locality by optionally scanning page tables. 09. mm: multi-gen LRU: optimize multiple memcgs Optimizes the overall performance for multiple memcgs running mixed types of workloads. 10. mm: multi-gen LRU: kill switch Adds a kill switch to enable or disable MGLRU at runtime. 11. mm: multi-gen LRU: thrashing prevention 12. mm: multi-gen LRU: debugfs interface Provide userspace with features like thrashing prevention, working set estimation and proactive reclaim. 13. mm: multi-gen LRU: admin guide 14. mm: multi-gen LRU: design doc Add an admin guide and a design doc. Benchmark results ================= Independent lab results ----------------------- Based on the popularity of searches [01] and the memory usage in Google's public cloud, the most popular open-source memory-hungry applications, in alphabetical order, are: Apache Cassandra Memcached Apache Hadoop MongoDB Apache Spark PostgreSQL MariaDB (MySQL) Redis An independent lab evaluated MGLRU with the most widely used benchmark suites for the above applications. They posted 960 data points along with kernel metrics and perf profiles collected over more than 500 hours of total benchmark time. Their final reports show that, with 95% confidence intervals (CIs), the above applications all performed significantly better for at least part of their benchmark matrices. On 5.14: 1. Apache Spark [02] took 95% CIs [9.28, 11.19]% and [12.20, 14.93]% less wall time to sort three billion random integers, respectively, under the medium- and the high-concurrency conditions, when overcommitting memory. There were no statistically significant changes in wall time for the rest of the benchmark matrix. 2. MariaDB [03] achieved 95% CIs [5.24, 10.71]% and [20.22, 25.97]% more transactions per minute (TPM), respectively, under the medium- and the high-concurrency conditions, when overcommitting memory. There were no statistically significant changes in TPM for the rest of the benchmark matrix. 3. Memcached [04] achieved 95% CIs [23.54, 32.25]%, [20.76, 41.61]% and [21.59, 30.02]% more operations per second (OPS), respectively, for sequential access, random access and Gaussian (distribution) access, when THP=always; 95% CIs [13.85, 15.97]% and [23.94, 29.92]% more OPS, respectively, for random access and Gaussian access, when THP=never. There were no statistically significant changes in OPS for the rest of the benchmark matrix. 4. MongoDB [05] achieved 95% CIs [2.23, 3.44]%, [6.97, 9.73]% and [2.16, 3.55]% more operations per second (OPS), respectively, for exponential (distribution) access, random access and Zipfian (distribution) access, when underutilizing memory; 95% CIs [8.83, 10.03]%, [21.12, 23.14]% and [5.53, 6.46]% more OPS, respectively, for exponential access, random access and Zipfian access, when overcommitting memory. On 5.15: 5. Apache Cassandra [06] achieved 95% CIs [1.06, 4.10]%, [1.94, 5.43]% and [4.11, 7.50]% more operations per second (OPS), respectively, for exponential (distribution) access, random access and Zipfian (distribution) access, when swap was off; 95% CIs [0.50, 2.60]%, [6.51, 8.77]% and [3.29, 6.75]% more OPS, respectively, for exponential access, random access and Zipfian access, when swap was on. 6. Apache Hadoop [07] took 95% CIs [5.31, 9.69]% and [2.02, 7.86]% less average wall time to finish twelve parallel TeraSort jobs, respectively, under the medium- and the high-concurrency conditions, when swap was on. There were no statistically significant changes in average wall time for the rest of the benchmark matrix. 7. PostgreSQL [08] achieved 95% CI [1.75, 6.42]% more transactions per minute (TPM) under the high-concurrency condition, when swap was off; 95% CIs [12.82, 18.69]% and [22.70, 46.86]% more TPM, respectively, under the medium- and the high-concurrency conditions, when swap was on. There were no statistically significant changes in TPM for the rest of the benchmark matrix. 8. Redis [09] achieved 95% CIs [0.58, 5.94]%, [6.55, 14.58]% and [11.47, 19.36]% more total operations per second (OPS), respectively, for sequential access, random access and Gaussian (distribution) access, when THP=always; 95% CIs [1.27, 3.54]%, [10.11, 14.81]% and [8.75, 13.64]% more total OPS, respectively, for sequential access, random access and Gaussian access, when THP=never. Our lab results --------------- To supplement the above results, we ran the following benchmark suites on 5.16-rc7 and found no regressions [10]. fs_fio_bench_hdd_mq pft fs_lmbench pgsql-hammerdb fs_parallelio redis fs_postmark stream hackbench sysbenchthread kernbench tpcc_spark memcached unixbench multichase vm-scalability mutilate will-it-scale nginx [01] https://trends.google.com [02] https://lore.kernel.org/r/20211102002002.92051-1-bot@edi.works/ [03] https://lore.kernel.org/r/20211009054315.47073-1-bot@edi.works/ [04] https://lore.kernel.org/r/20211021194103.65648-1-bot@edi.works/ [05] https://lore.kernel.org/r/20211109021346.50266-1-bot@edi.works/ [06] https://lore.kernel.org/r/20211202062806.80365-1-bot@edi.works/ [07] https://lore.kernel.org/r/20211209072416.33606-1-bot@edi.works/ [08] https://lore.kernel.org/r/20211218071041.24077-1-bot@edi.works/ [09] https://lore.kernel.org/r/20211122053248.57311-1-bot@edi.works/ [10] https://lore.kernel.org/r/20220104202247.2903702-1-yuzhao@google.com/ Read-world applications ======================= Third-party testimonials ------------------------ Konstantin reported [11]: I have Archlinux with 8G RAM + zswap + swap. While developing, I have lots of apps opened such as multiple LSP-servers for different langs, chats, two browsers, etc... Usually, my system gets quickly to a point of SWAP-storms, where I have to kill LSP-servers, restart browsers to free memory, etc, otherwise the system lags heavily and is barely usable. 