6143 Commits

Author SHA1 Message Date
Philipp Rudo
a874333de0 s390/kexec_file: fix diag308 subcode when loading crash kernel
commit 613775d62ec60202f98d2c5f520e6e9ba6dd4ac4 upstream.

diag308 subcode 0 performes a clear reset which inlcudes the reset of
all registers in the system. While this is the preferred behavior when
loading a normal kernel via kexec it prevents the crash kernel to store
the register values in the dump. To prevent this use subcode 1 when
loading a crash kernel instead.

Fixes: ee337f5469fd ("s390/kexec_file: Add crash support to image loader")
Cc: <stable@vger.kernel.org> # 4.17
Signed-off-by: Philipp Rudo <prudo@linux.ibm.com>
Reported-by: Xiaoying Yan <yiyan@redhat.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-30 11:26:09 +01:00
Sven Schnelle
7f3547b3eb s390/smp: perform initial CPU reset also for SMT siblings
commit b5e438ebd7e808d1d2435159ac4742e01a94b8da upstream.

Not resetting the SMT siblings might leave them in unpredictable
state. One of the observed problems was that the CPU timer wasn't
reset and therefore large system time values where accounted during
CPU bringup.

Cc: <stable@kernel.org> # 4.0
Fixes: 10ad34bc76dfb ("s390: add SMT support")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-30 11:26:09 +01:00
Thomas Richter
a1bf9efcf4 s390/cpum_sf.c: fix file permission for cpum_sfb_size
commit 78d732e1f326f74f240d416af9484928303d9951 upstream.

This file is installed by the s390 CPU Measurement sampling
facility device driver to export supported minimum and
maximum sample buffer sizes.
This file is read by lscpumf tool to display the details
of the device driver capabilities. The lscpumf tool might
be invoked by a non-root user. In this case it does not
print anything because the file contents can not be read.

Fix this by allowing read access for all users. Reading
the file contents is ok, changing the file contents is
left to the root user only.

For further reference and details see:
 [1] https://github.com/ibm-s390-tools/s390-tools/issues/97

Fixes: 69f239ed335a ("s390/cpum_sf: Dynamically extend the sampling buffer if overflows occur")
Cc: <stable@vger.kernel.org> # 3.14
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-24 13:27:26 +01:00
Qian Cai
2343665ea3 s390/smp: move rcu_cpu_starting() earlier
[ Upstream commit de5d9dae150ca1c1b5c7676711a9ca139d1a8dec ]

The call to rcu_cpu_starting() in smp_init_secondary() is not early
enough in the CPU-hotplug onlining process, which results in lockdep
splats as follows:

 WARNING: suspicious RCU usage
 -----------------------------
 kernel/locking/lockdep.c:3497 RCU-list traversed in non-reader section!!

 other info that might help us debug this:

 RCU used illegally from offline CPU!
 rcu_scheduler_active = 1, debug_locks = 1
 no locks held by swapper/1/0.

 Call Trace:
 show_stack+0x158/0x1f0
 dump_stack+0x1f2/0x238
 __lock_acquire+0x2640/0x4dd0
 lock_acquire+0x3a8/0xd08
 _raw_spin_lock_irqsave+0xc0/0xf0
 clockevents_register_device+0xa8/0x528
 init_cpu_timer+0x33e/0x468
 smp_init_secondary+0x11a/0x328
 smp_start_secondary+0x82/0x88

This is avoided by moving the call to rcu_cpu_starting up near the
beginning of the smp_init_secondary() function. Note that the
raw_smp_processor_id() is required in order to avoid calling into
lockdep before RCU has declared the CPU to be watched for readers.

Link: https://lore.kernel.org/lkml/160223032121.7002.1269740091547117869.tip-bot2@tip-bot2/
Signed-off-by: Qian Cai <cai@redhat.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-18 19:18:45 +01:00
Sven Schnelle
9b7089ce09 s390/stp: add locking to sysfs functions
commit b3bd02495cb339124f13135d51940cf48d83e5cb upstream.

The sysfs function might race with stp_work_fn. To prevent that,
add the required locking. Another issue is that the sysfs functions
are checking the stp_online flag, but this flag just holds the user
setting whether STP is enabled. Add a flag to clock_sync_flag whether
stp_info holds valid data and use that instead.

Cc: stable@vger.kernel.org
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:08:51 +01:00
Ilya Leoshkevich
b08005625f s390/init: add missing __init annotations
[ Upstream commit fcb2b70cdb194157678fb1a75f9ff499aeba3d2a ]

Add __init to reserve_memory_end, reserve_oldmem and remove_oldmem.
Sometimes these functions are not inlined, and then the build
complains about section mismatch.

Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:50 +02:00
Thomas Richter
a356441de6 s390/cpum_sf: Use kzalloc and minor changes
[ Upstream commit 32dab6828c42f087439d3e2617dc7283546bd8f7 ]

Use kzalloc() to allocate auxiliary buffer structure initialized
with all zeroes to avoid random value in trace output.

Avoid double access to SBD hardware flags.

Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:30 +02:00
Sven Schnelle
228d5227dc s390: don't trace preemption in percpu macros
[ Upstream commit 1196f12a2c960951d02262af25af0bb1775ebcc2 ]

Since commit a21ee6055c30 ("lockdep: Change hardirq{s_enabled,_context}
to per-cpu variables") the lockdep code itself uses percpu variables. This
leads to recursions because the percpu macros are calling preempt_enable()
which might call trace_preempt_on().

Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-09 19:04:23 +02:00
Heiko Carstens
c5599b901d s390/ptrace: fix storage key handling
[ Upstream commit fd78c59446b8d050ecf3e0897c5a486c7de7c595 ]

The key member of the runtime instrumentation control block contains
only the access key, not the complete storage key. Therefore the value
must be shifted by four bits. Since existing user space does not
necessarily query and set the access key correctly, just ignore the
user space provided key and use the correct one.
Note: this is only relevant for debugging purposes in case somebody
compiles a kernel with a default storage access key set to a value not
equal to zero.

Fixes: 262832bc5acd ("s390/ptrace: add runtime instrumention register get/set")
Reported-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-26 10:31:03 +02:00
Heiko Carstens
5a5120b162 s390/runtime_instrumentation: fix storage key handling
[ Upstream commit 9eaba29c7985236e16468f4e6a49cc18cf01443e ]

The key member of the runtime instrumentation control block contains
only the access key, not the complete storage key. Therefore the value
must be shifted by four bits.
Note: this is only relevant for debugging purposes in case somebody
compiles a kernel with a default storage access key set to a value not
equal to zero.

Fixes: e4b8b3f33fca ("s390: add support for runtime instrumentation")
Reported-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-26 10:31:03 +02:00
Janosch Frank
1a57516407 s390/mm: fix huge pte soft dirty copying
commit 528a9539348a0234375dfaa1ca5dbbb2f8f8e8d2 upstream.

If the pmd is soft dirty we must mark the pte as soft dirty (and not dirty).
This fixes some cases for guest migration with huge page backings.

