1164 Commits

Author SHA1 Message Date
Qu Wenruo
3384e8d725 btrfs: tree-checker: Verify inode item
commit 496245cac57e26d8b738d85c7a29cf9a47610f3f upstream.

There is a report in kernel bugzilla about mismatch file type in dir
item and inode item.

This inspires us to check inode mode in inode item.

This patch will check the following members:

- inode key objectid
  Should be ROOT_DIR_DIR or [256, (u64)-256] or FREE_INO.

- inode key offset
  Should be 0

- inode item generation
- inode item transid
  No newer than sb generation + 1.
  The +1 is for log tree.

- inode item mode
  No unknown bits.
  No invalid S_IF* bit.
  NOTE: S_IFMT check is not enough, need to check every know type.

- inode item nlink
  Dir should have no more link than 1.

- inode item flags

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-10 12:35:56 +01:00
Marcos Paulo de Souza
dd39b6f6c2 btrfs: export helpers for subvolume name/id resolution
[ Upstream commit c0c907a47dccf2cf26251a8fb4a8e7a3bf79ce84 ]

The functions will be used outside of export.c and super.c to allow
resolving subvolume name from a given id, eg. for subvolume deletion by
id ioctl.

Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ split from the next patch ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-26 10:30:58 +02:00
Filipe Manana
18d07e43e4 Btrfs: fix race between adding and putting tree mod seq elements and nodes
commit 7227ff4de55d931bbdc156c8ef0ce4f100c78a5b upstream.

There is a race between adding and removing elements to the tree mod log
list and rbtree that can lead to use-after-free problems.

Consider the following example that explains how/why the problems happens:

1) Task A has mod log element with sequence number 200. It currently is
   the only element in the mod log list;

2) Task A calls btrfs_put_tree_mod_seq() because it no longer needs to
   access the tree mod log. When it enters the function, it initializes
   'min_seq' to (u64)-1. Then it acquires the lock 'tree_mod_seq_lock'
   before checking if there are other elements in the mod seq list.
   Since the list it empty, 'min_seq' remains set to (u64)-1. Then it
   unlocks the lock 'tree_mod_seq_lock';

3) Before task A acquires the lock 'tree_mod_log_lock', task B adds
   itself to the mod seq list through btrfs_get_tree_mod_seq() and gets a
   sequence number of 201;

4) Some other task, name it task C, modifies a btree and because there
   elements in the mod seq list, it adds a tree mod elem to the tree
   mod log rbtree. That node added to the mod log rbtree is assigned
   a sequence number of 202;

5) Task B, which is doing fiemap and resolving indirect back references,
   calls btrfs get_old_root(), with 'time_seq' == 201, which in turn
   calls tree_mod_log_search() - the search returns the mod log node
   from the rbtree with sequence number 202, created by task C;

6) Task A now acquires the lock 'tree_mod_log_lock', starts iterating
   the mod log rbtree and finds the node with sequence number 202. Since
   202 is less than the previously computed 'min_seq', (u64)-1, it
   removes the node and frees it;

7) Task B still has a pointer to the node with sequence number 202, and
   it dereferences the pointer itself and through the call to
   __tree_mod_log_rewind(), resulting in a use-after-free problem.

This issue can be triggered sporadically with the test case generic/561
from fstests, and it happens more frequently with a higher number of
duperemove processes. When it happens to me, it either freezes the VM or
it produces a trace like the following before crashing:

  [ 1245.321140] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
  [ 1245.321200] CPU: 1 PID: 26997 Comm: pool Not tainted 5.5.0-rc6-btrfs-next-52 #1
  [ 1245.321235] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
  [ 1245.321287] RIP: 0010:rb_next+0x16/0x50
  [ 1245.321307] Code: ....
  [ 1245.321372] RSP: 0018:ffffa151c4d039b0 EFLAGS: 00010202
  [ 1245.321388] RAX: 6b6b6b6b6b6b6b6b RBX: ffff8ae221363c80 RCX: 6b6b6b6b6b6b6b6b
  [ 1245.321409] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff8ae221363c80
  [ 1245.321439] RBP: ffff8ae20fcc4688 R08: 0000000000000002 R09: 0000000000000000
  [ 1245.321475] R10: ffff8ae20b120910 R11: 00000000243f8bb1 R12: 0000000000000038
  [ 1245.321506] R13: ffff8ae221363c80 R14: 000000000000075f R15: ffff8ae223f762b8
  [ 1245.321539] FS:  00007fdee1ec7700(0000) GS:ffff8ae236c80000(0000) knlGS:0000000000000000
  [ 1245.321591] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [ 1245.321614] CR2: 00007fded4030c48 CR3: 000000021da16003 CR4: 00000000003606e0
  [ 1245.321642] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [ 1245.321668] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [ 1245.321706] Call Trace:
  [ 1245.321798]  __tree_mod_log_rewind+0xbf/0x280 [btrfs]
  [ 1245.321841]  btrfs_search_old_slot+0x105/0xd00 [btrfs]
  [ 1245.321877]  resolve_indirect_refs+0x1eb/0xc60 [btrfs]
  [ 1245.321912]  find_parent_nodes+0x3dc/0x11b0 [btrfs]
  [ 1245.321947]  btrfs_check_shared+0x115/0x1c0 [btrfs]
  [ 1245.321980]  ? extent_fiemap+0x59d/0x6d0 [btrfs]
  [ 1245.322029]  extent_fiemap+0x59d/0x6d0 [btrfs]
  [ 1245.322066]  do_vfs_ioctl+0x45a/0x750
  [ 1245.322081]  ksys_ioctl+0x70/0x80
  [ 1245.322092]  ? trace_hardirqs_off_thunk+0x1a/0x1c
  [ 1245.322113]  __x64_sys_ioctl+0x16/0x20
  [ 1245.322126]  do_syscall_64+0x5c/0x280
  [ 1245.322139]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [ 1245.322155] RIP: 0033:0x7fdee3942dd7
  [ 1245.322177] Code: ....
  [ 1245.322258] RSP: 002b:00007fdee1ec6c88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [ 1245.322294] RAX: ffffffffffffffda RBX: 00007fded40210d8 RCX: 00007fdee3942dd7
  [ 1245.322314] RDX: 00007fded40210d8 RSI: 00000000c020660b RDI: 0000000000000004
  [ 1245.322337] RBP: 0000562aa89e7510 R08: 0000000000000000 R09: 00007fdee1ec6d44
  [ 1245.322369] R10: 0000000000000073 R11: 0000000000000246 R12: 00007fdee1ec6d48
  [ 1245.322390] R13: 00007fdee1ec6d40 R14: 00007fded40210d0 R15: 00007fdee1ec6d50
  [ 1245.322423] Modules linked in: ....
  [ 1245.323443] ---[ end trace 01de1e9ec5dff3cd ]---