1.5 day ago I migrated from 5.11.15 kernel to 5.12 + the LRU patchset, and I started up by opening lots of apps to create memory pressure, and worked for a day like this. Till now I had not a single SWAP-storm, and mind you I got 3.4G in SWAP. I was never getting to the point of 3G in SWAP before without a single SWAP-storm. Vaibhav from IBM reported [12]: In a synthetic MongoDB Benchmark, seeing an average of ~19% throughput improvement on POWER10(Radix MMU + 64K Page Size) with MGLRU patches on top of 5.16 kernel for MongoDB + YCSB across three different request distributions, namely, Exponential, Uniform and Zipfan. Shuang from U of Rochester reported [13]: With the MGLRU, fio achieved 95% CIs [38.95, 40.26]%, [4.12, 6.64]% and [9.26, 10.36]% higher throughput, respectively, for random access, Zipfian (distribution) access and Gaussian (distribution) access, when the average number of jobs per CPU is 1; 95% CIs [42.32, 49.15]%, [9.44, 9.89]% and [20.99, 22.86]% higher throughput, respectively, for random access, Zipfian access and Gaussian access, when the average number of jobs per CPU is 2. Daniel from Michigan Tech reported [14]: With Memcached allocating ~100GB of byte-addressable Optante, performance improvement in terms of throughput (measured as queries per second) was about 10% for a series of workloads. Large-scale deployments ----------------------- We've rolled out MGLRU to tens of millions of ChromeOS users and about a million Android users. Google's fleetwide profiling [15] shows an overall 40% decrease in kswapd CPU usage, in addition to improvements in other UX metrics, e.g., an 85% decrease in the number of low-memory kills at the 75th percentile and an 18% decrease in app launch time at the 50th percentile. The downstream kernels that have been using MGLRU include: 1. Android [16] 2. Arch Linux Zen [17] 3. Armbian [18] 4. ChromeOS [19] 5. Liquorix [20] 6. OpenWrt [21] 7. post-factum [22] 8. XanMod [23] [11] https://lore.kernel.org/r/140226722f2032c86301fbd326d91baefe3d7d23.camel@yandex.ru/ [12] https://lore.kernel.org/r/87czj3mux0.fsf@vajain21.in.ibm.com/ [13] https://lore.kernel.org/r/20220105024423.26409-1-szhai2@cs.rochester.edu/ [14] https://lore.kernel.org/r/CA+4-3vksGvKd18FgRinxhqHetBS1hQekJE2gwco8Ja-bJWKtFw@mail.gmail.com/ [15] https://dl.acm.org/doi/10.1145/2749469.2750392 [16] https://android.com [17] https://archlinux.org [18] https://armbian.com [19] https://chromium.org [20] https://liquorix.net [21] https://openwrt.org [22] https://codeberg.org/pf-kernel [23] https://xanmod.org Summary ======= The facts are: 1. The independent lab results and the real-world applications indicate substantial improvements; there are no known regressions. 2. Thrashing prevention, working set estimation and proactive reclaim work out of the box; there are no equivalent solutions. 3. There is a lot of new code; no smaller changes have been demonstrated similar effects. Our options, accordingly, are: 1. Given the amount of evidence, the reported improvements will likely materialize for a wide range of workloads. 2. Gauging the interest from the past discussions, the new features will likely be put to use for both personal computers and data centers. 3. Based on Google's track record, the new code will likely be well maintained in the long term. It'd be more difficult if not impossible to achieve similar effects with other approaches. This patch (of 14): Some architectures automatically set the accessed bit in PTEs, e.g., x86 and arm64 v8.2. On architectures that do not have this capability, clearing the accessed bit in a PTE usually triggers a page fault following the TLB miss of this PTE (to emulate the accessed bit). Being aware of this capability can help make better decisions, e.g., whether to spread the work out over a period of time to reduce bursty page faults when trying to clear the accessed bit in many PTEs. Note that theoretically this capability can be unreliable, e.g., hotplugged CPUs might be different from builtin ones. Therefore it should not be used in architecture-independent code that involves correctness, e.g., to determine whether TLB flushes are required (in combination with the accessed bit). Link: https://lkml.kernel.org/r/20220918080010.2920238-1-yuzhao@google.com Link: https://lkml.kernel.org/r/20220918080010.2920238-2-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Barry Song <baohua@kernel.org> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Acked-by: Will Deacon <will@kernel.org> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-arm-kernel@lists.infradead.org Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrew Morton
|
6d751329e7 | Merge branch 'mm-hotfixes-stable' into mm-stable | ||
Sergei Antonov
|
70427f6e9e |
mm: bring back update_mmu_cache() to finish_fault()
Running this test program on ARMv4 a few times (sometimes just once) reproduces the bug. int main() { unsigned i; char paragon[SIZE]; void* ptr; memset(paragon, 0xAA, SIZE); ptr = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0); if (ptr == MAP_FAILED) return 1; printf("ptr = %p\n", ptr); for (i=0;i<10000;i++){ memset(ptr, 0xAA, SIZE); if (memcmp(ptr, paragon, SIZE)) { printf("Unexpected bytes on iteration %u!!!\n", i); break; } } munmap(ptr, SIZE); } In the "ptr" buffer there appear runs of zero bytes which are aligned by 16 and their lengths are multiple of 16. Linux v5.11 does not have the bug, "git bisect" finds the first bad commit: f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") Before the commit update_mmu_cache() was called during a call to filemap_map_pages() as well as finish_fault(). After the commit finish_fault() lacks it. Bring back update_mmu_cache() to finish_fault() to fix the bug. Also call update_mmu_tlb() only when returning VM_FAULT_NOPAGE to more closely reproduce the code of alloc_set_pte() function that existed before the commit. On many platforms update_mmu_cache() is nop: x86, see arch/x86/include/asm/pgtable ARMv6+, see arch/arm/include/asm/tlbflush.h So, it seems, few users ran into this bug. Link: https://lkml.kernel.org/r/20220908204809.2012451-1-saproj@gmail.com Fixes: f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") Signed-off-by: Sergei Antonov <saproj@gmail.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Huang Ying
|
33024536ba |
memory tiering: hot page selection with hint page fault latency
Patch series "memory tiering: hot page selection", v4. To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory nodes need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). So in this patchset, we implement a new hot page identification algorithm based on the latency between NUMA balancing page table scanning and hint page fault. Which is a kind of mostly frequently accessed (MFU) algorithm. In NUMA balancing memory tiering mode, if there are hot pages in slow memory node and cold pages in fast memory node, we need to promote/demote hot/cold pages between the fast and cold memory nodes. A choice is to promote/demote as fast as possible. But the CPU cycles and memory bandwidth consumed by the high promoting/demoting throughput will hurt the latency of some workload because of accessing inflating and slow memory bandwidth contention. A way to resolve this issue is to restrict the max promoting/demoting throughput. It will take longer to finish the promoting/demoting. But the workload latency will be better. This is implemented in this patchset as the page promotion rate limit mechanism. The promotion hot threshold is workload and system configuration dependent. So in this patchset, a method to adjust the hot threshold automatically is implemented. The basic idea is to control the number of the