Cc: <stable@vger.kernel.org> # 4.8
Fixes: bc29b7ac1d9f ("s390/mm: clean up pte/pmd encoding")
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-16 08:17:28 +02:00
Vasily Gorbik
7e7f71be56 s390/kasan: fix early pgm check handler execution
[ Upstream commit 998f5bbe3dbdab81c1cfb1aef7c3892f5d24f6c7 ]

Currently if early_pgm_check_handler is called it ends up in pgm check
loop. The problem is that early_pgm_check_handler is instrumented by
KASAN but executed without DAT flag enabled which leads to addressing
exception when KASAN checks try to access shadow memory.

Fix that by executing early handlers with DAT flag on under KASAN as
expected.

Reported-and-tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-16 08:17:22 +02:00
Christian Borntraeger
34314cc6da KVM: s390: reduce number of IO pins to 1
[ Upstream commit 774911290c589e98e3638e73b24b0a4d4530e97c ]

The current number of KVM_IRQCHIP_NUM_PINS results in an order 3
allocation (32kb) for each guest start/restart. This can result in OOM
killer activity even with free swap when the memory is fragmented
enough:

kernel: qemu-system-s39 invoked oom-killer: gfp_mask=0x440dc0(GFP_KERNEL_ACCOUNT|__GFP_COMP|__GFP_ZERO), order=3, oom_score_adj=0
kernel: CPU: 1 PID: 357274 Comm: qemu-system-s39 Kdump: loaded Not tainted 5.4.0-29-generic #33-Ubuntu
kernel: Hardware name: IBM 8562 T02 Z06 (LPAR)
kernel: Call Trace:
kernel: ([<00000001f848fe2a>] show_stack+0x7a/0xc0)
kernel:  [<00000001f8d3437a>] dump_stack+0x8a/0xc0
kernel:  [<00000001f8687032>] dump_header+0x62/0x258
kernel:  [<00000001f8686122>] oom_kill_process+0x172/0x180
kernel:  [<00000001f8686abe>] out_of_memory+0xee/0x580
kernel:  [<00000001f86e66b8>] __alloc_pages_slowpath+0xd18/0xe90
kernel:  [<00000001f86e6ad4>] __alloc_pages_nodemask+0x2a4/0x320
kernel:  [<00000001f86b1ab4>] kmalloc_order+0x34/0xb0
kernel:  [<00000001f86b1b62>] kmalloc_order_trace+0x32/0xe0
kernel:  [<00000001f84bb806>] kvm_set_irq_routing+0xa6/0x2e0
kernel:  [<00000001f84c99a4>] kvm_arch_vm_ioctl+0x544/0x9e0
kernel:  [<00000001f84b8936>] kvm_vm_ioctl+0x396/0x760
kernel:  [<00000001f875df66>] do_vfs_ioctl+0x376/0x690
kernel:  [<00000001f875e304>] ksys_ioctl+0x84/0xb0
kernel:  [<00000001f875e39a>] __s390x_sys_ioctl+0x2a/0x40
kernel:  [<00000001f8d55424>] system_call+0xd8/0x2c8

As far as I can tell s390x does not use the iopins as we bail our for
anything other than KVM_IRQ_ROUTING_S390_ADAPTER and the chip/pin is
only used for KVM_IRQ_ROUTING_IRQCHIP. So let us use a small number to
reduce the memory footprint.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200617083620.5409-1-borntraeger@de.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-16 08:17:20 +02:00
Christian Borntraeger
34035e7842 s390/debug: avoid kernel warning on too large number of pages
[ Upstream commit 827c4913923e0b441ba07ba4cc41e01181102303 ]

When specifying insanely large debug buffers a kernel warning is
printed. The debug code does handle the error gracefully, though.
Instead of duplicating the check let us silence the warning to
avoid crashes when panic_on_warn is used.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-09 09:37:09 +02:00
Vincenzo Frascino
f9e97d64c3 s390/vdso: fix vDSO clock_getres()
[ Upstream commit 478237a595120a18e9b52fd2c57a6e8b7a01e411 ]

clock_getres in the vDSO library has to preserve the same behaviour
of posix_get_hrtimer_res().

In particular, posix_get_hrtimer_res() does:
    sec = 0;
    ns = hrtimer_resolution;
and hrtimer_resolution depends on the enablement of the high
resolution timers that can happen either at compile or at run time.

Fix the s390 vdso implementation of clock_getres keeping a copy of
hrtimer_resolution in vdso data and using that directly.

Link: https://lkml.kernel.org/r/20200324121027.21665-1-vincenzo.frascino@arm.com
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[heiko.carstens@de.ibm.com: use llgf for proper zero extension]
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-06-30 23:17:14 -04:00
Sven Schnelle
42cd50aaa1 s390/ptrace: fix setting syscall number
[ Upstream commit 873e5a763d604c32988c4a78913a8dab3862d2f9 ]

When strace wants to update the syscall number, it sets GPR2
to the desired number and updates the GPR via PTRACE_SETREGSET.
It doesn't update regs->int_code which would cause the old syscall
executed on syscall restart. As we cannot change the ptrace ABI and
don't have a field for the interruption code, check whether the tracee
is in a syscall and the last instruction was svc. In that case assume
that the tracer wants to update the syscall number and copy the GPR2
value to regs->int_code.

Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-06-30 23:17:14 -04:00
1d3c79f492 s390: fix syscall_get_error for compat processes
commit b3583fca5fb654af2cfc1c08259abb9728272538 upstream.

If both the tracer and the tracee are compat processes, and gprs[2]
is assigned a value by __poke_user_compat, then the higher 32 bits
of gprs[2] are cleared, IS_ERR_VALUE() always returns false, and
syscall_get_error() always returns 0.

Fix the implementation by sign-extending the value for compat processes
the same way as x86 implementation does.

The bug was exposed to user space by commit 201766a20e30f ("ptrace: add
PTRACE_GET_SYSCALL_INFO request") and detected by strace test suite.

This change fixes strace syscall tampering on s390.

Link: https://lkml.kernel.org/r/20200602180051.GA2427@altlinux.org
Fixes: 753c4dd6a2fa2 ("[S390] ptrace changes")
Cc: Elvira Khabirova <lineprinter@altlinux.org>
Cc: stable@vger.kernel.org # v2.6.28+
Signed-off-by: Dmitry V. Levin <ldv@altlinux.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-25 15:33:09 +02:00
Gerald Schaefer
84fc4e58e4 s390/mm: fix set_huge_pte_at() for empty ptes
[ Upstream commit ac8372f3b4e41015549b331a4f350224661e7fc6 ]

On s390, the layout of normal and large ptes (i.e. pmds/puds) differs.
Therefore, set_huge_pte_at() does a conversion from a normal pte to
the corresponding large pmd/pud. So, when converting an empty pte, this
should result in an empty pmd/pud, which would return true for
pmd/pud_none().

However, after conversion we also mark the pmd/pud as large, and
therefore present. For empty ptes, this will result in an empty pmd/pud
that is also marked as large, and pmd/pud_none() would not return true.

There is currently no issue with this behaviour, as set_huge_pte_at()
does not seem to be called for empty ptes. It would be valid though, so
let's fix this by not marking empty ptes as large in set_huge_pte_at().

This was found by testing a patch from from Anshuman Khandual, which is
currently discussed on LKML ("mm/debug: Add more arch page table helper
tests").

Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-06-07 13:17:56 +02:00
Vasily Gorbik
3825ddf5fd s390/ftrace: save traced function caller
[ Upstream commit b4adfe55915d8363e244e42386d69567db1719b9 ]

A typical backtrace acquired from ftraced function currently looks like
the following (e.g. for "path_openat"):

arch_stack_walk+0x15c/0x2d8
stack_trace_save+0x50/0x68
stack_trace_call+0x15a/0x3b8
ftrace_graph_caller+0x0/0x1c
0x3e0007e3c98 <- ftraced function caller (should be do_filp_open+0x7c/0xe8)
do_open_execat+0x70/0x1b8
__do_execve_file.isra.0+0x7d8/0x860
__s390x_sys_execve+0x56/0x68
system_call+0xdc/0x2d8

Note random "0x3e0007e3c98" stack value as ftraced function caller. This
value causes either imprecise unwinder result or unwinding failure.
That "0x3e0007e3c98" comes from r14 of ftraced function stack frame, which
it haven't had a chance to initialize since the very first instruction
calls ftrace code ("ftrace_caller"). (ftraced function might never
save r14 as well). Nevertheless according to s390 ABI any function
is called with stack frame allocated for it and r14 contains return
address. "ftrace_caller" itself is called with "brasl %r0,ftrace_caller".
So, to fix this issue simply always save traced function caller onto
ftraced function stack frame.

Reported-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-06-07 13:17:55 +02:00
Philipp Rudo
bbe15f16e5 s390/ftrace: fix potential crashes when switching tracers
[ Upstream commit 8ebf6da9db1b2a20bb86cc1bee2552e894d03308 ]

Switching tracers include instruction patching. To prevent that a
instruction is patched while it's read the instruction patching is done
in stop_machine 'context'. This also means that any function called
during stop_machine must not be traced. Thus add 'notrace' to all
functions called within stop_machine.

Fixes: 1ec2772e0c3c ("s390/diag: add a statistic for diagnose calls")
Fixes: 38f2c691a4b3 ("s390: improve wait logic of stop_machine")
Fixes: 4ecf0a43e729 ("processor: get rid of cpu_relax_yield")
Signed-off-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-05-10 10:30:09 +02:00
Christian Borntraeger
215d1f3928 s390/mm: fix page table upgrade vs 2ndary address mode accesses
commit 316ec154810960052d4586b634156c54d0778f74 upstream.

A page table upgrade in a kernel section that uses secondary address
mode will mess up the kernel instructions as follows:

Consider the following scenario: two threads are sharing memory.
On CPU1 thread 1 does e.g. strnlen_user().  That gets to
        old_fs = enable_sacf_uaccess();
        len = strnlen_user_srst(src, size);
and
                "   la    %2,0(%1)\n"
                "   la    %3,0(%0,%1)\n"
                "   slgr  %0,%0\n"
                "   sacf  256\n"
                "0: srst  %3,%2\n"
in strnlen_user_srst().  At that point we are in secondary space mode,
control register 1 points to kernel page table and instruction fetching
happens via c1, rather than usual c13.  Interrupts are not disabled, for
obvious reasons.

On CPU2 thread 2 does MAP_FIXED mmap(), forcing the upgrade of page table
from 3-level to e.g. 4-level one.  We'd allocated new top-level table,
set it up and now we hit this:
                notify = 1;
                spin_unlock_bh(&mm->page_table_lock);
        }
        if (notify)
                on_each_cpu(__crst_table_upgrade, mm, 0);
OK, we need to actually change over to use of new page table and we
need that to happen in all threads that are currently running.  Which
happens to include the thread 1.  IPI is delivered and we have
static void __crst_table_upgrade(void *arg)
{
        struct mm_struct *mm = arg;

        if (current->active_mm == mm)
                set_user_asce(mm);
        __tlb_flush_local();
}
run on CPU1.  That does
static inline void set_user_asce(struct mm_struct *mm)
{
        S390_lowcore.user_asce = mm->context.asce;
OK, user page table address updated...
        __ctl_load(S390_lowcore.user_asce, 1, 1);
... and control register 1 set to it.
        clear_cpu_flag(CIF_ASCE_PRIMARY);
}

IPI is run in home space mode, so it's fine - insns are fetched
using c13, which always points to kernel page table.  But as soon
as we return from the interrupt, previous PSW is restored, putting
CPU1 back into secondary space mode, at which point we no longer
get the kernel instructions from the kernel mapping.

The fix is to only fixup the control registers that are currently in use
for user processes during the page table update.  We must also disable
interrupts in enable_sacf_uaccess to synchronize the cr and
thread.mm_segment updates against the on_each-cpu.

Fixes: 0aaba41b58bc ("s390: remove all code using the access register mode")
Cc: stable@vger.kernel.org # 4.15+
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
References: CVE-2020-11884
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-29 16:31:35 +02:00
Sean Christopherson
4cfcc37091 KVM: s390: Return last valid slot if approx index is out-of-bounds
commit 97daa028f3f621adff2c4f7b15fe0874e5b5bd6c upstream.

Return the index of the last valid slot from gfn_to_memslot_approx() if
its binary search loop yielded an out-of-bounds index.  The index can
be out-of-bounds if the specified gfn is less than the base of the
lowest memslot (which is also the last valid memslot).

Note, the sole caller, kvm_s390_get_cmma(), ensures used_slots is
non-zero.

Fixes: afdad61615cc3 ("KVM: s390: Fix storage attributes migration with memory slots")
Cc: stable@vger.kernel.org # 4.19.x: 0774a964ef56: KVM: Fix out of range accesses to memslots
Cc: stable@vger.kernel.org # 4.19.x
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200408064059.8957-3-sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-29 16:31:30 +02:00
David Hildenbrand
41228f464f KVM: s390: vsie: Fix possible race when shadowing region 3 tables
[ Upstream commit 1493e0f944f3c319d11e067c185c904d01c17ae5 ]

We have to properly retry again by returning -EINVAL immediately in case
somebody else instantiated the table concurrently. We missed to add the
goto in this function only. The code now matches the other, similar
shadowing functions.

We are overwriting an existing region 2 table entry. All allocated pages
are added to the crst_list to be freed later, so they are not lost
forever. However, when unshadowing the region 2 table, we wouldn't trigger
unshadowing of the original shadowed region 3 table that we replaced. It
would get unshadowed when the original region 3 table is modified. As it's
not connected to the page table hierarchy anymore, it's not going to get
used anymore. However, for a limited time, this page table will stick
around, so it's in some sense a temporary memory leak.

Identified by manual code inspection. I don't think this classifies as
stable material.

Fixes: 998f637cc4b9 ("s390/mm: avoid races on region/segment/page table shadowing")
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200403153050.20569-4-david@redhat.com
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-23 10:30:20 +02:00
Thomas Richter
60cb788694 s390/cpum_sf: Fix wrong page count in error message
[ Upstream commit 4141b6a5e9f171325effc36a22eb92bf961e7a5c ]

When perf record -e SF_CYCLES_BASIC_DIAG runs with very high
frequency, the samples arrive faster than the perf process can
save them to file. Eventually, for longer running processes, this
leads to the siutation where the trace buffers allocated by perf
slowly fills up. At one point the auxiliary trace buffer is full
and  the CPU Measurement sampling facility is turned off. Furthermore
a warning is printed to the kernel log buffer:

cpum_sf: The AUX buffer with 0 pages for the diagnostic-sampling
	mode is full

The number of allocated pages for the auxiliary trace buffer is shown
as zero pages. That is wrong.