Fix this by ensuring that btrfs_put_tree_mod_seq() computes the minimum
sequence number and iterates the rbtree while holding the lock
'tree_mod_log_lock' in write mode. Also get rid of the 'tree_mod_seq_lock'
lock, since it is now redundant.

Fixes: bd989ba359f2ac ("Btrfs: add tree modification log functions")
Fixes: 097b8a7c9e48e2 ("Btrfs: join tree mod log code with the code holding back delayed refs")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:34:06 -08:00
Filipe Manana
0151049a68 Btrfs: fix missing data checksums after replaying a log tree
commit 40e046acbd2f369cfbf93c3413639c66514cec2d upstream.

When logging a file that has shared extents (reflinked with other files or
with itself), we can end up logging multiple checksum items that cover
overlapping ranges. This confuses the search for checksums at log replay
time causing some checksums to never be added to the fs/subvolume tree.

Consider the following example of a file that shares the same extent at
offsets 0 and 256Kb:

   [ bytenr 13893632, offset 64Kb, len 64Kb  ]
   0                                         64Kb

   [ bytenr 13631488, offset 64Kb, len 192Kb ]
   64Kb                                      256Kb

   [ bytenr 13893632, offset 0, len 256Kb    ]
   256Kb                                     512Kb

When logging the inode, at tree-log.c:copy_items(), when processing the
file extent item at offset 0, we log a checksum item covering the range
13959168 to 14024704, which corresponds to 13893632 + 64Kb and 13893632 +
64Kb + 64Kb, respectively.

Later when processing the extent item at offset 256K, we log the checksums
for the range from 13893632 to 14155776 (which corresponds to 13893632 +
256Kb). These checksums get merged with the checksum item for the range
from 13631488 to 13893632 (13631488 + 256Kb), logged by a previous fsync.
So after this we get the two following checksum items in the log tree:

   (...)
   item 6 key (EXTENT_CSUM EXTENT_CSUM 13631488) itemoff 3095 itemsize 512
           range start 13631488 end 14155776 length 524288
   item 7 key (EXTENT_CSUM EXTENT_CSUM 13959168) itemoff 3031 itemsize 64
           range start 13959168 end 14024704 length 65536

The first one covers the range from the second one, they overlap.

So far this does not cause a problem after replaying the log, because
when replaying the file extent item for offset 256K, we copy all the
checksums for the extent 13893632 from the log tree to the fs/subvolume
tree, since searching for an checksum item for bytenr 13893632 leaves us
at the first checksum item, which covers the whole range of the extent.

However if we write 64Kb to file offset 256Kb for example, we will
not be able to find and copy the checksums for the last 128Kb of the
extent at bytenr 13893632, referenced by the file range 384Kb to 512Kb.

After writing 64Kb into file offset 256Kb we get the following extent
layout for our file:

   [ bytenr 13893632, offset 64K, len 64Kb   ]
   0                                         64Kb

   [ bytenr 13631488, offset 64Kb, len 192Kb ]
   64Kb                                      256Kb

   [ bytenr 14155776, offset 0, len 64Kb     ]
   256Kb                                     320Kb

   [ bytenr 13893632, offset 64Kb, len 192Kb ]
   320Kb                                     512Kb

After fsync'ing the file, if we have a power failure and then mount
the filesystem to replay the log, the following happens:

1) When replaying the file extent item for file offset 320Kb, we
   lookup for the checksums for the extent range from 13959168
   (13893632 + 64Kb) to 14155776 (13893632 + 256Kb), through a call
   to btrfs_lookup_csums_range();

2) btrfs_lookup_csums_range() finds the checksum item that starts
   precisely at offset 13959168 (item 7 in the log tree, shown before);

3) However that checksum item only covers 64Kb of data, and not 192Kb
   of data;

4) As a result only the checksums for the first 64Kb of data referenced
   by the file extent item are found and copied to the fs/subvolume tree.
   The remaining 128Kb of data, file range 384Kb to 512Kb, doesn't get
   the corresponding data checksums found and copied to the fs/subvolume
   tree.

5) After replaying the log userspace will not be able to read the file
   range from 384Kb to 512Kb, because the checksums are missing and
   resulting in an -EIO error.

The following steps reproduce this scenario:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt/sdc

  $ xfs_io -f -c "pwrite -S 0xa3 0 256K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar
  $ xfs_io -c "pwrite -S 0xc7 256K 256K" /mnt/sdc/foobar

  $ xfs_io -c "reflink /mnt/sdc/foobar 320K 0 64K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar

  $ xfs_io -c "pwrite -S 0xe5 256K 64K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar

  <power failure>

  $ mount /dev/sdc /mnt/sdc
  $ md5sum /mnt/sdc/foobar
  md5sum: /mnt/sdc/foobar: Input/output error

  $ dmesg | tail
  [165305.003464] BTRFS info (device sdc): no csum found for inode 257 start 401408
  [165305.004014] BTRFS info (device sdc): no csum found for inode 257 start 405504
  [165305.004559] BTRFS info (device sdc): no csum found for inode 257 start 409600
  [165305.005101] BTRFS info (device sdc): no csum found for inode 257 start 413696
  [165305.005627] BTRFS info (device sdc): no csum found for inode 257 start 417792
  [165305.006134] BTRFS info (device sdc): no csum found for inode 257 start 421888
  [165305.006625] BTRFS info (device sdc): no csum found for inode 257 start 425984
  [165305.007278] BTRFS info (device sdc): no csum found for inode 257 start 430080
  [165305.008248] BTRFS warning (device sdc): csum failed root 5 ino 257 off 393216 csum 0x1337385e expected csum 0x00000000 mirror 1
  [165305.009550] BTRFS warning (device sdc): csum failed root 5 ino 257 off 393216 csum 0x1337385e expected csum 0x00000000 mirror 1

Fix this simply by deleting first any checksums, from the log tree, for the
range of the extent we are logging at copy_items(). This ensures we do not
get checksum items in the log tree that have overlapping ranges.