candidate promotion pages to match the promotion rate limit. We used the pmbench memory accessing benchmark tested the patchset on a 2-socket server system with DRAM and PMEM installed. The test results are as follows, pmbench score promote rate (accesses/s) MB/s ------------- ------------ base 146887704.1 725.6 hot selection 165695601.2 544.0 rate limit 162814569.8 165.2 auto adjustment 170495294.0 136.9 From the results above, With hot page selection patch [1/3], the pmbench score increases about 12.8%, and promote rate (overhead) decreases about 25.0%, compared with base kernel. With rate limit patch [2/3], pmbench score decreases about 1.7%, and promote rate decreases about 69.6%, compared with hot page selection patch. With threshold auto adjustment patch [3/3], pmbench score increases about 4.7%, and promote rate decrease about 17.1%, compared with rate limit patch. Baolin helped to test the patchset with MySQL on a machine which contains 1 DRAM node (30G) and 1 PMEM node (126G). sysbench /usr/share/sysbench/oltp_read_write.lua \ ...... --tables=200 \ --table-size=1000000 \ --report-interval=10 \ --threads=16 \ --time=120 The tps can be improved about 5%. This patch (of 3): To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory node need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). The most frequently accessed (MFU) algorithm is better. So, in this patch we implemented a better hot page selection algorithm. Which is based on NUMA balancing page table scanning and hint page fault as follows, - When the page tables of the processes are scanned to change PTE/PMD to be PROT_NONE, the current time is recorded in struct page as scan time. - When the page is accessed, hint page fault will occur. The scan time is gotten from the struct page. And The hint page fault latency is defined as hint page fault time - scan time The shorter the hint page fault latency of a page is, the higher the probability of their access frequency to be higher. So the hint page fault latency is a better estimation of the page hot/cold. It's hard to find some extra space in struct page to hold the scan time. Fortunately, we can reuse some bits used by the original NUMA balancing. NUMA balancing uses some bits in struct page to store the page accessing CPU and PID (referring to page_cpupid_xchg_last()). Which is used by the multi-stage node selection algorithm to avoid to migrate pages shared accessed by the NUMA nodes back and forth. But for pages in the slow memory node, even if they are shared accessed by multiple NUMA nodes, as long as the pages are hot, they need to be promoted to the fast memory node. So the accessing CPU and PID information are unnecessary for the slow memory pages. We can reuse these bits in struct page to record the scan time. For the fast memory pages, these bits are used as before. For the hot threshold, the default value is 1 second, which works well in our performance test. All pages with hint page fault latency < hot threshold will be considered hot. It's hard for users to determine the hot threshold. So we don't provide a kernel ABI to set it, just provide a debugfs interface for advanced users to experiment. We will continue to work on a hot threshold automatic adjustment mechanism. The downside of the above method is that the response time to the workload hot spot changing may be much longer. For example, - A previous cold memory area becomes hot - The hint page fault will be triggered. But the hint page fault latency isn't shorter than the hot threshold. So the pages will not be promoted. - When the memory area is scanned again, maybe after a scan period, the hint page fault latency measured will be shorter than the hot threshold and the pages will be promoted. To mitigate this, if there are enough free space in the fast memory node, the hot threshold will not be used, all pages will be promoted upon the hint page fault for fast response. Thanks Zhong Jiang reported and tested the fix for a bug when disabling memory tiering mode dynamically. Link: https://lkml.kernel.org/r/20220713083954.34196-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220713083954.34196-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: osalvador <osalvador@suse.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zach O'Keefe
|
a7f4e6e4c4 |
mm/thp: add flag to enforce sysfs THP in hugepage_vma_check()
MADV_COLLAPSE is not coupled to the kernel-oriented sysfs THP settings[1]. hugepage_vma_check() is the authority on determining if a VMA is eligible for THP allocation/collapse, and currently enforces the sysfs THP settings. Add a flag to disable these checks. For now, only apply this arg to anon and file, which use /sys/kernel/transparent_hugepage/enabled. We can expand this to shmem, which uses /sys/kernel/transparent_hugepage/shmem_enabled, later. Use this flag in collapse_pte_mapped_thp() where previously the VMA flags passed to hugepage_vma_check() were OR'd with VM_HUGEPAGE to elide the VM_HUGEPAGE check in "madvise" THP mode. Prior to "mm: khugepaged: check THP flag in hugepage_vma_check()", this check also didn't check "never" THP mode. As such, this restores the previous behavior of collapse_pte_mapped_thp() where sysfs THP settings are ignored. See comment in code for justification why this is OK. [1] https://lore.kernel.org/linux-mm/CAAa6QmQxay1_=Pmt8oCX2-Va18t44FV-Vs-WsQt_6+qBks4nZA@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220706235936.2197195-8-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
6614a3c316 |
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/ SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE= =w/UH -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Most of the MM queue. A few things are still pending. Liam's maple tree rework didn't make it. This has resulted in a few other minor patch series being held over for next time. Multi-gen LRU still isn't merged as we were waiting for mapletree to stabilize. The current plan is to merge MGLRU into -mm soon and to later reintroduce mapletree, with a view to hopefully getting both into 6.1-rc1. Summary: - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place" [ XFS merge from hell as per Darrick Wong in https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ] * tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits) tools/testing/selftests/vm/hmm-tests.c: fix build mm: Kconfig: fix typo mm: memory-failure: convert to pr_fmt() mm: use is_zone_movable_page() helper hugetlbfs: fix inaccurate comment in hugetlbfs_statfs() hugetlbfs: cleanup some comments in inode.c hugetlbfs: remove unneeded header file hugetlbfs: remove unneeded hugetlbfs_ops forward declaration hugetlbfs: use helper macro SZ_1{K,M} mm: cleanup is_highmem() mm/hmm: add a test for cross device private faults selftests: add soft-dirty into run_vmtests.sh selftests: soft-dirty: add test for mprotect mm/mprotect: fix soft-dirty check in can_change_pte_writable() mm: memcontrol: fix potential oom_lock recursion deadlock mm/gup.c: fix formatting in check_and_migrate_movable_page() xfs: fail dax mount if reflink is enabled on a partition mm/memcontrol.c: remove the redundant updating of stats_flush_threshold userfaultfd: don't fail on unrecognized features hugetlb_cgroup: fix wrong hugetlb cgroup numa stat ... |
