IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit f9690f426b2134cc3e74bfc5d9dfd6a4b2ca5281 ]
Commit dbcc7d57bffc0c ("btrfs: fix race when cloning extent buffer during
rewind of an old root"), fixed a race when we need to rewind the extent
buffer of an old root. It was caused by picking a new mod log operation
for the extent buffer while getting a cloned extent buffer with an outdated
number of items (off by -1), because we cloned the extent buffer without
locking it first.
However there is still another similar race, but in the opposite direction.
The cloned extent buffer has a number of items that does not match the
number of tree mod log operations that are going to be replayed. This is
because right after we got the last (most recent) tree mod log operation to
replay and before locking and cloning the extent buffer, another task adds
a new pointer to the extent buffer, which results in adding a new tree mod
log operation and incrementing the number of items in the extent buffer.
So after cloning we have mismatch between the number of items in the extent
buffer and the number of mod log operations we are going to apply to it.
This results in hitting a BUG_ON() that produces the following stack trace:
------------[ cut here ]------------
kernel BUG at fs/btrfs/tree-mod-log.c:675!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 3 PID: 4811 Comm: crawl_1215 Tainted: G W 5.12.0-7d1efdf501f8-misc-next+ #99
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:tree_mod_log_rewind+0x3b1/0x3c0
Code: 05 48 8d 74 10 (...)
RSP: 0018:ffffc90001027090 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8880a8514600 RCX: ffffffffaa9e59b6
RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff8880a851462c
RBP: ffffc900010270e0 R08: 00000000000000c0 R09: ffffed1004333417
R10: ffff88802199a0b7 R11: ffffed1004333416 R12: 000000000000000e
R13: ffff888135af8748 R14: ffff88818766ff00 R15: ffff8880a851462c
FS: 00007f29acf62700(0000) GS:ffff8881f2200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0e6013f718 CR3: 000000010d42e003 CR4: 0000000000170ee0
Call Trace:
btrfs_get_old_root+0x16a/0x5c0
? lock_downgrade+0x400/0x400
btrfs_search_old_slot+0x192/0x520
? btrfs_search_slot+0x1090/0x1090
? free_extent_buffer.part.61+0xd7/0x140
? free_extent_buffer+0x13/0x20
resolve_indirect_refs+0x3e9/0xfc0
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? add_prelim_ref.part.11+0x150/0x150
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x620
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? rb_insert_color+0x340/0x360
? prelim_ref_insert+0x12d/0x430
find_parent_nodes+0x5c3/0x1830
? stack_trace_save+0x87/0xb0
? resolve_indirect_refs+0xfc0/0xfc0
? fs_reclaim_acquire+0x67/0xf0
? __kasan_check_read+0x11/0x20
? lockdep_hardirqs_on_prepare+0x210/0x210
? fs_reclaim_acquire+0x67/0xf0
? __kasan_check_read+0x11/0x20
? ___might_sleep+0x10f/0x1e0
? __kasan_kmalloc+0x9d/0xd0
? trace_hardirqs_on+0x55/0x120
btrfs_find_all_roots_safe+0x142/0x1e0
? find_parent_nodes+0x1830/0x1830
? trace_hardirqs_on+0x55/0x120
? ulist_free+0x1f/0x30
? btrfs_inode_flags_to_xflags+0x50/0x50
iterate_extent_inodes+0x20e/0x580
? tree_backref_for_extent+0x230/0x230
? release_extent_buffer+0x225/0x280
? read_extent_buffer+0xdd/0x110
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x620
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? _raw_spin_unlock+0x22/0x30
? release_extent_buffer+0x225/0x280
iterate_inodes_from_logical+0x129/0x170
? iterate_inodes_from_logical+0x129/0x170
? btrfs_inode_flags_to_xflags+0x50/0x50
? iterate_extent_inodes+0x580/0x580
? __vmalloc_node+0x92/0xb0
? init_data_container+0x34/0xb0
? init_data_container+0x34/0xb0
? kvmalloc_node+0x60/0x80
btrfs_ioctl_logical_to_ino+0x158/0x230
btrfs_ioctl+0x2038/0x4360
? __kasan_check_write+0x14/0x20
? mmput+0x3b/0x220
? btrfs_ioctl_get_supported_features+0x30/0x30
? __kasan_check_read+0x11/0x20
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x650
? __might_fault+0x64/0xd0
? __kasan_check_read+0x11/0x20
? lock_downgrade+0x400/0x400
? lockdep_hardirqs_on_prepare+0x210/0x210
? lockdep_hardirqs_on_prepare+0x13/0x210
? _raw_spin_unlock_irqrestore+0x51/0x63
? __kasan_check_read+0x11/0x20
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? lock_downgrade+0x400/0x400
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x650
? __task_pid_nr_ns+0xd3/0x250
? __kasan_check_read+0x11/0x20
? __fget_files+0x160/0x230
? __fget_light+0xf2/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f29ae85b427
Code: 00 00 90 48 8b (...)
RSP: 002b:00007f29acf5fcf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f29acf5ff40 RCX: 00007f29ae85b427
RDX: 00007f29acf5ff48 RSI: 00000000c038943b RDI: 0000000000000003
RBP: 0000000001000000 R08: 0000000000000000 R09: 00007f29acf60120
R10: 00005640d5fc7b00 R11: 0000000000000246 R12: 0000000000000003
R13: 00007f29acf5ff48 R14: 00007f29acf5ff40 R15: 00007f29acf5fef8
Modules linked in:
---[ end trace 85e5fce078dfbe04 ]---
(gdb) l *(tree_mod_log_rewind+0x3b1)
0xffffffff819e5b21 is in tree_mod_log_rewind (fs/btrfs/tree-mod-log.c:675).
670 * the modification. As we're going backwards, we do the
671 * opposite of each operation here.
672 */
673 switch (tm->op) {
674 case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
675 BUG_ON(tm->slot < n);
676 fallthrough;
677 case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
678 case BTRFS_MOD_LOG_KEY_REMOVE:
679 btrfs_set_node_key(eb, &tm->key, tm->slot);
(gdb) quit
The following steps explain in more detail how it happens:
1) We have one tree mod log user (through fiemap or the logical ino ioctl),
with a sequence number of 1, so we have fs_info->tree_mod_seq == 1.
This is task A;
2) Another task is at ctree.c:balance_level() and we have eb X currently as
the root of the tree, and we promote its single child, eb Y, as the new
root.
Then, at ctree.c:balance_level(), we call:
ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
3) At btrfs_tree_mod_log_insert_root() we create a tree mod log operation
of type BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, with a ->logical field
pointing to ebX->start. We only have one item in eb X, so we create
only one tree mod log operation, and store in the "tm_list" array;
4) Then, still at btrfs_tree_mod_log_insert_root(), we create a tree mod
log element of operation type BTRFS_MOD_LOG_ROOT_REPLACE, ->logical set
to ebY->start, ->old_root.logical set to ebX->start, ->old_root.level
set to the level of eb X and ->generation set to the generation of eb X;
5) Then btrfs_tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
"tm_list" as argument. After that, tree_mod_log_free_eb() calls
tree_mod_log_insert(). This inserts the mod log operation of type
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING from step 3 into the rbtree
with a sequence number of 2 (and fs_info->tree_mod_seq set to 2);
6) Then, after inserting the "tm_list" single element into the tree mod
log rbtree, the BTRFS_MOD_LOG_ROOT_REPLACE element is inserted, which
gets the sequence number 3 (and fs_info->tree_mod_seq set to 3);
7) Back to ctree.c:balance_level(), we free eb X by calling
btrfs_free_tree_block() on it. Because eb X was created in the current
transaction, has no other references and writeback did not happen for
it, we add it back to the free space cache/tree;
8) Later some other task B allocates the metadata extent from eb X, since
it is marked as free space in the space cache/tree, and uses it as a
node for some other btree;
9) The tree mod log user task calls btrfs_search_old_slot(), which calls
btrfs_get_old_root(), and finally that calls tree_mod_log_oldest_root()
with time_seq == 1 and eb_root == eb Y;
10) The first iteration of the while loop finds the tree mod log element
with sequence number 3, for the logical address of eb Y and of type
BTRFS_MOD_LOG_ROOT_REPLACE;
11) Because the operation type is BTRFS_MOD_LOG_ROOT_REPLACE, we don't
break out of the loop, and set root_logical to point to
tm->old_root.logical, which corresponds to the logical address of
eb X;
12) On the next iteration of the while loop, the call to
tree_mod_log_search_oldest() returns the smallest tree mod log element
for the logical address of eb X, which has a sequence number of 2, an
operation type of BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and
corresponds to the old slot 0 of eb X (eb X had only 1 item in it
before being freed at step 7);
13) We then break out of the while loop and return the tree mod log
operation of type BTRFS_MOD_LOG_ROOT_REPLACE (eb Y), and not the one
for slot 0 of eb X, to btrfs_get_old_root();
14) At btrfs_get_old_root(), we process the BTRFS_MOD_LOG_ROOT_REPLACE
operation and set "logical" to the logical address of eb X, which was
the old root. We then call tree_mod_log_search() passing it the logical
address of eb X and time_seq == 1;
15) But before calling tree_mod_log_search(), task B locks eb X, adds a
key to eb X, which results in adding a tree mod log operation of type
BTRFS_MOD_LOG_KEY_ADD, with a sequence number of 4, to the tree mod
log, and increments the number of items in eb X from 0 to 1.