This is a long time issue that has been present since we have the clone
(and deduplication) ioctl, and can happen both when an extent is shared
between different files and within the same file.

A test case for fstests follows soon.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-31 16:34:42 +01:00
Filipe Manana
cb38a17cc8 Btrfs: fix deadlock on tree root leaf when finding free extent
[ Upstream commit 4222ea7100c0e37adace2790c8822758bbeee179 ]

When we are writing out a free space cache, during the transaction commit
phase, we can end up in a deadlock which results in a stack trace like the
following:

 schedule+0x28/0x80
 btrfs_tree_read_lock+0x8e/0x120 [btrfs]
 ? finish_wait+0x80/0x80
 btrfs_read_lock_root_node+0x2f/0x40 [btrfs]
 btrfs_search_slot+0xf6/0x9f0 [btrfs]
 ? evict_refill_and_join+0xd0/0xd0 [btrfs]
 ? inode_insert5+0x119/0x190
 btrfs_lookup_inode+0x3a/0xc0 [btrfs]
 ? kmem_cache_alloc+0x166/0x1d0
 btrfs_iget+0x113/0x690 [btrfs]
 __lookup_free_space_inode+0xd8/0x150 [btrfs]
 lookup_free_space_inode+0x5b/0xb0 [btrfs]
 load_free_space_cache+0x7c/0x170 [btrfs]
 ? cache_block_group+0x72/0x3b0 [btrfs]
 cache_block_group+0x1b3/0x3b0 [btrfs]
 ? finish_wait+0x80/0x80
 find_free_extent+0x799/0x1010 [btrfs]
 btrfs_reserve_extent+0x9b/0x180 [btrfs]
 btrfs_alloc_tree_block+0x1b3/0x4f0 [btrfs]
 __btrfs_cow_block+0x11d/0x500 [btrfs]
 btrfs_cow_block+0xdc/0x180 [btrfs]
 btrfs_search_slot+0x3bd/0x9f0 [btrfs]
 btrfs_lookup_inode+0x3a/0xc0 [btrfs]
 ? kmem_cache_alloc+0x166/0x1d0
 btrfs_update_inode_item+0x46/0x100 [btrfs]
 cache_save_setup+0xe4/0x3a0 [btrfs]
 btrfs_start_dirty_block_groups+0x1be/0x480 [btrfs]
 btrfs_commit_transaction+0xcb/0x8b0 [btrfs]

At cache_save_setup() we need to update the inode item of a block group's
cache which is located in the tree root (fs_info->tree_root), which means
that it may result in COWing a leaf from that tree. If that happens we
need to find a free metadata extent and while looking for one, if we find
a block group which was not cached yet we attempt to load its cache by
calling cache_block_group(). However this function will try to load the
inode of the free space cache, which requires finding the matching inode
item in the tree root - if that inode item is located in the same leaf as
the inode item of the space cache we are updating at cache_save_setup(),
we end up in a deadlock, since we try to obtain a read lock on the same
extent buffer that we previously write locked.

So fix this by using the tree root's commit root when searching for a
block group's free space cache inode item when we are attempting to load
a free space cache. This is safe since block groups once loaded stay in
memory forever, as well as their caches, so after they are first loaded
we will never need to read their inode items again. For new block groups,
once they are created they get their ->cached field set to
BTRFS_CACHE_FINISHED meaning we will not need to read their inode item.

Reported-by: Andrew Nelson <andrew.s.nelson@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAPTELenq9x5KOWuQ+fa7h1r3nsJG8vyiTH8+ifjURc_duHh2Wg@mail.gmail.com/
Fixes: 9d66e233c704 ("Btrfs: load free space cache if it exists")
Tested-by: Andrew Nelson <andrew.s.nelson@gmail.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-06 13:05:22 +01:00
Qu Wenruo
6bcbe35027 btrfs: qgroup: Always free PREALLOC META reserve in btrfs_delalloc_release_extents()
[ Upstream commit 8702ba9396bf7bbae2ab93c94acd4bd37cfa4f09 ]

[Background]
Btrfs qgroup uses two types of reserved space for METADATA space,
PERTRANS and PREALLOC.

PERTRANS is metadata space reserved for each transaction started by
btrfs_start_transaction().
While PREALLOC is for delalloc, where we reserve space before joining a
transaction, and finally it will be converted to PERTRANS after the
writeback is done.

[Inconsistency]
However there is inconsistency in how we handle PREALLOC metadata space.

The most obvious one is:
In btrfs_buffered_write():
	btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, true);

We always free qgroup PREALLOC meta space.

While in btrfs_truncate_block():
	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));

We only free qgroup PREALLOC meta space when something went wrong.

[The Correct Behavior]
The correct behavior should be the one in btrfs_buffered_write(), we
should always free PREALLOC metadata space.

The reason is, the btrfs_delalloc_* mechanism works by:
- Reserve metadata first, even it's not necessary
  In btrfs_delalloc_reserve_metadata()

- Free the unused metadata space
  Normally in:
  btrfs_delalloc_release_extents()
  |- btrfs_inode_rsv_release()
     Here we do calculation on whether we should release or not.