||
Miaohe Lin
|
4d8ff64097 |
mm: remove unneeded PageAnon check in restore_exclusive_pte()
When code reaches here, the page must be !PageAnon. There's no need to check PageAnon again. Remove it. Link: https://lkml.kernel.org/r/20220716081816.10752-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
0f0b6931ff |
mm: remove obsolete comment in do_fault_around()
Since commit 7267ec008b5c ("mm: postpone page table allocation until we have page to map"), do_fault_around is not called with page table lock held. Cleanup the corresponding comments. Link: https://lkml.kernel.org/r/20220716080359.38791-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
39c3c396f8 |
Thirteen hotfixes, Eight are cc:stable and the remainder are for post-5.18
issues or are too minor to warrant backporting -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuCV7gAKCRDdBJ7gKXxA jrK2AQDeoayQKXJFTcEltKAUTooXM/BoRf+O3ti/xrSWpwta8wEAjaBIJ8e7UlCj g+p6u/pd38f226ldzI5w3bIBSPCbnwU= =3rO0 -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2022-07-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "Thirteen hotfixes. Eight are cc:stable and the remainder are for post-5.18 issues or are too minor to warrant backporting" * tag 'mm-hotfixes-stable-2022-07-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: mailmap: update Gao Xiang's email addresses userfaultfd: provide properly masked address for huge-pages Revert "ocfs2: mount shared volume without ha stack" hugetlb: fix memoryleak in hugetlb_mcopy_atomic_pte fs: sendfile handles O_NONBLOCK of out_fd ntfs: fix use-after-free in ntfs_ucsncmp() secretmem: fix unhandled fault in truncate mm/hugetlb: separate path for hwpoison entry in copy_hugetlb_page_range() mm: fix missing wake-up event for FSDAX pages mm: fix page leak with multiple threads mapping the same page mailmap: update Seth Forshee's email address tmpfs: fix the issue that the mount and remount results are inconsistent. mm: kfence: apply kmemleak_ignore_phys on early allocated pool |
||
Qi Zheng
|
cdb281e638 |
mm: fix NULL pointer dereference in wp_page_reuse()
The vmf->page can be NULL when the wp_page_reuse() is invoked by wp_pfn_shared(), it will cause the following panic: BUG: kernel NULL pointer dereference, address: 000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 18 PID: 923 Comm: Xorg Not tainted 5.19.0-rc8.bm.1-amd64 #263 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g14 RIP: 0010:_compound_head+0x0/0x40 [...] Call Trace: wp_page_reuse+0x1c/0xa0 do_wp_page+0x1a5/0x3f0 __handle_mm_fault+0x8cf/0xd20 handle_mm_fault+0xd5/0x2a0 do_user_addr_fault+0x1d0/0x680 exc_page_fault+0x78/0x170 asm_exc_page_fault+0x22/0x30 To fix it, this patch performs a NULL pointer check before dereferencing the vmf->page. Fixes: 6c287605fd56 ("mm: remember exclusively mapped anonymous pages with PG_anon_exclusive") Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Josef Bacik
|
3fe2895cfe |
mm: fix page leak with multiple threads mapping the same page
We have an application with a lot of threads that use a shared mmap backed by tmpfs mounted with -o huge=within_size. This application started leaking loads of huge pages when we upgraded to a recent kernel. Using the page ref tracepoints and a BPF program written by Tejun Heo we were able to determine that these pages would have multiple refcounts from the page fault path, but when it came to unmap time we wouldn't drop the number of refs we had added from the faults. I wrote a reproducer that mmap'ed a file backed by tmpfs with -o huge=always, and then spawned 20 threads all looping faulting random offsets in this map, while using madvise(MADV_DONTNEED) randomly for huge page aligned ranges. This very quickly reproduced the problem. The problem here is that we check for the case that we have multiple threads faulting in a range that was previously unmapped. One thread maps the PMD, the other thread loses the race and then returns 0. However at this point we already have the page, and we are no longer putting this page into the processes address space, and so we leak the page. We actually did the correct thing prior to f9ce0be71d1f, however it looks like Kirill copied what we do in the anonymous page case. In the anonymous page case we don't yet have a page, so we don't have to drop a reference on anything. Previously we did the correct thing for file based faults by returning VM_FAULT_NOPAGE so we correctly drop the reference on the page we faulted in. Fix this by returning VM_FAULT_NOPAGE in the pmd_devmap_trans_unstable() case, this makes us drop the ref on the page properly, and now my reproducer no longer leaks the huge pages. [josef@toxicpanda.com: v2] Link: https://lkml.kernel.org/r/e90c8f0dbae836632b669c2afc434006a00d4a67.1657721478.git.josef@toxicpanda.com Link: https://lkml.kernel.org/r/2b798acfd95c9ab9395fe85e8d5a835e2e10a920.1657051137.git.josef@toxicpanda.com Fixes: f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Chris Mason <clm@fb.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Kravetz
|
bcd51a3c67 |
hugetlb: lazy page table copies in fork()
Lazy page table copying at fork time was introduced with commit d992895ba2b2 ("[PATCH] Lazy page table copies in fork()"). At the time, hugetlb was very new and did not support page faulting. As a result, it was excluded. When full page fault support was added for hugetlb, the exclusion was not removed. Simply remove the check that prevents lazy copying of hugetlb page tables at fork. Of course, like other mappings this only applies to shared mappings. Lazy page table copying at fork will be less advantageous for hugetlb mappings because: - There are fewer page table entries with hugetlb - hugetlb pmds can be shared instead of copied In any case, completely eliminating the copy at fork time should speed things up. Link: https://lkml.kernel.org/r/20220621235620.291305-5-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Muchun Song <songmuchun@bytedance.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: James Houghton <jthoughton@google.com> Cc: kernel test robot <lkp@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rolf Eike Beer <eike-kernel@sf-tec.de> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yang Shi