Now fs_info->tree_mod_seq has a value of 4;
16) Task A then calls tree_mod_log_search(), which returns the most recent
tree mod log operation for eb X, which is the one just added by task B
at the previous step, with a sequence number of 4, a type of
BTRFS_MOD_LOG_KEY_ADD and for slot 0;
17) Before task A locks and clones eb X, task A adds another key to eb X,
which results in adding a new BTRFS_MOD_LOG_KEY_ADD mod log operation,
with a sequence number of 5, for slot 1 of eb X, increments the
number of items in eb X from 1 to 2, and unlocks eb X.
Now fs_info->tree_mod_seq has a value of 5;
18) Task A then locks eb X and clones it. The clone has a value of 2 for
the number of items and the pointer "tm" points to the tree mod log
operation with sequence number 4, not the most recent one with a
sequence number of 5, so there is mismatch between the number of
mod log operations that are going to be applied to the cloned version
of eb X and the number of items in the clone;
19) Task A then calls tree_mod_log_rewind() with the clone of eb X, the
tree mod log operation with sequence number 4 and a type of
BTRFS_MOD_LOG_KEY_ADD, and time_seq == 1;
20) At tree_mod_log_rewind(), we set the local variable "n" with a value
of 2, which is the number of items in the clone of eb X.
Then in the first iteration of the while loop, we process the mod log
operation with sequence number 4, which is targeted at slot 0 and has
a type of BTRFS_MOD_LOG_KEY_ADD. This results in decrementing "n" from
2 to 1.
Then we pick the next tree mod log operation for eb X, which is the
tree mod log operation with a sequence number of 2, a type of
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and for slot 0, it is the one
added in step 5 to the tree mod log tree.
We go back to the top of the loop to process this mod log operation,
and because its slot is 0 and "n" has a value of 1, we hit the BUG_ON:
(...)
switch (tm->op) {
case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
BUG_ON(tm->slot < n);
fallthrough;
(...)
Fix this by checking for a more recent tree mod log operation after locking
and cloning the extent buffer of the old root node, and use it as the first
operation to apply to the cloned extent buffer when rewinding it.
Stable backport notes: due to moved code and renames, in =< 5.11 the
change should be applied to ctree.c:get_old_root.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210404040732.GZ32440@hungrycats.org/
Fixes: 834328a8493079 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit dbcc7d57bffc0c8cac9dac11bec548597d59a6a5 upstream.
While resolving backreferences, as part of a logical ino ioctl call or
fiemap, we can end up hitting a BUG_ON() when replaying tree mod log
operations of a root, triggering a stack trace like the following:
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:1210!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 1 PID: 19054 Comm: crawl_335 Tainted: G W 5.11.0-2d11c0084b02-misc-next+ #89
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:__tree_mod_log_rewind+0x3b1/0x3c0
Code: 05 48 8d 74 10 (...)
RSP: 0018:ffffc90001eb70b8 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffff88812344e400 RCX: ffffffffb28933b6
RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff88812344e42c
RBP: ffffc90001eb7108 R08: 1ffff11020b60a20 R09: ffffed1020b60a20
R10: ffff888105b050f9 R11: ffffed1020b60a1f R12: 00000000000000ee
R13: ffff8880195520c0 R14: ffff8881bc958500 R15: ffff88812344e42c
FS: 00007fd1955e8700(0000) GS:ffff8881f5600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007efdb7928718 CR3: 000000010103a006 CR4: 0000000000170ee0
Call Trace:
btrfs_search_old_slot+0x265/0x10d0
? lock_acquired+0xbb/0x600
? btrfs_search_slot+0x1090/0x1090
? free_extent_buffer.part.61+0xd7/0x140
? free_extent_buffer+0x13/0x20
resolve_indirect_refs+0x3e9/0xfc0
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? add_prelim_ref.part.11+0x150/0x150
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x600
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? rb_insert_color+0x30/0x360
? prelim_ref_insert+0x12d/0x430
find_parent_nodes+0x5c3/0x1830
? resolve_indirect_refs+0xfc0/0xfc0
? lock_release+0xc8/0x620
? fs_reclaim_acquire+0x67/0xf0
? lock_acquire+0xc7/0x510
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x160/0x210
? lock_release+0xc8/0x620
? fs_reclaim_acquire+0x67/0xf0
? lock_acquire+0xc7/0x510
? poison_range+0x38/0x40
? unpoison_range+0x14/0x40
? trace_hardirqs_on+0x55/0x120
btrfs_find_all_roots_safe+0x142/0x1e0
? find_parent_nodes+0x1830/0x1830
? btrfs_inode_flags_to_xflags+0x50/0x50
iterate_extent_inodes+0x20e/0x580
? tree_backref_for_extent+0x230/0x230
? lock_downgrade+0x3d0/0x3d0
? read_extent_buffer+0xdd/0x110
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x600
? __kasan_check_write+0x14/0x20
? _raw_spin_unlock+0x22/0x30
? __kasan_check_write+0x14/0x20
iterate_inodes_from_logical+0x129/0x170
? iterate_inodes_from_logical+0x129/0x170
? btrfs_inode_flags_to_xflags+0x50/0x50
? iterate_extent_inodes+0x580/0x580
? __vmalloc_node+0x92/0xb0
? init_data_container+0x34/0xb0
? init_data_container+0x34/0xb0
? kvmalloc_node+0x60/0x80
btrfs_ioctl_logical_to_ino+0x158/0x230
btrfs_ioctl+0x205e/0x4040
? __might_sleep+0x71/0xe0
? btrfs_ioctl_get_supported_features+0x30/0x30
? getrusage+0x4b6/0x9c0
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x620
? __might_fault+0x64/0xd0
? lock_acquire+0xc7/0x510
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x210/0x210
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x620
? __task_pid_nr_ns+0xd3/0x250
? lock_acquire+0xc7/0x510
? __fget_files+0x160/0x230
? __fget_light+0xf2/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fd1976e2427
Code: 00 00 90 48 8b 05 (...)
RSP: 002b:00007fd1955e5cf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fd1955e5f40 RCX: 00007fd1976e2427
RDX: 00007fd1955e5f48 RSI: 00000000c038943b RDI: 0000000000000004
RBP: 0000000001000000 R08: 0000000000000000 R09: 00007fd1955e6120
R10: 0000557835366b00 R11: 0000000000000246 R12: 0000000000000004
R13: 00007fd1955e5f48 R14: 00007fd1955e5f40 R15: 00007fd1955e5ef8
Modules linked in:
---[ end trace ec8931a1c36e57be ]---
(gdb) l *(__tree_mod_log_rewind+0x3b1)
0xffffffff81893521 is in __tree_mod_log_rewind (fs/btrfs/ctree.c:1210).
1205 * the modification. as we're going backwards, we do the
1206 * opposite of each operation here.
1207 */
1208 switch (tm->op) {
1209 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1210 BUG_ON(tm->slot < n);
1211 fallthrough;
1212 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213 case MOD_LOG_KEY_REMOVE:
1214 btrfs_set_node_key(eb, &tm->key, tm->slot);
Here's what happens to hit that BUG_ON():
1) We have one tree mod log user (through fiemap or the logical ino ioctl),
with a sequence number of 1, so we have fs_info->tree_mod_seq == 1;
2) Another task is at ctree.c:balance_level() and we have eb X currently as
the root of the tree, and we promote its single child, eb Y, as the new
root.
Then, at ctree.c:balance_level(), we call:
tree_mod_log_insert_root(eb X, eb Y, 1);
3) At tree_mod_log_insert_root() we create tree mod log elements for each
slot of eb X, of operation type MOD_LOG_KEY_REMOVE_WHILE_FREEING each
with a ->logical pointing to ebX->start. These are placed in an array
named tm_list.
Lets assume there are N elements (N pointers in eb X);
4) Then, still at tree_mod_log_insert_root(), we create a tree mod log
element of operation type MOD_LOG_ROOT_REPLACE, ->logical set to
ebY->start, ->old_root.logical set to ebX->start, ->old_root.level set
to the level of eb X and ->generation set to the generation of eb X;
5) Then tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
tm_list as argument. After that, tree_mod_log_free_eb() calls
__tree_mod_log_insert() for each member of tm_list in reverse order,
from highest slot in eb X, slot N - 1, to slot 0 of eb X;
6) __tree_mod_log_insert() sets the sequence number of each given tree mod
log operation - it increments fs_info->tree_mod_seq and sets
fs_info->tree_mod_seq as the sequence number of the given tree mod log
operation.