Fix this by saving the number of allocated pages before entering the
work loop in the interrupt handler. When the interrupt handler processes
the samples, it may detect the buffer full condition and stop sampling,
reducing the buffer size to zero.
Print the correct value in the error message:

cpum_sf: The AUX buffer with 256 pages for the diagnostic-sampling
	mode is full

Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-23 10:30:18 +02:00
Alexander Gordeev
ffc059b5b9 s390/cpuinfo: fix wrong output when CPU0 is offline
[ Upstream commit 872f27103874a73783aeff2aac2b41a489f67d7c ]

/proc/cpuinfo should not print information about CPU 0 when it is offline.

Fixes: 281eaa8cb67c ("s390/cpuinfo: simplify locking and skip offline cpus early")
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
[heiko.carstens@de.ibm.com: shortened commit message]
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-23 10:30:18 +02:00
Michael Mueller
e68129e681 s390/diag: fix display of diagnose call statistics
commit 6c7c851f1b666a8a455678a0b480b9162de86052 upstream.

Show the full diag statistic table and not just parts of it.

The issue surfaced in a KVM guest with a number of vcpus
defined smaller than NR_DIAG_STAT.

Fixes: 1ec2772e0c3c ("s390/diag: add a statistic for diagnose calls")
Cc: stable@vger.kernel.org
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17 10:48:52 +02:00
David Hildenbrand
de2ac8a719 KVM: s390: vsie: Fix delivery of addressing exceptions
commit 4d4cee96fb7a3cc53702a9be8299bf525be4ee98 upstream.

Whenever we get an -EFAULT, we failed to read in guest 2 physical
address space. Such addressing exceptions are reported via a program
intercept to the nested hypervisor.

We faked the intercept, we have to return to guest 2. Instead, right
now we would be returning -EFAULT from the intercept handler, eventually
crashing the VM.
the correct thing to do is to return 1 as rc == 1 is the internal
representation of "we have to go back into g2".

Addressing exceptions can only happen if the g2->g3 page tables
reference invalid g2 addresses (say, either a table or the final page is
not accessible - so something that basically never happens in sane
environments.

Identified by manual code inspection.

Fixes: a3508fbe9dc6 ("KVM: s390: vsie: initial support for nested virtualization")
Cc: <stable@vger.kernel.org> # v4.8+
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200403153050.20569-3-david@redhat.com
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
[borntraeger@de.ibm.com: fix patch description]
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17 10:48:48 +02:00
David Hildenbrand
50a59d2df7 KVM: s390: vsie: Fix region 1 ASCE sanity shadow address checks
commit a1d032a49522cb5368e5dfb945a85899b4c74f65 upstream.

In case we have a region 1 the following calculation
(31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11)
results in 64. As shifts beyond the size are undefined the compiler is
free to use instructions like sllg. sllg will only use 6 bits of the
shift value (here 64) resulting in no shift at all. That means that ALL
addresses will be rejected.

The can result in endless loops, e.g. when prefix cannot get mapped.

Fixes: 4be130a08420 ("s390/mm: add shadow gmap support")
Tested-by: Janosch Frank <frankja@linux.ibm.com>
Reported-by: Janosch Frank <frankja@linux.ibm.com>
Cc: <stable@vger.kernel.org> # v4.8+
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200403153050.20569-2-david@redhat.com
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
[borntraeger@de.ibm.com: fix patch description, remove WARN_ON_ONCE]
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17 10:48:47 +02:00
Julian Wiedmann
9623c8ae73 s390/qdio: fill SL with absolute addresses
[ Upstream commit e9091ffd6a0aaced111b5d6ead5eaab5cd7101bc ]

As the comment says, sl->sbal holds an absolute address. qeth currently
solves this through wild casting, while zfcp doesn't care.

Handle this properly in the code that actually builds the SL.

Signed-off-by: Julian Wiedmann <jwi@linux.ibm.com>
Reviewed-by: Alexandra Winter <wintera@linux.ibm.com>
Reviewed-by: Steffen Maier <maier@linux.ibm.com> [for qdio]
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-03-11 14:14:54 +01:00
Masahiro Yamada
b696f79fd1 s390: make 'install' not depend on vmlinux
[ Upstream commit 94e90f727f7424d827256023cace829cad6896f4 ]

For the same reason as commit 19514fc665ff ("arm, kbuild: make "make
install" not depend on vmlinux"), the install targets should never
trigger the rebuild of the kernel.

The variable, CONFIGURE, is not set by anyone. Remove it as well.

Link: https://lkml.kernel.org/r/20200216144829.27023-1-masahiroy@kernel.org
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-03-11 14:14:53 +01:00
Nathan Chancellor
8541452acb s390/mm: Explicitly compare PAGE_DEFAULT_KEY against zero in storage_key_init_range
commit 380324734956c64cd060e1db4304f3117ac15809 upstream.

Clang warns:

 In file included from ../arch/s390/purgatory/purgatory.c:10:
 In file included from ../include/linux/kexec.h:18:
 In file included from ../include/linux/crash_core.h:6:
 In file included from ../include/linux/elfcore.h:5:
 In file included from ../include/linux/user.h:1:
 In file included from ../arch/s390/include/asm/user.h:11:
 ../arch/s390/include/asm/page.h:45:6: warning: converting the result of
 '<<' to a boolean always evaluates to false
 [-Wtautological-constant-compare]
         if (PAGE_DEFAULT_KEY)
            ^
 ../arch/s390/include/asm/page.h:23:44: note: expanded from macro
 'PAGE_DEFAULT_KEY'
 #define PAGE_DEFAULT_KEY        (PAGE_DEFAULT_ACC << 4)
                                                  ^
 1 warning generated.

Explicitly compare this against zero to silence the warning as it is
intended to be used in a boolean context.

Fixes: de3fa841e429 ("s390/mm: fix compile for PAGE_DEFAULT_KEY != 0")
Link: https://github.com/ClangBuiltLinux/linux/issues/860
Link: https://lkml.kernel.org/r/20200214064207.10381-1-natechancellor@gmail.com
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 16:39:00 +01:00
Vasily Gorbik
149412daa2 s390/ftrace: generate traced function stack frame
[ Upstream commit 45f7a0da600d3c409b5ad8d5ddddacd98ddc8840 ]

Currently backtrace from ftraced function does not contain ftraced
function itself. e.g. for "path_openat":

arch_stack_walk+0x15c/0x2d8
stack_trace_save+0x50/0x68
stack_trace_call+0x15e/0x3d8
ftrace_graph_caller+0x0/0x1c <-- ftrace code
do_filp_open+0x7c/0xe8 <-- ftraced function caller
do_open_execat+0x76/0x1b8
open_exec+0x52/0x78
load_elf_binary+0x180/0x1160
search_binary_handler+0x8e/0x288
load_script+0x2a8/0x2b8
search_binary_handler+0x8e/0x288
__do_execve_file.isra.39+0x6fa/0xb40
__s390x_sys_execve+0x56/0x68
system_call+0xdc/0x2d8

Ftraced function is expected in the backtrace by ftrace kselftests, which
are now failing. It would also be nice to have it for clarity reasons.