E.g. for 64K buffered write, the metadata rsv works like:

/* The first page */
reserve_meta:	num_bytes=calc_inode_reservations()
free_meta:	num_bytes=0
total:		num_bytes=calc_inode_reservations()
/* The first page caused one outstanding extent, thus needs metadata
   rsv */

/* The 2nd page */
reserve_meta:	num_bytes=calc_inode_reservations()
free_meta:	num_bytes=calc_inode_reservations()
total:		not changed
/* The 2nd page doesn't cause new outstanding extent, needs no new meta
   rsv, so we free what we have reserved */

/* The 3rd~16th pages */
reserve_meta:	num_bytes=calc_inode_reservations()
free_meta:	num_bytes=calc_inode_reservations()
total:		not changed (still space for one outstanding extent)

This means, if btrfs_delalloc_release_extents() determines to free some
space, then those space should be freed NOW.
So for qgroup, we should call btrfs_qgroup_free_meta_prealloc() other
than btrfs_qgroup_convert_reserved_meta().

The good news is:
- The callers are not that hot
  The hottest caller is in btrfs_buffered_write(), which is already
  fixed by commit 336a8bb8e36a ("btrfs: Fix wrong
  btrfs_delalloc_release_extents parameter"). Thus it's not that
  easy to cause false EDQUOT.

- The trans commit in advance for qgroup would hide the bug
  Since commit f5fef4593653 ("btrfs: qgroup: Make qgroup async transaction
  commit more aggressive"), when btrfs qgroup metadata free space is slow,
  it will try to commit transaction and free the wrongly converted
  PERTRANS space, so it's not that easy to hit such bug.

[FIX]
So to fix the problem, remove the @qgroup_free parameter for
btrfs_delalloc_release_extents(), and always pass true to
btrfs_inode_rsv_release().

Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 43b18595d660 ("btrfs: qgroup: Use separate meta reservation type for delalloc")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-06 13:05:13 +01:00
Christophe Leroy
4874c6fe1c btrfs: fix allocation of free space cache v1 bitmap pages
commit 3acd48507dc43eeeb0a1fe965b8bad91cab904a7 upstream.

Various notifications of type "BUG kmalloc-4096 () : Redzone
overwritten" have been observed recently in various parts of the kernel.
After some time, it has been made a relation with the use of BTRFS
filesystem and with SLUB_DEBUG turned on.

[   22.809700] BUG kmalloc-4096 (Tainted: G        W        ): Redzone overwritten

[   22.810286] INFO: 0xbe1a5921-0xfbfc06cd. First byte 0x0 instead of 0xcc
[   22.810866] INFO: Allocated in __load_free_space_cache+0x588/0x780 [btrfs] age=22 cpu=0 pid=224
[   22.811193] 	__slab_alloc.constprop.26+0x44/0x70
[   22.811345] 	kmem_cache_alloc_trace+0xf0/0x2ec
[   22.811588] 	__load_free_space_cache+0x588/0x780 [btrfs]
[   22.811848] 	load_free_space_cache+0xf4/0x1b0 [btrfs]
[   22.812090] 	cache_block_group+0x1d0/0x3d0 [btrfs]
[   22.812321] 	find_free_extent+0x680/0x12a4 [btrfs]
[   22.812549] 	btrfs_reserve_extent+0xec/0x220 [btrfs]
[   22.812785] 	btrfs_alloc_tree_block+0x178/0x5f4 [btrfs]
[   22.813032] 	__btrfs_cow_block+0x150/0x5d4 [btrfs]
[   22.813262] 	btrfs_cow_block+0x194/0x298 [btrfs]
[   22.813484] 	commit_cowonly_roots+0x44/0x294 [btrfs]
[   22.813718] 	btrfs_commit_transaction+0x63c/0xc0c [btrfs]
[   22.813973] 	close_ctree+0xf8/0x2a4 [btrfs]
[   22.814107] 	generic_shutdown_super+0x80/0x110
[   22.814250] 	kill_anon_super+0x18/0x30
[   22.814437] 	btrfs_kill_super+0x18/0x90 [btrfs]
[   22.814590] INFO: Freed in proc_cgroup_show+0xc0/0x248 age=41 cpu=0 pid=83
[   22.814841] 	proc_cgroup_show+0xc0/0x248
[   22.814967] 	proc_single_show+0x54/0x98
[   22.815086] 	seq_read+0x278/0x45c
[   22.815190] 	__vfs_read+0x28/0x17c
[   22.815289] 	vfs_read+0xa8/0x14c
[   22.815381] 	ksys_read+0x50/0x94
[   22.815475] 	ret_from_syscall+0x0/0x38

Commit 69d2480456d1 ("btrfs: use copy_page for copying pages instead of
memcpy") changed the way bitmap blocks are copied. But allthough bitmaps
have the size of a page, they were allocated with kzalloc().

Most of the time, kzalloc() allocates aligned blocks of memory, so
copy_page() can be used. But when some debug options like SLAB_DEBUG are
activated, kzalloc() may return unaligned pointer.

On powerpc, memcpy(), copy_page() and other copying functions use
'dcbz' instruction which provides an entire zeroed cacheline to avoid
memory read when the intention is to overwrite a full line. Functions
like memcpy() are writen to care about partial cachelines at the start
and end of the destination, but copy_page() assumes it gets pages. As
pages are naturally cache aligned, copy_page() doesn't care about
partial lines. This means that when copy_page() is called with a
misaligned pointer, a few leading bytes are zeroed.

To fix it, allocate bitmaps through kmem_cache instead of using kzalloc()
The cache pool is created with PAGE_SIZE alignment constraint.