This means that for the tm_list created at tree_mod_log_insert_root(),
the element corresponding to slot 0 of eb X has the highest sequence
number (1 + N), and the element corresponding to the last slot has the
lowest sequence number (2);
7) Then, after inserting tm_list's elements into the tree mod log rbtree,
the MOD_LOG_ROOT_REPLACE element is inserted, which gets the highest
sequence number, which is N + 2;
8) Back to ctree.c:balance_level(), we free eb X by calling
btrfs_free_tree_block() on it. Because eb X was created in the current
transaction, has no other references and writeback did not happen for
it, we add it back to the free space cache/tree;
9) Later some other task T allocates the metadata extent from eb X, since
it is marked as free space in the space cache/tree, and uses it as a
node for some other btree;
10) The tree mod log user task calls btrfs_search_old_slot(), which calls
get_old_root(), and finally that calls __tree_mod_log_oldest_root()
with time_seq == 1 and eb_root == eb Y;
11) First iteration of the while loop finds the tree mod log element with
sequence number N + 2, for the logical address of eb Y and of type
MOD_LOG_ROOT_REPLACE;
12) Because the operation type is MOD_LOG_ROOT_REPLACE, we don't break out
of the loop, and set root_logical to point to tm->old_root.logical
which corresponds to the logical address of eb X;
13) On the next iteration of the while loop, the call to
tree_mod_log_search_oldest() returns the smallest tree mod log element
for the logical address of eb X, which has a sequence number of 2, an
operation type of MOD_LOG_KEY_REMOVE_WHILE_FREEING and corresponds to
the old slot N - 1 of eb X (eb X had N items in it before being freed);
14) We then break out of the while loop and return the tree mod log operation
of type MOD_LOG_ROOT_REPLACE (eb Y), and not the one for slot N - 1 of
eb X, to get_old_root();
15) At get_old_root(), we process the MOD_LOG_ROOT_REPLACE operation
and set "logical" to the logical address of eb X, which was the old
root. We then call tree_mod_log_search() passing it the logical
address of eb X and time_seq == 1;
16) Then before calling tree_mod_log_search(), task T adds a key to eb X,
which results in adding a tree mod log operation of type
MOD_LOG_KEY_ADD to the tree mod log - this is done at
ctree.c:insert_ptr() - but after adding the tree mod log operation
and before updating the number of items in eb X from 0 to 1...
17) The task at get_old_root() calls tree_mod_log_search() and gets the
tree mod log operation of type MOD_LOG_KEY_ADD just added by task T.
Then it enters the following if branch:
if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
(...)
} (...)
Calls read_tree_block() for eb X, which gets a reference on eb X but
does not lock it - task T has it locked.
Then it clones eb X while it has nritems set to 0 in its header, before
task T sets nritems to 1 in eb X's header. From hereupon we use the
clone of eb X which no other task has access to;
18) Then we call __tree_mod_log_rewind(), passing it the MOD_LOG_KEY_ADD
mod log operation we just got from tree_mod_log_search() in the
previous step and the cloned version of eb X;
19) At __tree_mod_log_rewind(), we set the local variable "n" to the number
of items set in eb X's clone, which is 0. Then we enter the while loop,
and in its first iteration we process the MOD_LOG_KEY_ADD operation,
which just decrements "n" from 0 to (u32)-1, since "n" is declared with
a type of u32. At the end of this iteration we call rb_next() to find the
next tree mod log operation for eb X, that gives us the mod log operation
of type MOD_LOG_KEY_REMOVE_WHILE_FREEING, for slot 0, with a sequence
number of N + 1 (steps 3 to 6);
20) Then we go back to the top of the while loop and trigger the following
BUG_ON():
(...)
switch (tm->op) {
case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
BUG_ON(tm->slot < n);
fallthrough;
(...)
Because "n" has a value of (u32)-1 (4294967295) and tm->slot is 0.
Fix this by taking a read lock on the extent buffer before cloning it at
ctree.c:get_old_root(). This should be done regardless of the extent
buffer having been freed and reused, as a concurrent task might be
modifying it (while holding a write lock on it).
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210227155037.GN28049@hungrycats.org/
Fixes: 834328a8493079 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 72c9925f87c8b74f36f8e75a4cd93d964538d3ca upstream.
At btrfs_copy_root(), if the call to btrfs_inc_ref() fails we end up
returning without unlocking and releasing our reference on the extent
buffer named "cow" we previously allocated with btrfs_alloc_tree_block().
So fix that by unlocking the extent buffer and dropping our reference on
it before returning.
Fixes: be20aa9dbadc8c ("Btrfs: Add mount option to turn off data cow")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 867ed321f90d06aaba84e2c91de51cd3038825ef upstream.
While testing my error handling patches, I added a error injection site
at btrfs_inc_extent_ref, to validate the error handling I added was
doing the correct thing. However I hit a pretty ugly corruption while
doing this check, with the following error injection stack trace:
btrfs_inc_extent_ref
btrfs_copy_root
create_reloc_root
btrfs_init_reloc_root
btrfs_record_root_in_trans
btrfs_start_transaction
btrfs_update_inode
btrfs_update_time
touch_atime
file_accessed
btrfs_file_mmap
This is because we do not catch the error from btrfs_inc_extent_ref,
which in practice would be ENOMEM, which means we lose the extent
references for a root that has already been allocated and inserted,
which is the problem. Fix this by aborting the transaction if we fail
to do the reference modification.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 572c83acdcdafeb04e70aa46be1fa539310be20c upstream.
In fstest btrfs/064 a transaction abort in __btrfs_cow_block could lead
to a system lockup. It gets stuck trying to write back inodes, and the
write back thread was trying to lock an extent buffer:
$ cat /proc/2143497/stack
[<0>] __btrfs_tree_lock+0x108/0x250
[<0>] lock_extent_buffer_for_io+0x35e/0x3a0
[<0>] btree_write_cache_pages+0x15a/0x3b0
[<0>] do_writepages+0x28/0xb0
[<0>] __writeback_single_inode+0x54/0x5c0
[<0>] writeback_sb_inodes+0x1e8/0x510
[<0>] wb_writeback+0xcc/0x440
[<0>] wb_workfn+0xd7/0x650
[<0>] process_one_work+0x236/0x560
[<0>] worker_thread+0x55/0x3c0
[<0>] kthread+0x13a/0x150
[<0>] ret_from_fork+0x1f/0x30
This is because we got an error while COWing a block, specifically here
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
ret = btrfs_reloc_cow_block(trans, root, buf, cow);
if (ret) {
btrfs_abort_transaction(trans, ret);
return ret;
}
}
[16402.241552] BTRFS: Transaction aborted (error -2)
[16402.242362] WARNING: CPU: 1 PID: 2563188 at fs/btrfs/ctree.c:1074 __btrfs_cow_block+0x376/0x540
[16402.249469] CPU: 1 PID: 2563188 Comm: fsstress Not tainted 5.9.0-rc6+ #8
[16402.249936] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
[16402.250525] RIP: 0010:__btrfs_cow_block+0x376/0x540
[16402.252417] RSP: 0018:ffff9cca40e578b0 EFLAGS: 00010282
[16402.252787] RAX: 0000000000000025 RBX: 0000000000000002 RCX: ffff9132bbd19388
[16402.253278] RDX: 00000000ffffffd8 RSI: 0000000000000027 RDI: ffff9132bbd19380
[16402.254063] RBP: ffff9132b41a49c0 R08: 0000000000000000 R09: 0000000000000000
[16402.254887] R10: 0000000000000000 R11: ffff91324758b080 R12: ffff91326ef17ce0
[16402.255694] R13: ffff91325fc0f000 R14: ffff91326ef176b0 R15: ffff9132815e2000
[16402.256321] FS: 00007f542c6d7b80(0000) GS:ffff9132bbd00000(0000) knlGS:0000000000000000
[16402.256973] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[16402.257374] CR2: 00007f127b83f250 CR3: 0000000133480002 CR4: 0000000000370ee0
[16402.257867] Call Trace:
[16402.258072] btrfs_cow_block+0x109/0x230
[16402.258356] btrfs_search_slot+0x530/0x9d0
[16402.258655] btrfs_lookup_file_extent+0x37/0x40
[16402.259155] __btrfs_drop_extents+0x13c/0xd60
[16402.259628] ? btrfs_block_rsv_migrate+0x4f/0xb0
[16402.259949] btrfs_replace_file_extents+0x190/0x820
[16402.260873] btrfs_clone+0x9ae/0xc00
[16402.261139] btrfs_extent_same_range+0x66/0x90
[16402.261771] btrfs_remap_file_range+0x353/0x3b1
[16402.262333] vfs_dedupe_file_range_one.part.0+0xd5/0x140
[16402.262821] vfs_dedupe_file_range+0x189/0x220
[16402.263150] do_vfs_ioctl+0x552/0x700
[16402.263662] __x64_sys_ioctl+0x62/0xb0
[16402.264023] do_syscall_64+0x33/0x40
[16402.264364] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[16402.264862] RIP: 0033:0x7f542c7d15cb
[16402.266901] RSP: 002b:00007ffd35944ea8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[16402.267627] RAX: ffffffffffffffda RBX: 00000000009d1968 RCX: 00007f542c7d15cb
[16402.268298] RDX: 00000000009d2490 RSI: 00000000c0189436 RDI: 0000000000000003
[16402.268958] RBP: 00000000009d2520 R08: 0000000000000036 R09: 00000000009d2e64
[16402.269726] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002
[16402.270659] R13: 000000000001f000 R14: 00000000009d1970 R15: 00000000009d2e80
[16402.271498] irq event stamp: 0
[16402.271846] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[16402.272497] hardirqs last disabled at (0): [<ffffffff910dbf59>] copy_process+0x6b9/0x1ba0
[16402.273343] softirqs last enabled at (0): [<ffffffff910dbf59>] copy_process+0x6b9/0x1ba0
[16402.273905] softirqs last disabled at (0): [<0000000000000000>] 0x0
[16402.274338] ---[ end trace 737874a5a41a8236 ]---
[16402.274669] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry
[16402.276179] BTRFS info (device dm-9): forced readonly
[16402.277046] BTRFS: error (device dm-9) in btrfs_replace_file_extents:2723: errno=-2 No such entry
[16402.278744] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry
[16402.279968] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry
[16402.280582] BTRFS info (device dm-9): balance: ended with status: -30
The problem here is that as soon as we allocate the new block it is
locked and marked dirty in the btree inode. This means that we could
attempt to writeback this block and need to lock the extent buffer.