"ftrace_caller" itself is called without stack frame allocated for it
and does not store its caller (ftraced function). Instead it simply
allocates a stack frame for "ftrace_trace_function" and sets backchain
to point to ftraced function stack frame (which contains ftraced function
caller in saved r14).

To fix this issue make "ftrace_caller" allocate a stack frame
for itself just to store ftraced function for the stack unwinder.
As a result backtrace looks like the following:

arch_stack_walk+0x15c/0x2d8
stack_trace_save+0x50/0x68
stack_trace_call+0x15e/0x3d8
ftrace_graph_caller+0x0/0x1c <-- ftrace code
path_openat+0x6/0xd60  <-- ftraced function
do_filp_open+0x7c/0xe8 <-- ftraced function caller
do_open_execat+0x76/0x1b8
open_exec+0x52/0x78
load_elf_binary+0x180/0x1160
search_binary_handler+0x8e/0x288
load_script+0x2a8/0x2b8
search_binary_handler+0x8e/0x288
__do_execve_file.isra.39+0x6fa/0xb40
__s390x_sys_execve+0x56/0x68
system_call+0xdc/0x2d8

Reported-by: Sven Schnelle <sven.schnelle@ibm.com>
Tested-by: Sven Schnelle <sven.schnelle@ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-24 08:34:50 +01:00
Vasily Gorbik
29a8e429ba s390: adjust -mpacked-stack support check for clang 10
[ Upstream commit 253b3c4b2920e07ce9e2b18800b9b65245e2fafa ]

clang 10 introduces -mpacked-stack compiler option implementation. At the
same time currently it does not support a combination of -mpacked-stack
and -mbackchain. This leads to the following build error:

clang: error: unsupported option '-mpacked-stack with -mbackchain' for
target 's390x-ibm-linux'

If/when clang adds support for a combination of -mpacked-stack and
-mbackchain it would also require -msoft-float (like gcc does). According
to Ulrich Weigand "stack slot assigned to the kernel backchain overlaps
the stack slot assigned to the FPR varargs (both are required to be
placed immediately after the saved r15 slot if present)."

Extend -mpacked-stack compiler option support check to include all 3
options -mpacked-stack -mbackchain -msoft-float which must present to
support -mpacked-stack with -mbackchain.

Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-24 08:34:50 +01:00
Christian Borntraeger
5fe69d2ba0 KVM: s390: ENOTSUPP -> EOPNOTSUPP fixups
[ Upstream commit c611990844c28c61ca4b35ff69d3a2ae95ccd486 ]

There is no ENOTSUPP for userspace.

Reported-by: Julian Wiedmann <jwi@linux.ibm.com>
Fixes: 519783935451 ("KVM: s390: introduce ais mode modify function")
Fixes: 2c1a48f2e5ed ("KVM: S390: add new group for flic")
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-24 08:34:39 +01:00
Niklas Schnelle
034a6635cd s390/pci: Fix possible deadlock in recover_store()
[ Upstream commit 576c75e36c689bec6a940e807bae27291ab0c0de ]

With zpci_disable() working, lockdep detected a potential deadlock
(lockdep output at the end).

The deadlock is between recovering a PCI function via the

/sys/bus/pci/devices/<dev>/recover

attribute vs powering it off via

/sys/bus/pci/slots/<slot>/power.

The fix is analogous to the changes in commit 0ee223b2e1f6 ("scsi: core:
Avoid that SCSI device removal through sysfs triggers a deadlock")
that fixed a potential deadlock on removing a SCSI device via sysfs.

[  204.830107] ======================================================
[  204.830109] WARNING: possible circular locking dependency detected
[  204.830111] 5.5.0-rc2-06072-gbc03ecc9a672 #6 Tainted: G        W
[  204.830112] ------------------------------------------------------
[  204.830113] bash/1034 is trying to acquire lock:
[  204.830115] 0000000192a1a610 (kn->count#200){++++}, at: kernfs_remove_by_name_ns+0x5c/0xa8
[  204.830122]
               but task is already holding lock:
[  204.830123] 00000000c16134a8 (pci_rescan_remove_lock){+.+.}, at: pci_stop_and_remove_bus_device_locked+0x26/0x48
[  204.830128]
               which lock already depends on the new lock.

[  204.830129]
               the existing dependency chain (in reverse order) is:
[  204.830130]
               -> #1 (pci_rescan_remove_lock){+.+.}:
[  204.830134]        validate_chain+0x93a/0xd08
[  204.830136]        __lock_acquire+0x4ae/0x9d0
[  204.830137]        lock_acquire+0x114/0x280
[  204.830140]        __mutex_lock+0xa2/0x960
[  204.830142]        mutex_lock_nested+0x32/0x40
[  204.830145]        recover_store+0x4c/0xa8
[  204.830147]        kernfs_fop_write+0xe6/0x218
[  204.830151]        vfs_write+0xb0/0x1b8
[  204.830152]        ksys_write+0x6c/0xf8
[  204.830154]        system_call+0xd8/0x2d8
[  204.830155]
               -> #0 (kn->count#200){++++}:
[  204.830187]        check_noncircular+0x1e6/0x240
[  204.830189]        check_prev_add+0xfc/0xdb0
[  204.830190]        validate_chain+0x93a/0xd08
[  204.830192]        __lock_acquire+0x4ae/0x9d0
[  204.830193]        lock_acquire+0x114/0x280
[  204.830194]        __kernfs_remove.part.0+0x2e4/0x360
[  204.830196]        kernfs_remove_by_name_ns+0x5c/0xa8
[  204.830198]        remove_files.isra.0+0x4c/0x98
[  204.830199]        sysfs_remove_group+0x66/0xc8
[  204.830201]        sysfs_remove_groups+0x46/0x68
[  204.830204]        device_remove_attrs+0x52/0x90
[  204.830207]        device_del+0x182/0x418
[  204.830208]        pci_remove_bus_device+0x8a/0x130
[  204.830210]        pci_stop_and_remove_bus_device_locked+0x3a/0x48
[  204.830212]        disable_slot+0x68/0x100
[  204.830213]        power_write_file+0x7c/0x130
[  204.830215]        kernfs_fop_write+0xe6/0x218
[  204.830217]        vfs_write+0xb0/0x1b8
[  204.830218]        ksys_write+0x6c/0xf8
[  204.830220]        system_call+0xd8/0x2d8
[  204.830221]
               other info that might help us debug this:

[  204.830223]  Possible unsafe locking scenario:

[  204.830224]        CPU0                    CPU1
[  204.830225]        ----                    ----
[  204.830226]   lock(pci_rescan_remove_lock);
[  204.830227]                                lock(kn->count#200);
[  204.830229]                                lock(pci_rescan_remove_lock);
[  204.830231]   lock(kn->count#200);
[  204.830233]
                *** DEADLOCK ***