|
7da4e2cb8b |
mm: thp: kill __transhuge_page_enabled()
The page fault path checks THP eligibility with __transhuge_page_enabled() which does the similar thing as hugepage_vma_check(), so use hugepage_vma_check() instead. However page fault allows DAX and !anon_vma cases, so added a new flag, in_pf, to hugepage_vma_check() to make page fault work correctly. The in_pf flag is also used to skip shmem and file THP for page fault since shmem handles THP in its own shmem_fault() and file THP allocation on fault is not supported yet. Also remove hugepage_vma_enabled() since hugepage_vma_check() is the only caller now, it is not necessary to have a helper function. Link: https://lkml.kernel.org/r/20220616174840.1202070-6-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zach O'Keefe <zokeefe@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Alex Sierra
|
3218f8712d |
mm: handling Non-LRU pages returned by vm_normal_pages
With DEVICE_COHERENT, we'll soon have vm_normal_pages() return device-managed anonymous pages that are not LRU pages. Although they behave like normal pages for purposes of mapping in CPU page, and for COW. They do not support LRU lists, NUMA migration or THP. Callers to follow_page() currently don't expect ZONE_DEVICE pages, however, with DEVICE_COHERENT we might now return ZONE_DEVICE. Check for ZONE_DEVICE pages in applicable users of follow_page() as well. Link: https://lkml.kernel.org/r/20220715150521.18165-5-alex.sierra@amd.com Signed-off-by: Alex Sierra <alex.sierra@amd.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> [v2] Reviewed-by: Alistair Popple <apopple@nvidia.com> [v6] Cc: Christoph Hellwig <hch@lst.de> Cc: David Hildenbrand <david@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Gowans, James
|
14c99d6594 |
mm: split huge PUD on wp_huge_pud fallback
Currently the implementation will split the PUD when a fallback is taken inside the create_huge_pud function. This isn't where it should be done: the splitting should be done in wp_huge_pud, just like it's done for PMDs. Reason being that if a callback is taken during create, there is no PUD yet so nothing to split, whereas if a fallback is taken when encountering a write protection fault there is something to split. It looks like this was the original intention with the commit where the splitting was introduced, but somehow it got moved to the wrong place between v1 and v2 of the patch series. Rebase mistake perhaps. Link: https://lkml.kernel.org/r/6f48d622eb8bce1ae5dd75327b0b73894a2ec407.camel@amazon.com Fixes: 327e9fd48972 ("mm: Split huge pages on write-notify or COW") Signed-off-by: James Gowans <jgowans@amazon.com> Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Jan H. Schönherr <jschoenh@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
d92725256b |
mm: avoid unnecessary page fault retires on shared memory types
I observed that for each of the shared file-backed page faults, we're very likely to retry one more time for the 1st write fault upon no page. It's because we'll need to release the mmap lock for dirty rate limit purpose with balance_dirty_pages_ratelimited() (in fault_dirty_shared_page()). Then after that throttling we return VM_FAULT_RETRY. We did that probably because VM_FAULT_RETRY is the only way we can return to the fault handler at that time telling it we've released the mmap lock. However that's not ideal because it's very likely the fault does not need to be retried at all since the pgtable was well installed before the throttling, so the next continuous fault (including taking mmap read lock, walk the pgtable, etc.) could be in most cases unnecessary. It's not only slowing down page faults for shared file-backed, but also add more mmap lock contention which is in most cases not needed at all. To observe this, one could try to write to some shmem page and look at "pgfault" value in /proc/vmstat, then we should expect 2 counts for each shmem write simply because we retried, and vm event "pgfault" will capture that. To make it more efficient, add a new VM_FAULT_COMPLETED return code just to show that we've completed the whole fault and released the lock. It's also a hint that we should very possibly not need another fault immediately on this page because we've just completed it. This patch provides a ~12% perf boost on my aarch64 test VM with a simple program sequentially dirtying 400MB shmem file being mmap()ed and these are the time it needs: Before: 650.980 ms (+-1.94%) After: 569.396 ms (+-1.38%) I believe it could help more than that. We need some special care on GUP and the s390 pgfault handler (for gmap code before returning from pgfault), the rest changes in the page fault handlers should be relatively straightforward. Another thing to mention is that mm_account_fault() does take this new fault as a generic fault to be accounted, unlike VM_FAULT_RETRY. I explicitly didn't touch hmm_vma_fault() and break_ksm() because they do not handle VM_FAULT_RETRY even with existing code, so I'm literally keeping them as-is. Link: https://lkml.kernel.org/r/20220530183450.42886-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vineet Gupta <vgupta@kernel.org> Acked-by: Guo Ren <guoren@kernel.org> Acked-by: Max Filippov <jcmvbkbc@gmail.com> Acked-by: Christian Borntraeger <borntraeger@linux.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> [arm part] Acked-by: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Stafford Horne <shorne@gmail.com> Cc: David S. Miller <davem@davemloft.net> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Brian Cain <bcain@quicinc.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Richard Weinberger <richard@nod.at> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Janosch Frank <frankja@linux.ibm.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Will Deacon <will@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Simek <monstr@monstr.eu> Cc: Matt Turner <mattst88@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: David Hildenbrand <david@redhat.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Chris Zankel <chris@zankel.net> Cc: Hugh Dickins <hughd@google.com> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Helge Deller <deller@gmx.de> Cc: Yoshinori Sato <ysato@users.osdn.me> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yang Yang
|
662ce1dc9c |
delayacct: track delays from write-protect copy