However we're not unlocking it here and thus we deadlock.
Fix this by unlocking the cow block if we have any errors inside of
__btrfs_cow_block, and also free it so we do not leak it.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d3beaa253fd6fa40b8b18a216398e6e5376a9d21 ]
These are special extent buffers that get rewound in order to lookup
the state of the tree at a specific point in time. As such they do not
go through the normal initialization paths that set their lockdep class,
so handle them appropriately when they are created and before they are
locked.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 24cee18a1c1d7c731ea5987e0c99daea22ae7f4a ]
When a rewound buffer is created it already has a ref count of 1 and the
dummy flag set. Then another ref is taken bumping the count to 2.
Finally when this buffer is released from btrfs_release_path the extra
reference is decremented by the special handling code in
free_extent_buffer.
However, this special code is in fact redundant sinca ref count of 1 is
still correct since the buffer is only accessed via btrfs_path struct.
This paves the way forward of removing the special handling in
free_extent_buffer.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6c122e2a0c515cfb3f3a9cefb5dad4cb62109c78 ]
get_old_root used used only by btrfs_search_old_slot to initialise the
path structure. The old root is always a cloned buffer (either via alloc
dummy or via btrfs_clone_extent_buffer) and its reference count is 2: 1
from allocation, 1 from extent_buffer_get call in get_old_root.
This latter explicit ref count acquire operation is in fact unnecessary
since the semantic is such that the newly allocated buffer is handed
over to the btrfs_path for lifetime management. Considering this just
remove the extra extent_buffer_get in get_old_root.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7227ff4de55d931bbdc156c8ef0ce4f100c78a5b upstream.
There is a race between adding and removing elements to the tree mod log
list and rbtree that can lead to use-after-free problems.
Consider the following example that explains how/why the problems happens:
1) Task A has mod log element with sequence number 200. It currently is
the only element in the mod log list;
2) Task A calls btrfs_put_tree_mod_seq() because it no longer needs to
access the tree mod log. When it enters the function, it initializes
'min_seq' to (u64)-1. Then it acquires the lock 'tree_mod_seq_lock'
before checking if there are other elements in the mod seq list.
Since the list it empty, 'min_seq' remains set to (u64)-1. Then it
unlocks the lock 'tree_mod_seq_lock';
3) Before task A acquires the lock 'tree_mod_log_lock', task B adds
itself to the mod seq list through btrfs_get_tree_mod_seq() and gets a
sequence number of 201;
4) Some other task, name it task C, modifies a btree and because there
elements in the mod seq list, it adds a tree mod elem to the tree
mod log rbtree. That node added to the mod log rbtree is assigned
a sequence number of 202;
5) Task B, which is doing fiemap and resolving indirect back references,
calls btrfs get_old_root(), with 'time_seq' == 201, which in turn
calls tree_mod_log_search() - the search returns the mod log node
from the rbtree with sequence number 202, created by task C;
6) Task A now acquires the lock 'tree_mod_log_lock', starts iterating
the mod log rbtree and finds the node with sequence number 202. Since
202 is less than the previously computed 'min_seq', (u64)-1, it
removes the node and frees it;
7) Task B still has a pointer to the node with sequence number 202, and
it dereferences the pointer itself and through the call to
__tree_mod_log_rewind(), resulting in a use-after-free problem.
This issue can be triggered sporadically with the test case generic/561
from fstests, and it happens more frequently with a higher number of
duperemove processes. When it happens to me, it either freezes the VM or
it produces a trace like the following before crashing:
[ 1245.321140] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[ 1245.321200] CPU: 1 PID: 26997 Comm: pool Not tainted 5.5.0-rc6-btrfs-next-52 #1
[ 1245.321235] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[ 1245.321287] RIP: 0010:rb_next+0x16/0x50
[ 1245.321307] Code: ....
[ 1245.321372] RSP: 0018:ffffa151c4d039b0 EFLAGS: 00010202
[ 1245.321388] RAX: 6b6b6b6b6b6b6b6b RBX: ffff8ae221363c80 RCX: 6b6b6b6b6b6b6b6b
[ 1245.321409] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff8ae221363c80
[ 1245.321439] RBP: ffff8ae20fcc4688 R08: 0000000000000002 R09: 0000000000000000
[ 1245.321475] R10: ffff8ae20b120910 R11: 00000000243f8bb1 R12: 0000000000000038
[ 1245.321506] R13: ffff8ae221363c80 R14: 000000000000075f R15: ffff8ae223f762b8
[ 1245.321539] FS: 00007fdee1ec7700(0000) GS:ffff8ae236c80000(0000) knlGS:0000000000000000
[ 1245.321591] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1245.321614] CR2: 00007fded4030c48 CR3: 000000021da16003 CR4: 00000000003606e0
[ 1245.321642] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1245.321668] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 1245.321706] Call Trace:
[ 1245.321798] __tree_mod_log_rewind+0xbf/0x280 [btrfs]
[ 1245.321841] btrfs_search_old_slot+0x105/0xd00 [btrfs]
[ 1245.321877] resolve_indirect_refs+0x1eb/0xc60 [btrfs]
[ 1245.321912] find_parent_nodes+0x3dc/0x11b0 [btrfs]
[ 1245.321947] btrfs_check_shared+0x115/0x1c0 [btrfs]
[ 1245.321980] ? extent_fiemap+0x59d/0x6d0 [btrfs]
[ 1245.322029] extent_fiemap+0x59d/0x6d0 [btrfs]
[ 1245.322066] do_vfs_ioctl+0x45a/0x750
[ 1245.322081] ksys_ioctl+0x70/0x80
[ 1245.322092] ? trace_hardirqs_off_thunk+0x1a/0x1c
[ 1245.322113] __x64_sys_ioctl+0x16/0x20
[ 1245.322126] do_syscall_64+0x5c/0x280
[ 1245.322139] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 1245.322155] RIP: 0033:0x7fdee3942dd7
[ 1245.322177] Code: ....
[ 1245.322258] RSP: 002b:00007fdee1ec6c88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[ 1245.322294] RAX: ffffffffffffffda RBX: 00007fded40210d8 RCX: 00007fdee3942dd7
[ 1245.322314] RDX: 00007fded40210d8 RSI: 00000000c020660b RDI: 0000000000000004
[ 1245.322337] RBP: 0000562aa89e7510 R08: 0000000000000000 R09: 00007fdee1ec6d44
[ 1245.322369] R10: 0000000000000073 R11: 0000000000000246 R12: 00007fdee1ec6d48
[ 1245.322390] R13: 00007fdee1ec6d40 R14: 00007fded40210d0 R15: 00007fdee1ec6d50
[ 1245.322423] Modules linked in: ....
[ 1245.323443] ---[ end trace 01de1e9ec5dff3cd ]---
Fix this by ensuring that btrfs_put_tree_mod_seq() computes the minimum
sequence number and iterates the rbtree while holding the lock
'tree_mod_log_lock' in write mode. Also get rid of the 'tree_mod_seq_lock'
lock, since it is now redundant.
Fixes: bd989ba359f2ac ("Btrfs: add tree modification log functions")
Fixes: 097b8a7c9e48e2 ("Btrfs: join tree mod log code with the code holding back delayed refs")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6609fee8897ac475378388238456c84298bff802 upstream.
When a tree mod log user no longer needs to use the tree it calls
btrfs_put_tree_mod_seq() to remove itself from the list of users and
delete all no longer used elements of the tree's red black tree, which
should be all elements with a sequence number less then our equals to
the caller's sequence number. However the logic is broken because it
can delete and free elements from the red black tree that have a
sequence number greater then the caller's sequence number:
1) At a point in time we have sequence numbers 1, 2, 3 and 4 in the
tree mod log;
2) The task which got assigned the sequence number 1 calls
btrfs_put_tree_mod_seq();
3) Sequence number 1 is deleted from the list of sequence numbers;
4) The current minimum sequence number is computed to be the sequence
number 2;
5) A task using sequence number 2 is at tree_mod_log_rewind() and gets
a pointer to one of its elements from the red black tree through
a call to tree_mod_log_search();
6) The task with sequence number 1 iterates the red black tree of tree
modification elements and deletes (and frees) all elements with a
sequence number less then or equals to 2 (the computed minimum sequence
number) - it ends up only leaving elements with sequence numbers of 3
and 4;
7) The task with sequence number 2 now uses the pointer to its element,
already freed by the other task, at __tree_mod_log_rewind(), resulting
in a use-after-free issue. When CONFIG_DEBUG_PAGEALLOC=y it produces
a trace like the following:
[16804.546854] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[16804.547451] CPU: 0 PID: 28257 Comm: pool Tainted: G W 5.4.0-rc8-btrfs-next-51 #1
[16804.548059] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[16804.548666] RIP: 0010:rb_next+0x16/0x50
(...)
[16804.550581] RSP: 0018:ffffb948418ef9b0 EFLAGS: 00010202
[16804.551227] RAX: 6b6b6b6b6b6b6b6b RBX: ffff90e0247f6600 RCX: 6b6b6b6b6b6b6b6b
[16804.551873] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff90e0247f6600
[16804.552504] RBP: ffff90dffe0d4688 R08: 0000000000000001 R09: 0000000000000000
[16804.553136] R10: ffff90dffa4a0040 R11: 0000000000000000 R12: 000000000000002e
[16804.553768] R13: ffff90e0247f6600 R14: 0000000000001663 R15: ffff90dff77862b8
[16804.554399] FS: 00007f4b197ae700(0000) GS:ffff90e036a00000(0000) knlGS:0000000000000000
[16804.555039] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[16804.555683] CR2: 00007f4b10022000 CR3: 00000002060e2004 CR4: 00000000003606f0
[16804.556336] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[16804.556968] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[16804.557583] Call Trace:
[16804.558207] __tree_mod_log_rewind+0xbf/0x280 [btrfs]
[16804.558835] btrfs_search_old_slot+0x105/0xd00 [btrfs]
[16804.559468] resolve_indirect_refs+0x1eb/0xc70 [btrfs]
[16804.560087] ? free_extent_buffer.part.19+0x5a/0xc0 [btrfs]
[16804.560700] find_parent_nodes+0x388/0x1120 [btrfs]
[16804.561310] btrfs_check_shared+0x115/0x1c0 [btrfs]
[16804.561916] ? extent_fiemap+0x59d/0x6d0 [btrfs]
[16804.562518] extent_fiemap+0x59d/0x6d0 [btrfs]
[16804.563112] ? __might_fault+0x11/0x90
[16804.563706] do_vfs_ioctl+0x45a/0x700
[16804.564299] ksys_ioctl+0x70/0x80
[16804.564885] ? trace_hardirqs_off_thunk+0x1a/0x20
[16804.565461] __x64_sys_ioctl+0x16/0x20
[16804.566020] do_syscall_64+0x5c/0x250
[16804.566580] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[16804.567153] RIP: 0033:0x7f4b1ba2add7
(...)
[16804.568907] RSP: 002b:00007f4b197adc88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[16804.569513] RAX: ffffffffffffffda RBX: 00007f4b100210d8 RCX: 00007f4b1ba2add7
[16804.570133] RDX: 00007f4b100210d8 RSI: 00000000c020660b RDI: 0000000000000003
[16804.570726] RBP: 000055de05a6cfe0 R08: 0000000000000000 R09: 00007f4b197add44
[16804.571314] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f4b197add48
[16804.571905] R13: 00007f4b197add40 R14: 00007f4b100210d0 R15: 00007f4b197add50
(...)
[16804.575623] ---[ end trace 87317359aad4ba50 ]---
Fix this by making btrfs_put_tree_mod_seq() skip deletion of elements that
have a sequence number equals to the computed minimum sequence number, and
not just elements with a sequence number greater then that minimum.
Fixes: bd989ba359f2ac ("Btrfs: add tree modification log functions")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 315bed43fea532650933e7bba316a7601d439edf ]
In btrfs_search_old_slot get_old_root is always used with the assumption
it cannot fail. However, this is not true in rare circumstance it can
fail and return null. This will lead to null point dereference when the
header is read. Fix this by checking the return value and properly
handling NULL by setting ret to -EIO and returning gracefully.
Coverity-id: 1087503
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6af112b11a4bc1b560f60a618ac9c1dcefe9836e upstream.
When doing any form of incremental send the parent and the child trees
need to be compared via btrfs_compare_trees. This can result in long
loop chains without ever relinquishing the CPU. This causes softlockup
detector to trigger when comparing trees with a lot of items. Example
report:
watchdog: BUG: soft lockup - CPU#0 stuck for 24s! [snapperd:16153]
CPU: 0 PID: 16153 Comm: snapperd Not tainted 5.2.9-1-default #1 openSUSE Tumbleweed (unreleased)
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : __ll_sc_arch_atomic_sub_return+0x14/0x20
lr : btrfs_release_extent_buffer_pages+0xe0/0x1e8 [btrfs]
sp : ffff00001273b7e0
Call trace:
__ll_sc_arch_atomic_sub_return+0x14/0x20
release_extent_buffer+0xdc/0x120 [btrfs]
free_extent_buffer.part.0+0xb0/0x118 [btrfs]
free_extent_buffer+0x24/0x30 [btrfs]
btrfs_release_path+0x4c/0xa0 [btrfs]
btrfs_free_path.part.0+0x20/0x40 [btrfs]
btrfs_free_path+0x24/0x30 [btrfs]
get_inode_info+0xa8/0xf8 [btrfs]
finish_inode_if_needed+0xe0/0x6d8 [btrfs]
changed_cb+0x9c/0x410 [btrfs]
btrfs_compare_trees+0x284/0x648 [btrfs]
send_subvol+0x33c/0x520 [btrfs]
btrfs_ioctl_send+0x8a0/0xaf0 [btrfs]
btrfs_ioctl+0x199c/0x2288 [btrfs]
do_vfs_ioctl+0x4b0/0x820
ksys_ioctl+0x84/0xb8
__arm64_sys_ioctl+0x28/0x38
el0_svc_common.constprop.0+0x7c/0x188
el0_svc_handler+0x34/0x90
el0_svc+0x8/0xc
Fix this by adding a call to cond_resched at the beginning of the main
loop in btrfs_compare_trees.
Fixes: 7069830a9e38 ("Btrfs: add btrfs_compare_trees function")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 448de471cd4cab0cedd15770082567a69a784a11 upstream.
[BUG]
When reading a file from a fuzzed image, kernel can panic like:
BTRFS warning (device loop0): csum failed root 5 ino 270 off 0 csum 0x98f94189 expected csum 0x00000000 mirror 1
assertion failed: !memcmp_extent_buffer(b, &disk_key, offsetof(struct btrfs_leaf, items[0].key), sizeof(disk_key)), file: fs/btrfs/ctree.c, line: 2544
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3500!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:btrfs_search_slot.cold.24+0x61/0x63 [btrfs]
Call Trace:
btrfs_lookup_csum+0x52/0x150 [btrfs]
__btrfs_lookup_bio_sums+0x209/0x640 [btrfs]
btrfs_submit_bio_hook+0x103/0x170 [btrfs]
submit_one_bio+0x59/0x80 [btrfs]
extent_read_full_page+0x58/0x80 [btrfs]
generic_file_read_iter+0x2f6/0x9d0
__vfs_read+0x14d/0x1a0
vfs_read+0x8d/0x140
ksys_read+0x52/0xc0
do_syscall_64+0x60/0x210
entry_SYSCALL_64_after_hwframe+0x49/0xbe
[CAUSE]
The fuzzed image has a corrupted leaf whose first key doesn't match its
parent:
checksum tree key (CSUM_TREE ROOT_ITEM 0)
node 29741056 level 1 items 14 free 107 generation 19 owner CSUM_TREE
fs uuid 3381d111-94a3-4ac7-8f39-611bbbdab7e6
chunk uuid 9af1c3c7-2af5-488b-8553-530bd515f14c
...
key (EXTENT_CSUM EXTENT_CSUM 79691776) block 29761536 gen 19
leaf 29761536 items 1 free space 1726 generation 19 owner CSUM_TREE
leaf 29761536 flags 0x1(WRITTEN) backref revision 1
fs uuid 3381d111-94a3-4ac7-8f39-611bbbdab7e6
chunk uuid 9af1c3c7-2af5-488b-8553-530bd515f14c
item 0 key (EXTENT_CSUM EXTENT_CSUM 8798638964736) itemoff 1751 itemsize 2244
range start 8798638964736 end 8798641262592 length 2297856
When reading the above tree block, we have extent_buffer->refs = 2 in
the context:
- initial one from __alloc_extent_buffer()
alloc_extent_buffer()
|- __alloc_extent_buffer()
|- atomic_set(&eb->refs, 1)
- one being added to fs_info->buffer_radix
alloc_extent_buffer()
|- check_buffer_tree_ref()
|- atomic_inc(&eb->refs)
So if even we call free_extent_buffer() in read_tree_block or other
similar situation, we only decrease the refs by 1, it doesn't reach 0
and won't be freed right now.
The staled eb and its corrupted content will still be kept cached.
Furthermore, we have several extra cases where we either don't do first
key check or the check is not proper for all callers:
- scrub
We just don't have first key in this context.
- shared tree block
One tree block can be shared by several snapshot/subvolume trees.
In that case, the first key check for one subvolume doesn't apply to
another.
So for the above reasons, a corrupted extent buffer can sneak into the
buffer cache.
[FIX]
Call verify_level_key in read_block_for_search to do another
verification. For that purpose the function is exported.
Due to above reasons, although we can free corrupted extent buffer from
cache, we still need the check in read_block_for_search(), for scrub and
shared tree blocks.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202755
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202757
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202759
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202761
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202767
Link: https://bugzilla.kernel.org/show_bug.cgi?id=202769
Reported-by: Yoon Jungyeon <jungyeon@gatech.edu>
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a6279470762c19ba97e454f90798373dccdf6148 upstream.
When splitting a leaf or node from one of the trees that are modified when
flushing pending block groups (extent, chunk, device and free space trees),
we need to allocate a new tree block, which in turn can result in the need
to allocate a new block group. After allocating the new block group we may
need to flush new block groups that were previously allocated during the
course of the current transaction, which is what may cause a deadlock due
to attempts to write lock twice the same leaf or node, as when splitting
a leaf or node we are holding a write lock on it and its parent node.
The same type of deadlock can also happen when increasing the tree's
height, since we are holding a lock on the existing root while allocating
the tree block to use as the new root node.
An example trace when the deadlock happens during the leaf split path is:
[27175.293054] CPU: 0 PID: 3005 Comm: kworker/u17:6 Tainted: G W 4.19.16 #1
[27175.293942] Hardware name: Penguin Computing Relion 1900/MD90-FS0-ZB-XX, BIOS R15 06/25/2018
[27175.294846] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs]
(...)
[27175.298384] RSP: 0018:ffffab2087107758 EFLAGS: 00010246
[27175.299269] RAX: 0000000000000bbd RBX: ffff9fadc7141c48 RCX: 0000000000000001
[27175.300155] RDX: 0000000000000001 RSI: 0000000000000002 RDI: ffff9fadc7141c48
[27175.301023] RBP: 0000000000000001 R08: ffff9faeb6ac1040 R09: ffff9fa9c0000000
[27175.301887] R10: 0000000000000000 R11: 0000000000000040 R12: ffff9fb21aac8000
[27175.302743] R13: ffff9fb1a64d6a20 R14: 0000000000000001 R15: ffff9fb1a64d6a18
[27175.303601] FS: 0000000000000000(0000) GS:ffff9fb21fa00000(0000) knlGS:0000000000000000
[27175.304468] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[27175.305339] CR2: 00007fdc8743ead8 CR3: 0000000763e0a006 CR4: 00000000003606f0
[27175.306220] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[27175.307087] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[27175.307940] Call Trace:
[27175.308802] btrfs_search_slot+0x779/0x9a0 [btrfs]
[27175.309669] ? update_space_info+0xba/0xe0 [btrfs]
[27175.310534] btrfs_insert_empty_items+0x67/0xc0 [btrfs]
[27175.311397] btrfs_insert_item+0x60/0xd0 [btrfs]
[27175.312253] btrfs_create_pending_block_groups+0xee/0x210 [btrfs]
[27175.313116] do_chunk_alloc+0x25f/0x300 [btrfs]
[27175.313984] find_free_extent+0x706/0x10d0 [btrfs]
[27175.314855] btrfs_reserve_extent+0x9b/0x1d0 [btrfs]
[27175.315707] btrfs_alloc_tree_block+0x100/0x5b0 [btrfs]
[27175.316548] split_leaf+0x130/0x610 [btrfs]
[27175.317390] btrfs_search_slot+0x94d/0x9a0 [btrfs]
[27175.318235] btrfs_insert_empty_items+0x67/0xc0 [btrfs]
[27175.319087] alloc_reserved_file_extent+0x84/0x2c0 [btrfs]
[27175.319938] __btrfs_run_delayed_refs+0x596/0x1150 [btrfs]
[27175.320792] btrfs_run_delayed_refs+0xed/0x1b0 [btrfs]
[27175.321643] delayed_ref_async_start+0x81/0x90 [btrfs]
[27175.322491] normal_work_helper+0xd0/0x320 [btrfs]
[27175.323328] ? move_linked_works+0x6e/0xa0
[27175.324160] process_one_work+0x191/0x370
[27175.324976] worker_thread+0x4f/0x3b0
[27175.325763] kthread+0xf8/0x130
[27175.326531] ? rescuer_thread+0x320/0x320
[27175.327284] ? kthread_create_worker_on_cpu+0x50/0x50
[27175.328027] ret_from_fork+0x35/0x40
[27175.328741] ---[ end trace 300a1b9f0ac30e26 ]---
Fix this by preventing the flushing of new blocks groups when splitting a
leaf/node and when inserting a new root node for one of the trees modified
by the flushing operation, similar to what is done when COWing a node/leaf
from on of these trees.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202383
Reported-by: Eli V <eliventer@gmail.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a6d8654d885d7d79a3fb82da64eaa489ca332a82 upstream.
When modifying the free space tree we can end up COWing one of its extent
buffers which in turn might result in allocating a new chunk, which in
turn can result in flushing (finish creation) of pending block groups. If
that happens we can deadlock because creating a pending block group needs
to update the free space tree, and if any of the updates tries to modify
the same extent buffer that we are COWing, we end up in a deadlock since
we try to write lock twice the same extent buffer.
So fix this by skipping pending block group creation if we are COWing an
extent buffer from the free space tree. This is a case missed by commit
5ce555578e091 ("Btrfs: fix deadlock when writing out free space caches").
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202173
Fixes: 5ce555578e091 ("Btrfs: fix deadlock when writing out free space caches")
CC: stable@vger.kernel.org # 4.18+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit be6821f82c3cc36e026f5afd10249988852b35ea upstream.
If we create a snapshot of a snapshot currently being used by a send
operation, we can end up with send failing unexpectedly (returning
-ENOENT error to user space for example). The following diagram shows
how this happens.
CPU 1 CPU2 CPU3
btrfs_ioctl_send()
(...)
create_snapshot()
-> creates snapshot of a
root used by the send
task
btrfs_commit_transaction()
create_pending_snapshot()
__get_inode_info()
btrfs_search_slot()
btrfs_search_slot_get_root()
down_read commit_root_sem
get reference on eb of the
commit root
-> eb with bytenr == X
up_read commit_root_sem
btrfs_cow_block(root node)
btrfs_free_tree_block()
-> creates delayed ref to
free the extent
btrfs_run_delayed_refs()
-> runs the delayed ref,
adds extent to
fs_info->pinned_extents
btrfs_finish_extent_commit()
unpin_extent_range()
-> marks extent as free
in the free space cache
transaction commit finishes
btrfs_start_transaction()
(...)
btrfs_cow_block()
btrfs_alloc_tree_block()
btrfs_reserve_extent()
-> allocates extent at
bytenr == X
btrfs_init_new_buffer(bytenr X)
btrfs_find_create_tree_block()
alloc_extent_buffer(bytenr X)
find_extent_buffer(bytenr X)
-> returns existing eb,
which the send task got
(...)
-> modifies content of the
eb with bytenr == X
-> uses an eb that now
belongs to some other
tree and no more matches
the commit root of the
snapshot, resuts will be
unpredictable
The consequences of this race can be various, and can lead to searches in
the commit root performed by the send task failing unexpectedly (unable to
find inode items, returning -ENOENT to user space, for example) or not
failing because an inode item with the same number was added to the tree
that reused the metadata extent, in which case send can behave incorrectly
in the worst case or just fail later for some reason.
Fix this by performing a copy of the commit root's extent buffer when doing
a search in the context of a send operation.
CC: stable@vger.kernel.org # 4.4.x: 1fc28d8e2e9: Btrfs: move get root out of btrfs_search_slot to a helper
CC: stable@vger.kernel.org # 4.4.x: f9ddfd0592a: Btrfs: remove unused check of skip_locking
CC: stable@vger.kernel.org # 4.4.x
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5ce555578e0919237fa4bda92b4670e2dd176f85 upstream.
When writing out a block group free space cache we can end deadlocking
with ourselves on an extent buffer lock resulting in a warning like the
following:
[245043.379979] WARNING: CPU: 4 PID: 2608 at fs/btrfs/locking.c:251 btrfs_tree_lock+0x1be/0x1d0 [btrfs]
[245043.392792] CPU: 4 PID: 2608 Comm: btrfs-transacti Tainted: G
W I 4.16.8 #1
[245043.395489] RIP: 0010:btrfs_tree_lock+0x1be/0x1d0 [btrfs]
[245043.396791] RSP: 0018:ffffc9000424b840 EFLAGS: 00010246
[245043.398093] RAX: 0000000000000a30 RBX: ffff8807e20a3d20 RCX: 0000000000000001
[245043.399414] RDX: 0000000000000001 RSI: 0000000000000002 RDI: ffff8807e20a3d20
[245043.400732] RBP: 0000000000000001 R08: ffff88041f39a700 R09: ffff880000000000
[245043.402021] R10: 0000000000000040 R11: ffff8807e20a3d20 R12: ffff8807cb220630
[245043.403296] R13: 0000000000000001 R14: ffff8807cb220628 R15: ffff88041fbdf000
[245043.404780] FS: 0000000000000000(0000) GS:ffff88082fc80000(0000) knlGS:0000000000000000
[245043.406050] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[245043.407321] CR2: 00007fffdbdb9f10 CR3: 0000000001c09005 CR4: 00000000000206e0
[245043.408670] Call Trace:
[245043.409977] btrfs_search_slot+0x761/0xa60 [btrfs]
[245043.411278] btrfs_insert_empty_items+0x62/0xb0 [btrfs]
[245043.412572] btrfs_insert_item+0x5b/0xc0 [btrfs]
[245043.413922] btrfs_create_pending_block_groups+0xfb/0x1e0 [btrfs]
[245043.415216] do_chunk_alloc+0x1e5/0x2a0 [btrfs]
[245043.416487] find_free_extent+0xcd0/0xf60 [btrfs]
[245043.417813] btrfs_reserve_extent+0x96/0x1e0 [btrfs]
[245043.419105] btrfs_alloc_tree_block+0xfb/0x4a0 [btrfs]
[245043.420378] __btrfs_cow_block+0x127/0x550 [btrfs]
[245043.421652] btrfs_cow_block+0xee/0x190 [btrfs]
[245043.422979] btrfs_search_slot+0x227/0xa60 [btrfs]
[245043.424279] ? btrfs_update_inode_item+0x59/0x100 [btrfs]
[245043.425538] ? iput+0x72/0x1e0
[245043.426798] write_one_cache_group.isra.49+0x20/0x90 [btrfs]
[245043.428131] btrfs_start_dirty_block_groups+0x102/0x420 [btrfs]
[245043.429419] btrfs_commit_transaction+0x11b/0x880 [btrfs]
[245043.430712] ? start_transaction+0x8e/0x410 [btrfs]
[245043.432006] transaction_kthread+0x184/0x1a0 [btrfs]
[245043.433341] kthread+0xf0/0x130
[245043.434628] ? btrfs_cleanup_transaction+0x4e0/0x4e0 [btrfs]
[245043.435928] ? kthread_create_worker_on_cpu+0x40/0x40
[245043.437236] ret_from_fork+0x1f/0x30
[245043.441054] ---[ end trace 15abaa2aaf36827f ]---
This is because at write_one_cache_group() when we are COWing a leaf from
the extent tree we end up allocating a new block group (chunk) and,
because we have hit a threshold on the number of bytes reserved for system
chunks, we attempt to finalize the creation of new block groups from the
current transaction, by calling btrfs_create_pending_block_groups().
However here we also need to modify the extent tree in order to insert
a block group item, and if the location for this new block group item
happens to be in the same leaf that we were COWing earlier, we deadlock
since btrfs_search_slot() tries to write lock the extent buffer that we
locked before at write_one_cache_group().
We have already hit similar cases in the past and commit d9a0540a79f8
("Btrfs: fix deadlock when finalizing block group creation") fixed some
of those cases by delaying the creation of pending block groups at the
known specific spots that could lead to a deadlock. This change reworks
that commit to be more generic so that we don't have to add similar logic
to every possible path that can lead to a deadlock. This is done by
making __btrfs_cow_block() disallowing the creation of new block groups
(setting the transaction's can_flush_pending_bgs to false) before it
attempts to allocate a new extent buffer for either the extent, chunk or
device trees, since those are the trees that pending block creation
modifies. Once the new extent buffer is allocated, it allows creation of
pending block groups to happen again.
This change depends on a recent patch from Josef which is not yet in
Linus' tree, named "btrfs: make sure we create all new block groups" in
order to avoid occasional warnings at btrfs_trans_release_chunk_metadata().
Fixes: d9a0540a79f8 ("Btrfs: fix deadlock when finalizing block group creation")
CC: stable@vger.kernel.org # 4.4+
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=199753
Link: https://lore.kernel.org/linux-btrfs/CAJtFHUTHna09ST-_EEiyWmDH6gAqS6wa=zMNMBsifj8ABu99cw@mail.gmail.com/
Reported-by: E V <eliventer@gmail.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The v0 compat code was introduced in commit 5d4f98a28c7d
("Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE)") 9
years ago, which was merged in 2.6.31. This means that the code is
there to support filesystems which are _VERY_ old and if you are using
btrfs on such an old kernel, you have much bigger problems. This coupled
with the fact that no one is likely testing/maintining this code likely
means it has bugs lurking. All things considered I think 43 kernel
releases later it's high time this remnant of the past got removed.
This patch removes all code wrapped in #ifdefs but leaves the BUG_ONs in case
we have a v0 with no support intact as a sort of safety-net.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a new extent buffer is allocated there are a few mandatory fields
which need to be set in order for the buffer to be sane: level,
generation, bytenr, backref_rev, owner and FSID/UUID. Currently this
is open coded in the callers of btrfs_alloc_tree_block, meaning it's
fairly high in the abstraction hierarchy of operations. This patch
solves this by simply moving this init code in btrfs_init_new_buffer,
since this is the function which initializes a newly allocated
extent buffer. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This argument is unused. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The check is superfluous since all callers who set search_for_commit
also have skip_locking set.
ASSERT() is put in place to ensure skip_locking is set by new callers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As unlock_up() is written as
for () {
if (!path->locks[i])
break;
...
if (... && path->locks[i]) {
}
}
Apparently, @path->locks[i] is always true at this 'if'.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Typically, when acquiring root node's lock, btrfs tries its best to get
read lock and trade for write lock if @write_lock_level implies to do so.
In case of (cow && (p->keep_locks || p->lowest_level)), write_lock_level
is set to BTRFS_MAX_LEVEL, which means we need to acquire root node's
write lock directly.
In this particular case, the dance of acquiring read lock and then trading
for write lock can be saved.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's good to have a helper instead of having all get-root details
open-coded. The new helper locks (if necessary) and sets root node of
the path.
Also invert the checks to make the code flow easier to read. There is
no functional change in this commit.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If parent_transid "0" is passed to btrfs_buffer_uptodate(),
btrfs_buffer_uptodate() is equivalent to extent_buffer_uptodate(), but
extent_buffer_uptodate() is preferred since we don't have to look into
verify_parent_transid().
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
read_block_for_search() can be simplified as:
tmp = find_extent_buffer();
if (tmp)
return;
...
free_extent_buffer();
read_tree_block();
Apparently, @tmp must be NULL at this point, free_extent_buffer() is not
needed.
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a btree block, aka. extent buffer, is not available in the extent
buffer cache, it'll be read out from the disk instead, i.e.
btrfs_search_slot()
read_block_for_search() # hold parent and its lock, go to read child
btrfs_release_path()
read_tree_block() # read child
Unfortunately, the parent lock got released before reading child, so
commit 5bdd3536cbbe ("Btrfs: Fix block generation verification race") had
used 0 as parent transid to read the child block. It forces
read_tree_block() not to check if parent transid is different with the
generation id of the child that it reads out from disk.
A simple PoC is included in btrfs/124,
0. A two-disk raid1 btrfs,
1. Right after mkfs.btrfs, block A is allocated to be device tree's root.
2. Mount this filesystem and put it in use, after a while, device tree's
root got COW but block A hasn't been allocated/overwritten yet.
3. Umount it and reload the btrfs module to remove both disks from the
global @fs_devices list.
4. mount -odegraded dev1 and write some data, so now block A is allocated
to be a leaf in checksum tree. Note that only dev1 has the latest
metadata of this filesystem.
5. Umount it and mount it again normally (with both disks), since raid1
can pick up one disk by the writer task's pid, if btrfs_search_slot()
needs to read block A, dev2 which does NOT have the latest metadata
might be read for block A, then we got a stale block A.
6. As parent transid is not checked, block A is marked as uptodate and
put into the extent buffer cache, so the future search won't bother
to read disk again, which means it'll make changes on this stale
one and make it dirty and flush it onto disk.
To avoid the problem, parent transid needs to be passed to
read_tree_block().
In order to get a valid parent transid, we need to hold the parent's
lock until finishing reading child.
This patch needs to be slightly adapted for stable kernels, the
&first_key parameter added to read_tree_block() is from 4.16+
(581c1760415c4). The fix is to replace 0 by 'gen'.
Fixes: 5bdd3536cbbe ("Btrfs: Fix block generation verification race")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
btrfs incremental send BUG happens when creating a snapshot of snapshot
that is being used by send.
[REASON]
The problem can happen if while we are doing a send one of the snapshots
used (parent or send) is snapshotted, because snapshoting implies COWing
the root of the source subvolume/snapshot.
1. When doing an incremental send, the send process will get the commit
roots from the parent and send snapshots, and add references to them
through extent_buffer_get().
2. When a snapshot/subvolume is snapshotted, its root node is COWed
(transaction.c:create_pending_snapshot()).
3. COWing releases the space used by the node immediately, through:
__btrfs_cow_block()
--btrfs_free_tree_block()
----btrfs_add_free_space(bytenr of node)
4. Because send doesn't hold a transaction open, it's possible that
the transaction used to create the snapshot commits, switches the
commit root and the old space used by the previous root node gets
assigned to some other node allocation. Allocation of a new node will
use the existing extent buffer found in memory, which we previously
got a reference through extent_buffer_get(), and allow the extent
buffer's content (pages) to be modified:
btrfs_alloc_tree_block
--btrfs_reserve_extent
----find_free_extent (get bytenr of old node)
--btrfs_init_new_buffer (use bytenr of old node)
----btrfs_find_create_tree_block
------alloc_extent_buffer
--------find_extent_buffer (get old node)
5. So send can access invalid memory content and have unpredictable
behaviour.
[FIX]
So we fix the problem by copying the commit roots of the send and
parent snapshots and use those copies.
CallTrace looks like this:
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:1861!
invalid opcode: 0000 [#1] SMP
CPU: 6 PID: 24235 Comm: btrfs Tainted: P O 3.10.105 #23721
ffff88046652d680 ti: ffff88041b720000 task.ti: ffff88041b720000
RIP: 0010:[<ffffffffa08dd0e8>] read_node_slot+0x108/0x110 [btrfs]
RSP: 0018:ffff88041b723b68 EFLAGS: 00010246
RAX: ffff88043ca6b000 RBX: ffff88041b723c50 RCX: ffff880000000000
RDX: 000000000000004c RSI: ffff880314b133f8 RDI: ffff880458b24000
RBP: 0000000000000000 R08: 0000000000000001 R09: ffff88041b723c66
R10: 0000000000000001 R11: 0000000000001000 R12: ffff8803f3e48890
R13: ffff8803f3e48880 R14: ffff880466351800 R15: 0000000000000001
FS: 00007f8c321dc8c0(0000) GS:ffff88047fcc0000(0000)
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
R2: 00007efd1006d000 CR3: 0000000213a24000 CR4: 00000000003407e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Stack:
ffff88041b723c50 ffff8803f3e48880 ffff8803f3e48890 ffff8803f3e48880
ffff880466351800 0000000000000001 ffffffffa08dd9d7 ffff88041b723c50
ffff8803f3e48880 ffff88041b723c66 ffffffffa08dde85 a9ff88042d2c4400
Call Trace:
[<ffffffffa08dd9d7>] ? tree_move_down.isra.33+0x27/0x50 [btrfs]
[<ffffffffa08dde85>] ? tree_advance+0xb5/0xc0 [btrfs]
[<ffffffffa08e83d4>] ? btrfs_compare_trees+0x2d4/0x760 [btrfs]
[<ffffffffa0982050>] ? finish_inode_if_needed+0x870/0x870 [btrfs]
[<ffffffffa09841ea>] ? btrfs_ioctl_send+0xeda/0x1050 [btrfs]
[<ffffffffa094bd3d>] ? btrfs_ioctl+0x1e3d/0x33f0 [btrfs]
[<ffffffff81111133>] ? handle_pte_fault+0x373/0x990
[<ffffffff8153a096>] ? atomic_notifier_call_chain+0x16/0x20
[<ffffffff81063256>] ? set_task_cpu+0xb6/0x1d0
[<ffffffff811122c3>] ? handle_mm_fault+0x143/0x2a0
[<ffffffff81539cc0>] ? __do_page_fault+0x1d0/0x500
[<ffffffff81062f07>] ? check_preempt_curr+0x57/0x90
[<ffffffff8115075a>] ? do_vfs_ioctl+0x4aa/0x990
[<ffffffff81034f83>] ? do_fork+0x113/0x3b0
[<ffffffff812dd7d7>] ? trace_hardirqs_off_thunk+0x3a/0x6c
[<ffffffff81150cc8>] ? SyS_ioctl+0x88/0xa0
[<ffffffff8153e422>] ? system_call_fastpath+0x16/0x1b
---[ end trace 29576629ee80b2e1 ]---
Fixes: 7069830a9e38 ("Btrfs: add btrfs_compare_trees function")
CC: stable@vger.kernel.org # 3.6+
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.
Signed-off-by: David Sterba <dsterba@suse.com>
Once there was a simple int force_cow that was used with the plain
barriers, and then converted to a bit, so we should use the appropriate
barrier helper.
Other variables in the complex if condition do not depend on a barrier,
so we should be fine in case the atomic barrier becomes a no-op.
Signed-off-by: David Sterba <dsterba@suse.com>
We have several reports about node pointer points to incorrect child
tree blocks, which could have even wrong owner and level but still with
valid generation and checksum.
Although btrfs check could handle it and print error message like:
leaf parent key incorrect 60670574592
Kernel doesn't have enough check on this type of corruption correctly.
At least add such check to read_tree_block() and btrfs_read_buffer(),
where we need two new parameters @level and @first_key to verify the
child tree block.
The new @level check is mandatory and all call sites are already
modified to extract expected level from its call chain.
While @first_key is optional, the following call sites are skipping such
check:
1) Root node/leaf
As ROOT_ITEM doesn't contain the first key, skip @first_key check.
2) Direct backref
Only parent bytenr and level is known and we need to resolve the key
all by ourselves, skip @first_key check.
Another note of this verification is, it needs extra info from nodeptr
or ROOT_ITEM, so it can't fit into current tree-checker framework, which
is limited to node/leaf boundary.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A useless wrapper around tree_mod_log_insert_root that hides missing
error handling. Move it to the callers.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A trivial wrapper that can be simply opencoded and makes the GFP
allocation request more visible. The error handling is now moved to the
callers.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The wrapper is effectively an alias for tree_mod_log_insert_move but
also hides the missing error handling. To make that more visible, lift
the BUG_ON to the callers.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The wrappers are trivial and do not bring any extra value on top of the
plain locking primitives.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function always sets keep_locks to 1 and saves the old value of
keep_locks which is restored at the end. So there is no way it can be
called without keep_locks being set. Remove comment imposing redundant
requirement on callers.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently there are 2 function doing binary search on btrfs nodes:
bin_search and btrfs_bin_search. The latter being a simple wrapper for
the former. So eliminate the wrapper and just rename bin_search to
btrfs_bin_search. No functional changes
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When modifying a tree where the root is at BTRFS_MAX_LEVEL - 1 then
the level variable is going to be 7 (this is the max height of the
tree). On the other hand btrfs_cow_block is always called with
"level + 1" as an index into the nodes and slots arrays. This leads to
an out of bounds access. Admittdely this will be benign since an OOB
access of the nodes array will likely read the 0th element from the
slots array, which in this case is going to be 0 (since we start CoW at
the top of the tree). The OOB access into the slots array in turn will
read the 0th and 1st values of the locks array, which would both be 0
at the time. However, this benign behavior relies on the fact that the
path being passed hasn't been initialised, if it has already been used to
query a btree then it could potentially have populated the nodes/slots arrays.
Fix it by explicitly checking if we are at level 7 (the maximum allowed
index in nodes/slots arrays) and explicitly call the CoW routine with
NULL for parent's node/slot.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Fixes-coverity-id: 711515
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit fb235dc06fa (btrfs: qgroup: Move half of the qgroup
accounting time out of commit trans) the assumption that
btrfs_add_delayed_{data,tree}_ref can only return 0 or -ENOMEM has
been false. The qgroup operations call into btrfs_search_slot
and friends and can now return the full spectrum of error codes.
Fortunately, the fix here is easy since update_ref_for_cow failing
is already handled so we just need to bail early with the error
code.
Fixes: fb235dc06fa (btrfs: qgroup: Move half of the qgroup accounting ...)
Cc: <stable@vger.kernel.org> # v4.11+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need the actual root for the ref verifier tool to work, so change
these functions to pass the root around instead. This will be used in
a subsequent patch.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>