[  204.830234] 4 locks held by bash/1034:
[  204.830235]  #0: 00000001b6fbc498 (sb_writers#4){.+.+}, at: vfs_write+0x158/0x1b8
[  204.830239]  #1: 000000018c9f5090 (&of->mutex){+.+.}, at: kernfs_fop_write+0xaa/0x218
[  204.830242]  #2: 00000001f7da0810 (kn->count#235){.+.+}, at: kernfs_fop_write+0xb6/0x218
[  204.830245]  #3: 00000000c16134a8 (pci_rescan_remove_lock){+.+.}, at: pci_stop_and_remove_bus_device_locked+0x26/0x48
[  204.830248]
               stack backtrace:
[  204.830250] CPU: 2 PID: 1034 Comm: bash Tainted: G        W         5.5.0-rc2-06072-gbc03ecc9a672 #6
[  204.830252] Hardware name: IBM 8561 T01 703 (LPAR)
[  204.830253] Call Trace:
[  204.830257]  [<00000000c05e10c0>] show_stack+0x88/0xf0
[  204.830260]  [<00000000c112dca4>] dump_stack+0xa4/0xe0
[  204.830261]  [<00000000c0694c06>] check_noncircular+0x1e6/0x240
[  204.830263]  [<00000000c0695bec>] check_prev_add+0xfc/0xdb0
[  204.830264]  [<00000000c06971da>] validate_chain+0x93a/0xd08
[  204.830266]  [<00000000c06994c6>] __lock_acquire+0x4ae/0x9d0
[  204.830267]  [<00000000c069867c>] lock_acquire+0x114/0x280
[  204.830269]  [<00000000c09ca15c>] __kernfs_remove.part.0+0x2e4/0x360
[  204.830270]  [<00000000c09cb5c4>] kernfs_remove_by_name_ns+0x5c/0xa8
[  204.830272]  [<00000000c09cee14>] remove_files.isra.0+0x4c/0x98
[  204.830274]  [<00000000c09cf2ae>] sysfs_remove_group+0x66/0xc8
[  204.830276]  [<00000000c09cf356>] sysfs_remove_groups+0x46/0x68
[  204.830278]  [<00000000c0e3dfe2>] device_remove_attrs+0x52/0x90
[  204.830280]  [<00000000c0e40382>] device_del+0x182/0x418
[  204.830281]  [<00000000c0dcfd7a>] pci_remove_bus_device+0x8a/0x130
[  204.830283]  [<00000000c0dcfe92>] pci_stop_and_remove_bus_device_locked+0x3a/0x48
[  204.830285]  [<00000000c0de7190>] disable_slot+0x68/0x100
[  204.830286]  [<00000000c0de6514>] power_write_file+0x7c/0x130
[  204.830288]  [<00000000c09cc846>] kernfs_fop_write+0xe6/0x218
[  204.830290]  [<00000000c08f3480>] vfs_write+0xb0/0x1b8
[  204.830291]  [<00000000c08f378c>] ksys_write+0x6c/0xf8
[  204.830293]  [<00000000c1154374>] system_call+0xd8/0x2d8
[  204.830294] INFO: lockdep is turned off.

Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-24 08:34:38 +01:00
Nathan Chancellor
fce14b5b2f s390/time: Fix clk type in get_tod_clock
commit 0f8a206df7c920150d2aa45574fba0ab7ff6be4f upstream.

Clang warns:

In file included from ../arch/s390/boot/startup.c:3:
In file included from ../include/linux/elf.h:5:
In file included from ../arch/s390/include/asm/elf.h:132:
In file included from ../include/linux/compat.h:10:
In file included from ../include/linux/time.h:74:
In file included from ../include/linux/time32.h:13:
In file included from ../include/linux/timex.h:65:
../arch/s390/include/asm/timex.h:160:20: warning: passing 'unsigned char
[16]' to parameter of type 'char *' converts between pointers to integer
types with different sign [-Wpointer-sign]
        get_tod_clock_ext(clk);
                          ^~~
../arch/s390/include/asm/timex.h:149:44: note: passing argument to
parameter 'clk' here
static inline void get_tod_clock_ext(char *clk)
                                           ^

Change clk's type to just be char so that it matches what happens in
get_tod_clock_ext.

Fixes: 57b28f66316d ("[S390] s390_hypfs: Add new attributes")
Link: https://github.com/ClangBuiltLinux/linux/issues/861
Link: http://lkml.kernel.org/r/20200208140858.47970-1-natechancellor@gmail.com
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-19 19:51:58 +01:00
Christian Borntraeger
d1568e6370 KVM: s390: do not clobber registers during guest reset/store status
commit 55680890ea78be0df5e1384989f1be835043c084 upstream.

The initial CPU reset clobbers the userspace fpc and the store status
ioctl clobbers the guest acrs + fpr.  As these calls are only done via
ioctl (and not via vcpu_run), no CPU context is loaded, so we can (and
must) act directly on the sync regs, not on the thread context.

Cc: stable@kernel.org
Fixes: e1788bb995be ("KVM: s390: handle floating point registers in the run ioctl not in vcpu_put/load")
Fixes: 31d8b8d41a7e ("KVM: s390: handle access registers in the run ioctl not in vcpu_put/load")
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20200131100205.74720-2-frankja@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:34:11 -08:00
Gerald Schaefer
4b7d98f1b6 s390/mm: fix dynamic pagetable upgrade for hugetlbfs
commit 5f490a520bcb393389a4d44bec90afcb332eb112 upstream.

Commit ee71d16d22bb ("s390/mm: make TASK_SIZE independent from the number
of page table levels") changed the logic of TASK_SIZE and also removed the
arch_mmap_check() implementation for s390. This combination has a subtle
effect on how get_unmapped_area() for hugetlbfs pages works. It is now
possible that a user process establishes a hugetlbfs mapping at an address
above 4 TB, without triggering a dynamic pagetable upgrade from 3 to 4
levels.

This is because hugetlbfs mappings will not use mm->get_unmapped_area, but
rather file->f_op->get_unmapped_area, which currently is the generic
implementation of hugetlb_get_unmapped_area() that does not know about s390
dynamic pagetable upgrades, but with the new definition of TASK_SIZE, it
will now allow mappings above 4 TB.

Subsequent access to such a mapped address above 4 TB will result in a page
fault loop, because the CPU cannot translate such a large address with 3
pagetable levels. The fault handler will try to map in a hugepage at the
address, but due to the folded pagetable logic it will end up with creating
entries in the 3 level pagetable, possibly overwriting existing mappings,
and then it all repeats when the access is retried.

Apart from the page fault loop, this can have various nasty effects, e.g.
kernel panic from one of the BUG_ON() checks in memory management code,
or even data loss if an existing mapping gets overwritten.

Fix this by implementing HAVE_ARCH_HUGETLB_UNMAPPED_AREA support for s390,
providing an s390 version for hugetlb_get_unmapped_area() with pagetable
upgrade support similar to arch_get_unmapped_area(), which will then be
used instead of the generic version.

Fixes: ee71d16d22bb ("s390/mm: make TASK_SIZE independent from the number of page table levels")
Cc: <stable@vger.kernel.org> # 4.12+
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:33:58 -08:00
David Hildenbrand
86834898d5 mm/memory_hotplug: shrink zones when offlining memory
commit feee6b2989165631b17ac6d4ccdbf6759254e85a upstream.