Delay accounting does not track the delay of write-protect copy. When tasks trigger many write-protect copys(include COW and unsharing of anonymous pages[1]), it may spend a amount of time waiting for them. To get the delay of tasks in write-protect copy, could help users to evaluate the impact of using KSM or fork() or GUP. Also update tools/accounting/getdelays.c: / # ./getdelays -dl -p 231 print delayacct stats ON listen forever PID 231 CPU count real total virtual total delay total delay average 6247 1859000000 2154070021 1674255063 0.268ms IO count delay total delay average 0 0 0ms SWAP count delay total delay average 0 0 0ms RECLAIM count delay total delay average 0 0 0ms THRASHING count delay total delay average 0 0 0ms COMPACT count delay total delay average 3 72758 0ms WPCOPY count delay total delay average 3635 271567604 0ms [1] commit 31cc5bc4af70("mm: support GUP-triggered unsharing of anonymous pages") Link: https://lkml.kernel.org/r/20220409014342.2505532-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Jiang Xuexin <jiang.xuexin@zte.com.cn> Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn> Reviewed-by: wangyong <wang.yong12@zte.com.cn> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
8291eaafed |
Two followon fixes for the post-5.19 series "Use pageblock_order for cma
and alloc_contig_range alignment", from Zi Yan. A series of z3fold cleanups and fixes from Miaohe Lin. Some memcg selftests work from Michal Koutný <mkoutny@suse.com> Some swap fixes and cleanups from Miaohe Lin. Several individual minor fixups. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYpEE7QAKCRDdBJ7gKXxA jlamAP9WmjNdx+5Pz5OkkaSjBO7y7vBrBTcQ9e5pz8bUWRoQhwEA+WtsssLmq9aI 7DBDmBKYCMTbzOQTqaMRHkB+JWZo+Ao= =L3f1 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-05-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull more MM updates from Andrew Morton: - Two follow-on fixes for the post-5.19 series "Use pageblock_order for cma and alloc_contig_range alignment", from Zi Yan. - A series of z3fold cleanups and fixes from Miaohe Lin. - Some memcg selftests work from Michal Koutný <mkoutny@suse.com> - Some swap fixes and cleanups from Miaohe Lin - Several individual minor fixups * tag 'mm-stable-2022-05-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (25 commits) mm/shmem.c: suppress shift warning mm: Kconfig: reorganize misplaced mm options mm: kasan: fix input of vmalloc_to_page() mm: fix is_pinnable_page against a cma page mm: filter out swapin error entry in shmem mapping mm/shmem: fix infinite loop when swap in shmem error at swapoff time mm/madvise: free hwpoison and swapin error entry in madvise_free_pte_range mm/swapfile: fix lost swap bits in unuse_pte() mm/swapfile: unuse_pte can map random data if swap read fails selftests: memcg: factor out common parts of memory.{low,min} tests selftests: memcg: remove protection from top level memcg selftests: memcg: adjust expected reclaim values of protected cgroups selftests: memcg: expect no low events in unprotected sibling selftests: memcg: fix compilation mm/z3fold: fix z3fold_page_migrate races with z3fold_map mm/z3fold: fix z3fold_reclaim_page races with z3fold_free mm/z3fold: always clear PAGE_CLAIMED under z3fold page lock mm/z3fold: put z3fold page back into unbuddied list when reclaim or migration fails revert "mm/z3fold.c: allow __GFP_HIGHMEM in z3fold_alloc" mm/z3fold: throw warning on failure of trylock_page in z3fold_alloc ... |
||
Miaohe Lin
|
9f186f9e5f |
mm/swapfile: unuse_pte can map random data if swap read fails
Patch series "A few fixup patches for mm", v4. This series contains a few patches to avoid mapping random data if swap read fails and fix lost swap bits in unuse_pte. Also we free hwpoison and swapin error entry in madvise_free_pte_range and so on. More details can be found in the respective changelogs. This patch (of 5): There is a bug in unuse_pte(): when swap page happens to be unreadable, page filled with random data is mapped into user address space. In case of error, a special swap entry indicating swap read fails is set to the page table. So the swapcache page can be freed and the user won't end up with a permanently mounted swap because a sector is bad. And if the page is accessed later, the user process will be killed so that corrupted data is never consumed. On the other hand, if the page is never accessed, the user won't even notice it. Link: https://lkml.kernel.org/r/20220519125030.21486-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20220519125030.21486-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Howells <dhowells@redhat.com> Cc: NeilBrown <neilb@suse.de> Cc: Alistair Popple <apopple@nvidia.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
98931dd95f |
Yang Shi has improved the behaviour of khugepaged collapsing of readonly
file-backed transparent hugepages. Johannes Weiner has arranged for zswap memory use to be tracked and managed on a per-cgroup basis. Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for runtime enablement of the recent huge page vmemmap optimization feature. Baolin Wang contributes a series to fix some issues around hugetlb pagetable invalidation. Zhenwei Pi has fixed some interactions between hwpoisoned pages and virtualization. Tong Tiangen has enabled the use of the presently x86-only page_table_check debugging feature on arm64 and riscv. David Vernet has done some fixup work on the memcg selftests. Peter Xu has taught userfaultfd to handle write protection faults against shmem- and hugetlbfs-backed files. More DAMON development from SeongJae Park - adding online tuning of the feature and support for monitoring of fixed virtual address ranges. Also easier discovery of which monitoring operations are available. Nadav Amit has done some optimization of TLB flushing during mprotect(). Neil Brown continues to labor away at improving our swap-over-NFS support. David Hildenbrand has some fixes to anon page COWing versus get_user_pages(). Peng Liu fixed some errors in the core hugetlb code. Joao Martins has reduced the amount of memory consumed by device-dax's compound devmaps. Some cleanups of the arch-specific pagemap code from Anshuman Khandual. Muchun Song has found and fixed some errors in the TLB flushing of transparent hugepages. Roman Gushchin has done more work on the memcg selftests. And, of course, many smaller fixes and cleanups. Notably, the customary million cleanup serieses from Miaohe Lin. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYo52xQAKCRDdBJ7gKXxA jtJFAQD238KoeI9z5SkPMaeBRYSRQmNll85mxs25KapcEgWgGQD9FAb7DJkqsIVk PzE+d9hEfirUGdL6cujatwJ6ejYR8Q8= =nFe6 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Almost all of MM here. A few things are still getting finished off, reviewed, etc. - Yang Shi has improved the behaviour of khugepaged collapsing of readonly file-backed transparent hugepages. - Johannes Weiner has arranged for zswap memory use to be tracked and managed on a per-cgroup basis. - Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for runtime enablement of the recent huge page vmemmap optimization feature. - Baolin Wang contributes a series to fix some issues around hugetlb pagetable invalidation. - Zhenwei Pi has fixed some interactions between hwpoisoned pages and virtualization. - Tong Tiangen has enabled the use of the presently x86-only page_table_check debugging feature on arm64 and riscv. - David Vernet has done some fixup work on the memcg selftests. - Peter Xu has taught userfaultfd to handle write protection faults against shmem- and hugetlbfs-backed files. - More DAMON development from SeongJae Park - adding online tuning of the feature and support for monitoring of fixed virtual address ranges. Also easier discovery of which monitoring operations are available. - Nadav Amit has done some optimization of TLB flushing during mprotect(). - Neil Brown continues to labor away at improving our swap-over-NFS support. - David Hildenbrand has some fixes to anon page COWing versus get_user_pages(). - Peng Liu fixed some errors in the core hugetlb code. - Joao Martins has reduced the amount of memory consumed by device-dax's compound devmaps. - Some cleanups of the arch-specific pagemap code from Anshuman Khandual. - Muchun Song has found and fixed some errors in the TLB flushing of transparent hugepages. - Roman Gushchin has done more work on the memcg selftests. ... and, of course, many smaller fixes and cleanups. Notably, the customary million cleanup serieses from Miaohe Lin" * tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (381 commits) mm: kfence: use PAGE_ALIGNED helper selftests: vm: add the "settings" file with timeout variable selftests: vm: add "test_hmm.sh" to TEST_FILES selftests: vm: check numa_available() before operating "merge_across_nodes" in ksm_tests selftests: vm: add migration to the .gitignore selftests/vm/pkeys: fix typo in comment ksm: fix typo in comment selftests: vm: add process_mrelease tests Revert "mm/vmscan: never demote for memcg reclaim" mm/kfence: print disabling or re-enabling message include/trace/events/percpu.h: cleanup for "percpu: improve percpu_alloc_percpu event trace" include/trace/events/mmflags.h: cleanup for "tracing: incorrect gfp_t conversion" mm: fix a potential infinite loop in start_isolate_page_range() MAINTAINERS: add Muchun as co-maintainer for HugeTLB zram: fix Kconfig dependency warning mm/shmem: fix shmem folio swapoff hang cgroup: fix an error handling path in alloc_pagecache_max_30M() mm: damon: use HPAGE_PMD_SIZE tracing: incorrect isolate_mote_t cast in mm_vmscan_lru_isolate nodemask.h: fix compilation error with GCC12 ... |
||
Miaohe Lin
|
eacde32757 |
mm/swap: avoid calling swp_swap_info when try to check SWP_STABLE_WRITES
Use flags of si directly to check SWP_STABLE_WRITES to avoid possible READ_ONCE and thus save some cpu cycles. [akpm@linux-foundation.org: use data_race() on si->flags, per Neil] Link: https://lkml.kernel.org/r/20220509131416.17553-10-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: NeilBrown <neilb@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wan Jiabing
|
54943a1a4d |
mm/shmem: remove duplicate include in memory.c
Fix following checkincludes.pl warning: mm/memory.c: linux/mm_inline.h is included more than once. The include is in line 44. Remove the duplicated here. Link: https://lkml.kernel.org/r/20220427064717.803019-1-wanjiabing@vivo.com Signed-off-by: Wan Jiabing <wanjiabing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
bc70fbf269 |
mm/hugetlb: handle uffd-wp during fork()
Firstly, we'll need to pass in dst_vma into copy_hugetlb_page_range() because for uffd-wp it's the dst vma that matters on deciding how we should treat uffd-wp protected ptes. We should recognize pte markers during fork and do the pte copy if needed. [lkp@intel.com: vma_needs_copy can be static] Link: https://lkml.kernel.org/r/Ylb0CGeFJlc4EzLk@7ec4ff11d4ae Link: https://lkml.kernel.org/r/20220405014918.14932-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
05e90bd05e |
mm/hugetlb: only drop uffd-wp special pte if required
As with shmem uffd-wp special ptes, only drop the uffd-wp special swap pte if unmapping an entire vma or synchronized such that faults can not race with the unmap operation. This requires passing zap_flags all the way to the lowest level hugetlb unmap routine: __unmap_hugepage_range. In general, unmap calls originated in hugetlbfs code will pass the ZAP_FLAG_DROP_MARKER flag as synchronization is in place to prevent faults. The exception is hole punch which will first unmap without any synchronization. Later when hole punch actually removes the page from the file, it will check to see if there was a subsequent fault and if so take the hugetlb fault mutex while unmapping again. This second unmap will pass in ZAP_FLAG_DROP_MARKER. The justification of "whether to apply ZAP_FLAG_DROP_MARKER flag when unmap a hugetlb range" is (IMHO): we should never reach a state when a page fault could errornously fault in a page-cache page that was wr-protected to be writable, even in an extremely short period. That could happen if e.g. we pass ZAP_FLAG_DROP_MARKER when hugetlbfs_punch_hole() calls hugetlb_vmdelete_list(), because if a page faults after that call and before remove_inode_hugepages() is executed, the page cache can be mapped writable again in the small racy window, that can cause unexpected data overwritten. [peterx@redhat.com: fix sparse warning] Link: https://lkml.kernel.org/r/Ylcdw8I1L5iAoWhb@xz-m1.local [akpm@linux-foundation.org: move zap_flags_t from mm.h to mm_types.h to fix build issues] Link: https://lkml.kernel.org/r/20220405014915.14873-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
c56d1b62cc |
mm/shmem: handle uffd-wp during fork()
Normally we skip copy page when fork() for VM_SHARED shmem, but we can't skip it anymore if uffd-wp is enabled on dst vma. This should only happen when the src uffd has UFFD_FEATURE_EVENT_FORK enabled on uffd-wp shmem vma, so that VM_UFFD_WP will be propagated onto dst vma too, then we should copy the pgtables with uffd-wp bit and pte markers, because these information will be lost otherwise. Since the condition checks will become even more complicated for deciding "whether a vma needs to copy the pgtable during fork()", introduce a helper vma_needs_copy() for it, so everything will be clearer. Link: https://lkml.kernel.org/r/20220405014855.14468-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
999dad824c |
mm/shmem: persist uffd-wp bit across zapping for file-backed