Reported-by: Erhard F. <erhard_f@mailbox.org>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=204371
Fixes: 69d2480456d1 ("btrfs: use copy_page for copying pages instead of memcpy")
Cc: stable@vger.kernel.org # 4.19+
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename to btrfs_free_space_bitmap ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05 13:10:09 +02:00
Nikolay Borisov
1669d1d2e6 btrfs: Remove extent_io_ops::fill_delalloc
[ Upstream commit 5eaad97af8aeff38debe7d3c69ec3a0d71f8350f ]

This callback is called only from writepage_delalloc which in turn is
guaranteed to be called from the data page writeout path. In the end
there is no reason to have the call to this function to be indrected via
the extent_io_ops structure. This patch removes the callback definition,
exports the function and calls it directly. No functional changes.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename to btrfs_run_delalloc_range ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-16 08:21:59 +02:00
Ethan Lien
f5d5b54349 btrfs: use tagged writepage to mitigate livelock of snapshot
[ Upstream commit 3cd24c698004d2f7668e0eb9fc1f096f533c791b ]

Snapshot is expected to be fast. But if there are writers steadily
creating dirty pages in our subvolume, the snapshot may take a very long
time to complete. To fix the problem, we use tagged writepage for
snapshot flusher as we do in the generic write_cache_pages(), so we can
omit pages dirtied after the snapshot command.

This does not change the semantics regarding which data get to the
snapshot, if there are pages being dirtied during the snapshotting
operation.  There's a sync called before snapshot is taken in old/new
case, any IO in flight just after that may be in the snapshot but this
depends on other system effects that might still sync the IO.

We do a simple snapshot speed test on a Intel D-1531 box:

fio --ioengine=libaio --iodepth=32 --bs=4k --rw=write --size=64G
--direct=0 --thread=1 --numjobs=1 --time_based --runtime=120
--filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5;
time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio

original: 1m58sec
patched:  6.54sec

This is the best case for this patch since for a sequential write case,
we omit nearly all pages dirtied after the snapshot command.

For a multi writers, random write test:

fio --ioengine=libaio --iodepth=32 --bs=4k --rw=randwrite --size=64G
--direct=0 --thread=1 --numjobs=4 --time_based --runtime=120
--filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5;
time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio

original: 15.83sec
patched:  10.35sec

The improvement is smaller compared to the sequential write case,
since we omit only half of the pages dirtied after snapshot command.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12 19:47:11 +01:00
Linus Torvalds
5404525b98 for-4.19-rc2-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAluRLa8ACgkQxWXV+ddt
 WDvc+BAAqxTMVngZ60WfktXzsS56OB6fu/R3DORgYcSZ0BCD4zTwoDlCjLhrCK6E
 cmC+BMj+AspDQYiYESwGyFcN10sK0X7w7fa3wypTc4GNWxpkRm0Z6zT/kCvLUhdI
 NlkMqAfsZ9N6iIXcR0qOxI7G55e3mpXPZGdFTk5rmDTv/9TqU0TMp9s8Zw5scn6R
 ctdE+iE0lpRfNjF8ZDH1BtYIV4g2X81sZF/fkGz621HQfMTCjjPHFdlz+jlirBaf
 BrYR4w4zjVuMKd3ZC5FHffVchbkvt29h6fAr4sEpJTwFJwd8pjI7GuPYWDQ918NB
 TGX6EUP6usQqDK2zD405jCS6MbMshJm3uh5kmEpeNgK/tKJTln8Sbef/Xs93yIn2
 +k9BMKOIcUHHBiv6PgCaZomcWCpii2S2u6vncqCnNuI4wK1RN3gHJc5YPhJArlrB
 NUFJiTCQE6LWYOP2Hw+rggcrtBxli0bX7Mqp5FYFVdh5KBvolJE1o3B/JS8qpqRF
 u0dPwbLHtTpTpXM5EfmM8a45S+DxuxTDBh3vdoAOM9LN/ivpeqqnFbHrIGmrTMjo
 pQJ8aTrCwYMEMNu6oCV1cniFrOYRZ439hYjg524MjVXYCRyxhzAdVmVTEBaLjWCW
 9GlGqEC7YZY2wLi5lPEGqxsIaVVELpettJB9KbBKmYB47VFWEf0=
 =fu93
 -----END PGP SIGNATURE-----

Merge tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:

 - fix for improper fsync after hardlink

 - fix for a corruption during file deduplication

 - use after free fixes

 - RCU warning fix

 - fix for buffered write to nodatacow file

* tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: Fix suspicious RCU usage warning in btrfs_debug_in_rcu
  btrfs: use after free in btrfs_quota_enable
  btrfs: btrfs_shrink_device should call commit transaction at the end
  btrfs: fix qgroup_free wrong num_bytes in btrfs_subvolume_reserve_metadata
  Btrfs: fix data corruption when deduplicating between different files
  Btrfs: sync log after logging new name
  Btrfs: fix unexpected failure of nocow buffered writes after snapshotting when low on space
2018-09-06 09:04:45 -07:00
Misono Tomohiro
b6fdfbff07 btrfs: Fix suspicious RCU usage warning in btrfs_debug_in_rcu
Commit 672d599041c8 ("btrfs: Use wrapper macro for rcu string to remove
duplicate code") replaces some open coded RCU string handling with macro.

It turns out that btrfs_debug_in_rcu() is used for the first time and
the macro lacks lock/unlock of RCU string for non-debug case (i.e. when
the message is not printed), leading to suspicious RCU usage warning
when CONFIG_PROVE_RCU is on.

Fix this by adding a wrapper to call lock/unlock for the non-debug case
too.

Fixes: 672d599041c8 ("btrfs: Use wrapper macro for rcu string to remove duplicate code")
Reported-by: David Howells <dhowells@redhat.com>
Tested-by: David Howells <dhowells@redhat.com>
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-24 14:09:43 +02:00
Linus Torvalds
d9a185f8b4 overlayfs update for 4.19
This contains two new features:
 
  1) Stack file operations: this allows removal of several hacks from the
     VFS, proper interaction of read-only open files with copy-up,
     possibility to implement fs modifying ioctls properly, and others.
 
  2) Metadata only copy-up: when file is on lower layer and only metadata is
     modified (except size) then only copy up the metadata and continue to
     use the data from the lower file.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQSQHSd0lITzzeNWNm3h3BK/laaZPAUCW3srhAAKCRDh3BK/laaZ
 PC6tAQCP+KklcN+TvNp502f+O/kATahSpgnun4NY1/p4I8JV+AEAzdlkTN3+MiAO
 fn9brN6mBK7h59DO3hqedPLJy2vrgwg=
 =QDXH
 -----END PGP SIGNATURE-----

Merge tag 'ovl-update-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs

Pull overlayfs updates from Miklos Szeredi:
 "This contains two new features:

   - Stack file operations: this allows removal of several hacks from
     the VFS, proper interaction of read-only open files with copy-up,
     possibility to implement fs modifying ioctls properly, and others.

   - Metadata only copy-up: when file is on lower layer and only
     metadata is modified (except size) then only copy up the metadata
     and continue to use the data from the lower file"

* tag 'ovl-update-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs: (66 commits)
  ovl: Enable metadata only feature
  ovl: Do not do metacopy only for ioctl modifying file attr
  ovl: Do not do metadata only copy-up for truncate operation
  ovl: add helper to force data copy-up
  ovl: Check redirect on index as well
  ovl: Set redirect on upper inode when it is linked
  ovl: Set redirect on metacopy files upon rename
  ovl: Do not set dentry type ORIGIN for broken hardlinks
  ovl: Add an inode flag OVL_CONST_INO
  ovl: Treat metacopy dentries as type OVL_PATH_MERGE
  ovl: Check redirects for metacopy files
  ovl: Move some dir related ovl_lookup_single() code in else block
  ovl: Do not expose metacopy only dentry from d_real()
  ovl: Open file with data except for the case of fsync
  ovl: Add helper ovl_inode_realdata()
  ovl: Store lower data inode in ovl_inode
  ovl: Fix ovl_getattr() to get number of blocks from lower
  ovl: Add helper ovl_dentry_lowerdata() to get lower data dentry
  ovl: Copy up meta inode data from lowest data inode
  ovl: Modify ovl_lookup() and friends to lookup metacopy dentry
  ...
2018-08-21 18:19:09 -07:00
Robbie Ko
8ecebf4d76 Btrfs: fix unexpected failure of nocow buffered writes after snapshotting when low on space
Commit e9894fd3e3b3 ("Btrfs: fix snapshot vs nocow writting") forced
nocow writes to fallback to COW, during writeback, when a snapshot is
created. This resulted in writes made before creating the snapshot to
unexpectedly fail with ENOSPC during writeback when success (0) was
returned to user space through the write system call.

The steps leading to this problem are:

1. When it's not possible to allocate data space for a write, the
   buffered write path checks if a NOCOW write is possible.  If it is,
   it will not reserve space and success (0) is returned to user space.

2. Then when a snapshot is created, the root's will_be_snapshotted
   atomic is incremented and writeback is triggered for all inode's that
   belong to the root being snapshotted. Incrementing that atomic forces
   all previous writes to fallback to COW during writeback (running
   delalloc).

3. This results in the writeback for the inodes to fail and therefore
   setting the ENOSPC error in their mappings, so that a subsequent
   fsync on them will report the error to user space. So it's not a
   completely silent data loss (since fsync will report ENOSPC) but it's
   a very unexpected and undesirable behaviour, because if a clean
   shutdown/unmount of the filesystem happens without previous calls to
   fsync, it is expected to have the data present in the files after
   mounting the filesystem again.

So fix this by adding a new atomic named snapshot_force_cow to the
root structure which prevents this behaviour and works the following way:

1. It is incremented when we start to create a snapshot after triggering
   writeback and before waiting for writeback to finish.

2. This new atomic is now what is used by writeback (running delalloc)
   to decide whether we need to fallback to COW or not. Because we
   incremented this new atomic after triggering writeback in the
   snapshot creation ioctl, we ensure that all buffered writes that
   happened before snapshot creation will succeed and not fallback to
   COW (which would make them fail with ENOSPC).

3. The existing atomic, will_be_snapshotted, is kept because it is used
   to force new buffered writes, that start after we started
   snapshotting, to reserve data space even when NOCOW is possible.
   This makes these writes fail early with ENOSPC when there's no
   available space to allocate, preventing the unexpected behaviour of
   writeback later failing with ENOSPC due to a fallback to COW mode.

Fixes: e9894fd3e3b3 ("Btrfs: fix snapshot vs nocow writting")
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-17 18:35:43 +02:00
Misono Tomohiro
85c3954819 btrfs: extent-tree: Remove unused __btrfs_free_block_rsv
There is no user of this function anymore.

This was forgotten to be removed in commit a575ceeb1338
("Btrfs: get rid of unused orphan infrastructure").

Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:13:01 +02:00
Lu Fengqi
6025c19fb2 btrfs: Remove fs_info from btrfs_add_root_ref
It can be referenced from the passed transaction handle.

Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:13:00 +02:00
Lu Fengqi
3ee1c5530e btrfs: Remove fs_info from btrfs_del_root_ref
It can be referenced from the passed transaction handle.

Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:13:00 +02:00
Lu Fengqi
ab9ce7d42b btrfs: Remove fs_info from btrfs_del_root
It can be referenced from the passed transaction handle.

Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:13:00 +02:00
David Sterba
2ffad70ed3 btrfs: constify strings passed to assertion helper
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:59 +02:00
David Sterba
e9539cff04 btrfs: dev-replace: remove unused members of btrfs_dev_replace
Lock owner and nesting level have been unused since day 1, probably
copy&pasted from the extent_buffer locking scheme without much thinking.
The locking of device replace is simpler and does not need any lock
nesting.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:58 +02:00
David Sterba
e17385ca29 btrfs: remove unused member btrfs_root::name
Added in 58176a9604c ("Btrfs: Add per-root block accounting and sysfs
entries") in 2007, the roots had names exported in sysfs. The code
was commented out in 4df27c4d5cc1dda54ed ("Btrfs: change how subvolumes
are organized") and cleaned by 182608c8294b5fe9 ("btrfs: remove old
unused commented out code").

Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:58 +02:00
David Sterba
5cdc84bfde btrfs: drop extent_io_ops::set_range_writeback callback
The data and metadata callback implementation both use the same
function. We can remove the call indirection and intermediate helper
completely.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:56 +02:00
Qu Wenruo
031f24da2c btrfs: Use btrfs_mark_bg_unused to replace open code
Introduce a small helper, btrfs_mark_bg_unused(), to acquire locks and
add a block group to unused_bgs list.

No functional modification, and only 3 callers are involved.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:49 +02:00
Ethan Lien
dec59fa3a7 btrfs: use customized batch size for total_bytes_pinned
In commit b150a4f10d878 ("Btrfs: use a percpu to keep track of possibly
pinned bytes") we use total_bytes_pinned to track how many bytes we are
going to free in this transaction. When we are close to ENOSPC, we check it
and know if we can make the allocation by commit the current transaction.
For every data/metadata extent we are going to free, we add
total_bytes_pinned in btrfs_free_extent() and btrfs_free_tree_block(), and
release it in unpin_extent_range() when we finish the transaction. So this
is a variable we frequently update but rarely read - just the suitable
use of percpu_counter. But in previous commit we update total_bytes_pinned
by default 32 batch size, making every update essentially a spin lock
protected update. Since every spin lock/unlock operation involves syncing
a globally used variable and some kind of barrier in a SMP system, this is
more expensive than using total_bytes_pinned as a simple atomic64_t.

So fix this by using a customized batch size. Since we only read
total_bytes_pinned when we are close to ENOSPC and fail to allocate new
chunk, we can use a really large batch size and have nearly no penalty
in most cases.

[Test]
We tested the patch on a 4-cores x86 machine:

1. fallocate a 16GiB size test file
2. take snapshot (so all following writes will be COW)
3. run a 180 sec, 4 jobs, 4K random write fio on test file

We also added a temporary lockdep class on percpu_counter's spin lock
used by total_bytes_pinned to track it by lock_stat.

[Results]
unpatched:
lock_stat version 0.4
-----------------------------------------------------------------------
                              class name    con-bounces    contentions
waittime-min   waittime-max waittime-total   waittime-avg    acq-bounces
acquisitions   holdtime-min   holdtime-max holdtime-total   holdtime-avg

               total_bytes_pinned_percpu:            82             82
        0.21           0.61          29.46           0.36         298340
      635973           0.09          11.01      173476.25           0.27

patched:
lock_stat version 0.4
-----------------------------------------------------------------------
                              class name    con-bounces    contentions
waittime-min   waittime-max waittime-total   waittime-avg    acq-bounces
acquisitions   holdtime-min   holdtime-max holdtime-total   holdtime-avg

               total_bytes_pinned_percpu:             1              1
        0.62           0.62           0.62           0.62          13601
       31542           0.14           9.61       11016.90           0.35

[Analysis]
Since the spin lock only protects a single in-memory variable, the
contentions (number of lock acquisitions that had to wait) in both
unpatched and patched version are low. But when we see acquisitions and
acq-bounces, we get much lower counts in patched version. Here the most
important metric is acq-bounces. It means how many times the lock gets
transferred between different cpus, so the patch can really reduce
cacheline bouncing of spin lock (also the global counter of percpu_counter)
in a SMP system.

Fixes: b150a4f10d878 ("Btrfs: use a percpu to keep track of possibly pinned bytes")
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:48 +02:00
Nikolay Borisov
ba3c2b196b btrfs: Add graceful handling of V0 extents
Following the removal of the v0 handling code let's be courteous and
print an error message when such extents are handled. In the cases
where we have a transaction just abort it, otherwise just call
btrfs_handle_fs_error. Both cases result in the FS being re-mounted RO.

In case the error handling would be too intrusive, leave the BUG_ON in
place, like extent_data_ref_count, other proper handling would catch
that earlier.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:41 +02:00
Nikolay Borisov
a79865c680 btrfs: Remove V0 extent support
The v0 compat code was introduced in commit 5d4f98a28c7d
("Btrfs: Mixed back reference  (FORWARD ROLLING FORMAT CHANGE)") 9
years ago, which was merged in 2.6.31. This means that the code is
there to support filesystems which are _VERY_ old and if you are using
btrfs on such an old kernel, you have much bigger problems. This coupled
with the fact that no one is likely testing/maintining this code likely
means it has bugs lurking. All things considered I think 43 kernel
releases later it's high time this remnant of the past got removed.

This patch removes all code wrapped in #ifdefs but leaves the BUG_ONs in case
we have a v0 with no support intact as a sort of safety-net.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:41 +02:00
Qu Wenruo
e41ca58974 btrfs: Get rid of the confusing btrfs_file_extent_inline_len
We used to call btrfs_file_extent_inline_len() to get the uncompressed
data size of an inlined extent.

However this function is hiding evil, for compressed extent, it has no
choice but to directly read out ram_bytes from btrfs_file_extent_item.
While for uncompressed extent, it uses item size to calculate the real
data size, and ignoring ram_bytes completely.

In fact, for corrupted ram_bytes, due to above behavior kernel
btrfs_print_leaf() can't even print correct ram_bytes to expose the bug.

Since we have the tree-checker to verify all EXTENT_DATA, such mismatch
can be detected pretty easily, thus we can trust ram_bytes without the
evil btrfs_file_extent_inline_len().

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:38 +02:00
Nikolay Borisov
43a7e99db6 btrfs: Remove fs_info from btrfs_force_chunk_alloc
It can be referenced from the passed transaction handle.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:38 +02:00
Nikolay Borisov
c83488afc5 btrfs: Remove fs_info from btrfs_inc_block_group_ro
It can be referenced from the passed bg cache.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:37 +02:00
Nikolay Borisov
61da2abfca btrfs: Remove fs_info from btrfs_alloc_logged_file_extent
It can be referenced from trans since the function is always called
within a valid transaction.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:37 +02:00
Nikolay Borisov
451a2c1303 btrfs: Remove fs_info from check_system_chunk
It can be referenced from trans since the function is always called
within a transaction.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:36 +02:00
Nikolay Borisov
5a98ec0141 btrfs: Remove fs_info from btrfs_remove_block_group
This function is always called with a valid transaction handle from
where we can reference fs_info. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:34 +02:00
Nikolay Borisov
e7e02096d9 btrfs: Remove fs_info from btrfs_make_block_group
This function is always called with a valid transaction handle from
where we can reference the fs_info. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:34 +02:00
Allen Pais
a944442c2b btrfs: replace get_seconds with new 64bit time API
The get_seconds() function is deprecated as it truncates the timestamp
to 32 bits. Change it to or ktime_get_real_seconds().

Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:29 +02:00
Miklos Szeredi
87eb5eb242 vfs: dedupe: rationalize args
Clean up f_op->dedupe_file_range() interface.

1) Use loff_t for offsets and length instead of u64
2) Order the arguments the same way as {copy|clone}_file_range().

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-07-06 23:57:03 +02:00
Miklos Szeredi
5740c99e9d vfs: dedupe: return int
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-07-06 23:57:03 +02:00
Souptick Joarder
a528a24150 btrfs: change return type of btrfs_page_mkwrite to vm_fault_t
Use the new return type vm_fault_t for fault handler. For now, this is
just documenting that the function returns a VM_FAULT value rather than
an errno. Once all instances are converted, vm_fault_t will become a
distinct type.

Reference commit 1c8f422059ae ("mm: change return type to vm_fault_t")

vmf_error() is the newly introduced inline function in 4.17-rc6.

Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-06-07 17:27:45 +02:00
Gu JinXiang
c4c129db5d btrfs: drop unused parameter qgroup_reserved
Since commit 7775c8184ec0 ("btrfs: remove unused parameter from
btrfs_subvolume_release_metadata") parameter qgroup_reserved is not used
by caller of function btrfs_subvolume_reserve_metadata.  So remove it.

Signed-off-by: Gu JinXiang <gujx@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30 16:46:53 +02:00
Lu Fengqi
d19577912d btrfs: Remove fs_info argument from btrfs_uuid_tree_rem
This function always takes a transaction handle which contains a
reference to the fs_info. Use that and remove the extra argument.

Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ rename the function ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30 16:46:53 +02:00
Lu Fengqi
cdb345a877 btrfs: Remove fs_info argument from btrfs_uuid_tree_add
This function always takes a transaction handle which contains a
reference to the fs_info. Use that and remove the extra argument.

Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30 16:46:52 +02:00
Omar Sandoval
a575ceeb13 Btrfs: get rid of unused orphan infrastructure
Now that we don't keep long-standing reservations for orphan items,
root->orphan_block_rsv isn't used. We can git rid of it, along with:

- root->orphan_lock, which was used to protect root->orphan_block_rsv
- root->orphan_inodes, which was used as a refcount for root->orphan_block_rsv
- BTRFS_INODE_ORPHAN_META_RESERVED, which was used to track reservations
  in root->orphan_block_rsv
- btrfs_orphan_commit_root(), which was the last user of any of these
  and does nothing else

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:23:57 +02:00
David Sterba
7b6a221e5b btrfs: rename btrfs_update_iflags to reflect which flags it touches
The btrfs inode flag flavour is now simply called 'inode flags' and the
vfs inode are i_flags.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:23:20 +02:00
Nikolay Borisov
20a6800402 btrfs: Unexport and rename btrfs_invalidate_inodes
This function is no longer used outside of inode.c so just make it
static. At the same time give a more becoming name, since it's not
really invalidating the inodes but just calling d_prune_alias. Last,
but not least - move the function above the sole caller to avoid
introducing yet-another-pointless forward declaration.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:23:10 +02:00
David Sterba
110a21feed btrfs: introduce conditional wakeup helpers
Add convenience wrappers for the waitqueue management that involves
memory barriers to prevent deadlocks. The helpers will let us remove
barriers and the necessary comments in several places.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:23:04 +02:00
Nikolay Borisov
4457c1c702 btrfs: Remove fs_info argument from add_new_free_space
This function also takes a btrfs_block_group_cache which contains a
referene to the fs_info. So use that and remove the extra argument.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:33 +02:00
Nikolay Borisov
3a2f8c07e1 btrfs: Unexport btrfs_alloc_delalloc_work
It's used only in inode.c so makes no sense to have it exported. Also
move the definition of btrfs_delalloc_work to inode.c since it's used
only this file.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:29 +02:00
Nikolay Borisov
076da91cd9 btrfs: Remove delayed_iput member from btrfs_delalloc_work
When allocating a delalloc work we are always setting the delayed_iput
to 0. So remove the delay_iput member of btrfs_delalloc_work, as a
result also remove it as a parameter from btrfs_alloc_delalloc_work
since it's not used anymore.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:29 +02:00
Nikolay Borisov
76f32e240e btrfs: Remove delayed_iput parameter from btrfs_start_delalloc_inodes
It's always set to 0, so just remove it and collapse the constant value
to the only function we are passing it.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:28 +02:00
Nikolay Borisov
82b3e53b8d btrfs: Remove delayed_iput parameter of btrfs_start_delalloc_roots
This parameter was introduced alongside the function in
eb73c1b7cea7 ("Btrfs: introduce per-subvolume delalloc inode list") to
avoid deadlocks since this function was used in the transaction commit
path. However, commit 8d875f95da43 ("btrfs: disable strict file flushes
for renames and truncates") removed that usage, rendering the parameter
obsolete.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:28 +02:00
David Sterba
008ef0969d btrfs: drop lock parameter from update_ioctl_balance_args and rename
The parameter controls locking of the stats part but we can lock it
unconditionally, as this only happens once when balance starts. This is
not performance critical.

Add the prefix for an exported function.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:26 +02:00
David Sterba
3009a62f3b btrfs: track running balance in a simpler way
Currently fs_info::balance_running is 0 or 1 and does not use the
semantics of atomics. The pause and cancel check for 0, that can happen
only after __btrfs_balance exits for whatever reason.

Parallel calls to balance ioctl may enter btrfs_ioctl_balance multiple
times but will block on the balance_mutex that protects the
fs_info::flags bit.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:25 +02:00