-- snip --

- Missing arm64 hot(un)plug support
- Missing some vmem_altmap_offset() cleanups
- Missing sub-section hotadd support
- Missing unification of mm/hmm.c and kernel/memremap.c

-- snip --

We currently try to shrink a single zone when removing memory.  We use
the zone of the first page of the memory we are removing.  If that
memmap was never initialized (e.g., memory was never onlined), we will
read garbage and can trigger kernel BUGs (due to a stale pointer):

    BUG: unable to handle page fault for address: 000000000000353d
    #PF: supervisor write access in kernel mode
    #PF: error_code(0x0002) - not-present page
    PGD 0 P4D 0
    Oops: 0002 [#1] SMP PTI
    CPU: 1 PID: 7 Comm: kworker/u8:0 Not tainted 5.3.0-rc5-next-20190820+ #317
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.4
    Workqueue: kacpi_hotplug acpi_hotplug_work_fn
    RIP: 0010:clear_zone_contiguous+0x5/0x10
    Code: 48 89 c6 48 89 c3 e8 2a fe ff ff 48 85 c0 75 cf 5b 5d c3 c6 85 fd 05 00 00 01 5b 5d c3 0f 1f 840
    RSP: 0018:ffffad2400043c98 EFLAGS: 00010246
    RAX: 0000000000000000 RBX: 0000000200000000 RCX: 0000000000000000
    RDX: 0000000000200000 RSI: 0000000000140000 RDI: 0000000000002f40
    RBP: 0000000140000000 R08: 0000000000000000 R09: 0000000000000001
    R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000140000
    R13: 0000000000140000 R14: 0000000000002f40 R15: ffff9e3e7aff3680
    FS:  0000000000000000(0000) GS:ffff9e3e7bb00000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: 000000000000353d CR3: 0000000058610000 CR4: 00000000000006e0
    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
    DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
    Call Trace:
     __remove_pages+0x4b/0x640
     arch_remove_memory+0x63/0x8d
     try_remove_memory+0xdb/0x130
     __remove_memory+0xa/0x11
     acpi_memory_device_remove+0x70/0x100
     acpi_bus_trim+0x55/0x90
     acpi_device_hotplug+0x227/0x3a0
     acpi_hotplug_work_fn+0x1a/0x30
     process_one_work+0x221/0x550
     worker_thread+0x50/0x3b0
     kthread+0x105/0x140
     ret_from_fork+0x3a/0x50
    Modules linked in:
    CR2: 000000000000353d

Instead, shrink the zones when offlining memory or when onlining failed.
Introduce and use remove_pfn_range_from_zone(() for that.  We now
properly shrink the zones, even if we have DIMMs whereby

 - Some memory blocks fall into no zone (never onlined)

 - Some memory blocks fall into multiple zones (offlined+re-onlined)

 - Multiple memory blocks that fall into different zones

Drop the zone parameter (with a potential dubious value) from
__remove_pages() and __remove_section().

Link: http://lkml.kernel.org/r/20191006085646.5768-6-david@redhat.com
Fixes: f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[visible after d0dc12e86b319]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: <stable@vger.kernel.org>	[5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-29 16:43:27 +01:00
David Hildenbrand
000a1d59cf mm/memory_hotplug: allow arch_remove_memory() without CONFIG_MEMORY_HOTREMOVE
commit 80ec922dbd87fd38d15719c86a94457204648aeb upstream.

-- snip --

Missing arm64 memory hot(un)plug support.

-- snip --

We want to improve error handling while adding memory by allowing to use
arch_remove_memory() and __remove_pages() even if
CONFIG_MEMORY_HOTREMOVE is not set to e.g., implement something like:

	arch_add_memory()
	rc = do_something();
	if (rc) {
		arch_remove_memory();
	}

We won't get rid of CONFIG_MEMORY_HOTREMOVE for now, as it will require
quite some dependencies for memory offlining.

Link: http://lkml.kernel.org/r/20190527111152.16324-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-29 16:43:26 +01:00
David Hildenbrand
817edd2bb3 s390x/mm: implement arch_remove_memory()
commit 18c86506c80f6b6b5e67d95bf0d6f7e665de5239 upstream.

Will come in handy when wanting to handle errors after
arch_add_memory().

Link: http://lkml.kernel.org/r/20190527111152.16324-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-29 16:43:26 +01:00
David Hildenbrand
5163b1ec3a mm/memory_hotplug: make __remove_pages() and arch_remove_memory() never fail
commit ac5c94264580f498e484c854031d0226b3c1038f upstream.

-- snip --

Minor conflict in arch/powerpc/mm/mem.c

-- snip --

All callers of arch_remove_memory() ignore errors.  And we should really
try to remove any errors from the memory removal path.  No more errors are
reported from __remove_pages().  BUG() in s390x code in case
arch_remove_memory() is triggered.  We may implement that properly later.
WARN in case powerpc code failed to remove the section mapping, which is
better than ignoring the error completely right now.

Link: http://lkml.kernel.org/r/20190409100148.24703-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-29 16:43:25 +01:00
Oscar Salvador
5c1f8f5358 mm, memory_hotplug: add nid parameter to arch_remove_memory
commit 2c2a5af6fed20cf74401c9d64319c76c5ff81309 upstream.

-- snip --

Missing unification of mm/hmm.c and kernel/memremap.c

-- snip --

Patch series "Do not touch pages in hot-remove path", v2.

This patchset aims for two things:

 1) A better definition about offline and hot-remove stage
 2) Solving bugs where we can access non-initialized pages
    during hot-remove operations [2] [3].

This is achieved by moving all page/zone handling to the offline
stage, so we do not need to access pages when hot-removing memory.

[1] https://patchwork.kernel.org/cover/10691415/
[2] https://patchwork.kernel.org/patch/10547445/
[3] https://www.spinics.net/lists/linux-mm/msg161316.html

This patch (of 5):

This is a preparation for the following-up patches.  The idea of passing
the nid is that it will allow us to get rid of the zone parameter
afterwards.

Link: http://lkml.kernel.org/r/20181127162005.15833-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-29 16:43:25 +01:00
Philipp Rudo
232e674ed9 s390/kexec_file: Fix potential segment overlap in ELF loader
[ Upstream commit 6339a3889ad4d0dd930ed7a1e873fb81d3e690f7 ]

When loading an ELF image via kexec_file the segment alignment is ignored
in the calculation for the load address of the next segment. When there are
multiple segments this can lead to segment overlap and thus load failure.

Signed-off-by: Philipp Rudo <prudo@linux.ibm.com>
Fixes: 8be018827154 ("s390/kexec_file: Add ELF loader")
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-27 14:50:42 +01:00
Christian Borntraeger
152eaa8626 s390/purgatory: do not build purgatory with kcov, kasan and friends
[ Upstream commit c23587c92f6e3260fe3b82bb75b38aa2553b9468 ]

the purgatory must not rely on functions from the "old" kernel,
so we must disable kasan and friends. We also need to have a
separate copy of string.c as the default does not build memcmp
with KASAN.

Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-12 12:17:21 +01:00
Heiko Carstens
a5011c7890 s390/smp: fix physical to logical CPU map for SMT
[ Upstream commit 72a81ad9d6d62dcb79f7e8ad66ffd1c768b72026 ]

If an SMT capable system is not IPL'ed from the first CPU the setup of
the physical to logical CPU mapping is broken: the IPL core gets CPU
number 0, but then the next core gets CPU number 1. Correct would be
that all SMT threads of CPU 0 get the subsequent logical CPU numbers.

This is important since a lot of code (like e.g. the CPU topology
code) assumes that CPU maps are setup like this. If the mapping is
broken the system will not IPL due to broken topology masks:

[    1.716341] BUG: arch topology broken
[    1.716342]      the SMT domain not a subset of the MC domain
[    1.716343] BUG: arch topology broken
[    1.716344]      the MC domain not a subset of the BOOK domain

This scenario can usually not happen since LPARs are always IPL'ed
from CPU 0 and also re-IPL is intiated from CPU 0. However older
kernels did initiate re-IPL on an arbitrary CPU. If therefore a re-IPL
from an old kernel into a new kernel is initiated this may lead to
crash.

Fix this by setting up the physical to logical CPU mapping correctly.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-09 10:19:09 +01:00
Thomas Richter
fbf01d59bc s390/cpum_sf: Avoid SBD overflow condition in irq handler
[ Upstream commit 0539ad0b22877225095d8adef0c376f52cc23834 ]

The s390 CPU Measurement sampling facility has an overflow condition
which fires when all entries in a SBD are used.
The measurement alert interrupt is triggered and reads out all samples
in this SDB. It then tests the successor SDB, if this SBD is not full,
the interrupt handler does not read any samples at all from this SDB
The design waits for the hardware to fill this SBD and then trigger
another meassurement alert interrupt.

This scheme works nicely until
an perf_event_overflow() function call discards the sample due to
a too high sampling rate.
The interrupt handler has logic to read out a partially filled SDB
when the perf event overflow condition in linux common code is met.
This causes the CPUM sampling measurement hardware and the PMU
device driver to operate on the same SBD's trailer entry.
This should not happen.

This can be seen here using this trace:
   cpumsf_pmu_add: tear:0xb5286000
   hw_perf_event_update: sdbt 0xb5286000 full 1 over 0 flush_all:0
   hw_perf_event_update: sdbt 0xb5286008 full 0 over 0 flush_all:0
        above shows 1. interrupt
   hw_perf_event_update: sdbt 0xb5286008 full 1 over 0 flush_all:0
   hw_perf_event_update: sdbt 0xb5286008 full 0 over 0 flush_all:0
        above shows 2. interrupt
	... this goes on fine until...
   hw_perf_event_update: sdbt 0xb5286068 full 1 over 0 flush_all:0
   perf_push_sample1: overflow
      one or more samples read from the IRQ handler are rejected by
      perf_event_overflow() and the IRQ handler advances to the next SDB
      and modifies the trailer entry of a partially filled SDB.
   hw_perf_event_update: sdbt 0xb5286070 full 0 over 0 flush_all:1
      timestamp: 14:32:52.519953

Next time the IRQ handler is called for this SDB the trailer entry shows
an overflow count of 19 missed entries.
   hw_perf_event_update: sdbt 0xb5286070 full 1 over 19 flush_all:1
      timestamp: 14:32:52.970058

Remove access to a follow on SDB when event overflow happened.

Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-09 10:18:58 +01:00
Thomas Richter
25fb38550c s390/cpum_sf: Adjust sampling interval to avoid hitting sample limits
[ Upstream commit 39d4a501a9ef55c57b51e3ef07fc2aeed7f30b3b ]

Function perf_event_ever_overflow() and perf_event_account_interrupt()
are called every time samples are processed by the interrupt handler.
However function perf_event_account_interrupt() has checks to avoid being
flooded with interrupts (more then 1000 samples are received per
task_tick).  Samples are then dropped and a PERF_RECORD_THROTTLED is
added to the perf data. The perf subsystem limit calculation is:

    maximum sample frequency := 100000 --> 1 samples per 10 us
    task_tick = 10ms = 10000us --> 1000 samples per task_tick

The work flow is

measurement_alert() uses SDBT head and each SBDT points to 511
 SDB pages, each with 126 sample entries. After processing 8 SBDs
 and for each valid sample calling:

     perf_event_overflow()
       perf_event_account_interrupts()

there is a considerable amount of samples being dropped, especially when
the sample frequency is very high and near the 100000 limit.

To avoid the high amount of samples being dropped near the end of a
task_tick time frame, increment the sampling interval in case of
dropped events. The CPU Measurement sampling facility on the s390
supports only intervals, specifiing how many CPU cycles have to be
executed before a sample is generated. Increase the interval when the
samples being generated hit the task_tick limit.

Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-09 10:18:57 +01:00
Thomas Richter
4e61f016b0 s390/cpum_sf: Check for SDBT and SDB consistency
[ Upstream commit 247f265fa502e7b17a0cb0cc330e055a36aafce4 ]

Each SBDT is located at a 4KB page and contains 512 entries.
Each entry of a SDBT points to a SDB, a 4KB page containing
sampled data. The last entry is a link to another SDBT page.

When an event is created the function sequence executed is:

  __hw_perf_event_init()
  +--> allocate_buffers()
       +--> realloc_sampling_buffers()
	    +---> alloc_sample_data_block()

Both functions realloc_sampling_buffers() and
alloc_sample_data_block() allocate pages and the allocation
can fail. This is handled correctly and all allocated
pages are freed and error -ENOMEM is returned to the
top calling function. Finally the event is not created.

Once the event has been created, the amount of initially
allocated SDBT and SDB can be too low. This is detected
during measurement interrupt handling, where the amount
of lost samples is calculated. If the number of lost samples
is too high considering sampling frequency and already allocated
SBDs, the number of SDBs is enlarged during the next execution
of cpumsf_pmu_enable().

If more SBDs need to be allocated, functions

       realloc_sampling_buffers()
       +---> alloc-sample_data_block()

are called to allocate more pages. Page allocation may fail
and the returned error is ignored. A SDBT and SDB setup
already exists.

However the modified SDBTs and SDBs might end up in a situation
where the first entry of an SDBT does not point to an SDB,
but another SDBT, basicly an SBDT without payload.
This can not be handled by the interrupt handler, where an SDBT
must have at least one entry pointing to an SBD.

Add a check to avoid SDBTs with out payload (SDBs) when enlarging
the buffer setup.

Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-04 19:13:16 +01:00
Sven Schnelle
ddf4aada93 s390/ftrace: fix endless recursion in function_graph tracer
[ Upstream commit 6feeee8efc53035c3195b02068b58ae947538aa4 ]

The following sequence triggers a kernel stack overflow on s390x:

mount -t tracefs tracefs /sys/kernel/tracing
cd /sys/kernel/tracing
echo function_graph > current_tracer
[crash]

This is because preempt_count_{add,sub} are in the list of traced
functions, which can be demonstrated by:

echo preempt_count_add >set_ftrace_filter
echo function_graph > current_tracer
[crash]

The stack overflow happens because get_tod_clock_monotonic() gets called
by ftrace but itself calls preempt_{disable,enable}(), which leads to a
endless recursion. Fix this by using preempt_{disable,enable}_notrace().

Fixes: 011620688a71 ("s390/time: ensure get_clock_monotonic() returns monotonic values")
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-31 16:36:20 +01:00