File-backed memory is prone to being unmapped at any time. It means all information in the pte will be dropped, including the uffd-wp flag. To persist the uffd-wp flag, we'll use the pte markers. This patch teaches the zap code to understand uffd-wp and know when to keep or drop the uffd-wp bit. Add a new flag ZAP_FLAG_DROP_MARKER and set it in zap_details when we don't want to persist such an information, for example, when destroying the whole vma, or punching a hole in a shmem file. For the rest cases we should never drop the uffd-wp bit, or the wr-protect information will get lost. The new ZAP_FLAG_DROP_MARKER needs to be put into mm.h rather than memory.c because it'll be further referenced in hugetlb files later. Link: https://lkml.kernel.org/r/20220405014847.14295-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
9c28a205c0 |
mm/shmem: handle uffd-wp special pte in page fault handler
File-backed memories are prone to unmap/swap so the ptes are always unstable, because they can be easily faulted back later using the page cache. This could lead to uffd-wp getting lost when unmapping or swapping out such memory. One example is shmem. PTE markers are needed to store those information. This patch prepares it by handling uffd-wp pte markers first it is applied elsewhere, so that the page fault handler can recognize uffd-wp pte markers. The handling of uffd-wp pte markers is similar to missing fault, it's just that we'll handle this "missing fault" when we see the pte markers, meanwhile we need to make sure the marker information is kept during processing the fault. This is a slow path of uffd-wp handling, because zapping of wr-protected shmem ptes should be rare. So far it should only trigger in two conditions: (1) When trying to punch holes in shmem_fallocate(), there is an optimization to zap the pgtables before evicting the page. (2) When swapping out shmem pages. Because of this, the page fault handling is simplifed too by not sending the wr-protect message in the 1st page fault, instead the page will be installed read-only, so the uffd-wp message will be generated in the next fault, which will trigger the do_wp_page() path of general uffd-wp handling. Disable fault-around for all uffd-wp registered ranges for extra safety just like uffd-minor fault, and clean the code up. Link: https://lkml.kernel.org/r/20220405014844.14239-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
f46f2adecd |
mm: check against orig_pte for finish_fault()
This patch allows do_fault() to trigger on !pte_none() cases too. This prepares for the pte markers to be handled by do_fault() just like none pte. To achieve this, instead of unconditionally check against pte_none() in finish_fault(), we may hit the case that the orig_pte was some pte marker so what we want to do is to replace the pte marker with some valid pte entry. Then if orig_pte was set we'd want to check the current *pte (under pgtable lock) against orig_pte rather than none pte. Right now there's no solid way to safely reference orig_pte because when pmd is not allocated handle_pte_fault() will not initialize orig_pte, so it's not safe to reference it. There's another solution proposed before this patch to do pte_clear() for vmf->orig_pte for pmd==NULL case, however it turns out it'll break arm32 because arm32 could have assumption that pte_t* pointer will always reside on a real ram32 pgtable, not any kernel stack variable. To solve this, we add a new flag FAULT_FLAG_ORIG_PTE_VALID, and it'll be set along with orig_pte when there is valid orig_pte, or it'll be cleared when orig_pte was not initialized. It'll be updated every time we call handle_pte_fault(), so e.g. if a page fault retry happened it'll be properly updated along with orig_pte. [1] https://lore.kernel.org/lkml/710c48c9-406d-e4c5-a394-10501b951316@samsung.com/ [akpm@linux-foundation.org: coding-style cleanups] [peterx@redhat.com: fix crash reported by Marek] Link: https://lkml.kernel.org/r/Ylb9rXJyPm8/ao8f@xz-m1.local Link: https://lkml.kernel.org/r/20220405014836.14077-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
5c041f5d1f |
mm: teach core mm about pte markers
This patch still does not use pte marker in any way, however it teaches the core mm about the pte marker idea. For example, handle_pte_marker() is introduced that will parse and handle all the pte marker faults. Many of the places are more about commenting it up - so that we know there's the possibility of pte marker showing up, and why we don't need special code for the cases. [peterx@redhat.com: userfaultfd.c needs swapops.h] Link: https://lkml.kernel.org/r/YmRlVj3cdizYJsr0@xz-m1.local Link: https://lkml.kernel.org/r/20220405014833.14015-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
NeilBrown
|
5169b844b7 |
mm: submit multipage reads for SWP_FS_OPS swap-space
swap_readpage() is given one page at a time, but may be called repeatedly in succession. For block-device swap-space, the blk_plug functionality allows the multiple pages to be combined together at lower layers. That cannot be used for SWP_FS_OPS as blk_plug may not exist - it is only active when CONFIG_BLOCK=y. Consequently all swap reads over NFS are single page reads. With this patch we pass in a pointer-to-pointer when swap_readpage can store state between calls - much like the effect of blk_plug. After calling swap_readpage() some number of times, the state will be passed to swap_read_unplug() which can submit the combined request. Link: https://lkml.kernel.org/r/164859778127.29473.14059420492644907783.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: David Howells <dhowells@redhat.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
NeilBrown
|
014bb1de4f |
mm: create new mm/swap.h header file
Patch series "MM changes to improve swap-over-NFS support". Assorted improvements for swap-via-filesystem. This is a resend of these patches, rebased on current HEAD. The only substantial changes is that swap_dirty_folio has replaced swap_set_page_dirty. Currently swap-via-fs (SWP_FS_OPS) doesn't work for any filesystem. It has previously worked for NFS but that broke a few releases back. This series changes to use a new ->swap_rw rather than ->readpage and ->direct_IO. It also makes other improvements. There is a companion series already in linux-next which fixes various issues with NFS. Once both series land, a final patch is needed which changes NFS over to use ->swap_rw. This patch (of 10): Many functions declared in include/linux/swap.h are only used within mm/ Create a new "mm/swap.h" and move some of these declarations there. Remove the redundant 'extern' from the function declarations. [akpm@linux-foundation.org: mm/memory-failure.c needs mm/swap.h] Link: https://lkml.kernel.org/r/164859751830.29473.5309689752169286816.stgit@noble.brown Link: https://lkml.kernel.org/r/164859778120.29473.11725907882296224053.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: David Howells <dhowells@redhat.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |