7702 Commits

Author SHA1 Message Date
Goldwyn Rodrigues
41d5e986e7 btrfs: check if root is readonly while setting security xattr
commit b51111271b0352aa596c5ae8faf06939e91b3b68 upstream.

For a filesystem which has btrfs read-only property set to true, all
write operations including xattr should be denied. However, security
xattr can still be changed even if btrfs ro property is true.

This happens because xattr_permission() does not have any restrictions
on security.*, system.*  and in some cases trusted.* from VFS and
the decision is left to the underlying filesystem. See comments in
xattr_permission() for more details.

This patch checks if the root is read-only before performing the set
xattr operation.

Testcase:

  DEV=/dev/vdb
  MNT=/mnt

  mkfs.btrfs -f $DEV
  mount $DEV $MNT
  echo "file one" > $MNT/f1

  setfattr -n "security.one" -v 2 $MNT/f1
  btrfs property set /mnt ro true

  setfattr -n "security.one" -v 1 $MNT/f1

  umount $MNT

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-05 10:26:31 +02:00
Qu Wenruo
aa9639c69b btrfs: raid56: don't trust any cached sector in __raid56_parity_recover()
commit f6065f8edeb25f4a9dfe0b446030ad995a84a088 upstream.

[BUG]
There is a small workload which will always fail with recent kernel:
(A simplified version from btrfs/125 test case)

  mkfs.btrfs -f -m raid5 -d raid5 -b 1G $dev1 $dev2 $dev3
  mount $dev1 $mnt
  xfs_io -f -c "pwrite -S 0xee 0 1M" $mnt/file1
  sync
  umount $mnt
  btrfs dev scan -u $dev3
  mount -o degraded $dev1 $mnt
  xfs_io -f -c "pwrite -S 0xff 0 128M" $mnt/file2
  umount $mnt
  btrfs dev scan
  mount $dev1 $mnt
  btrfs balance start --full-balance $mnt
  umount $mnt

The failure is always failed to read some tree blocks:

  BTRFS info (device dm-4): relocating block group 217710592 flags data|raid5
  BTRFS error (device dm-4): parent transid verify failed on 38993920 wanted 9 found 7
  BTRFS error (device dm-4): parent transid verify failed on 38993920 wanted 9 found 7
  ...

[CAUSE]
With the recently added debug output, we can see all RAID56 operations
related to full stripe 38928384:

  56.1183: raid56_read_partial: full_stripe=38928384 devid=2 type=DATA1 offset=0 opf=0x0 physical=9502720 len=65536
  56.1185: raid56_read_partial: full_stripe=38928384 devid=3 type=DATA2 offset=16384 opf=0x0 physical=9519104 len=16384
  56.1185: raid56_read_partial: full_stripe=38928384 devid=3 type=DATA2 offset=49152 opf=0x0 physical=9551872 len=16384
  56.1187: raid56_write_stripe: full_stripe=38928384 devid=3 type=DATA2 offset=0 opf=0x1 physical=9502720 len=16384
  56.1188: raid56_write_stripe: full_stripe=38928384 devid=3 type=DATA2 offset=32768 opf=0x1 physical=9535488 len=16384
  56.1188: raid56_write_stripe: full_stripe=38928384 devid=1 type=PQ1 offset=0 opf=0x1 physical=30474240 len=16384
  56.1189: raid56_write_stripe: full_stripe=38928384 devid=1 type=PQ1 offset=32768 opf=0x1 physical=30507008 len=16384
  56.1218: raid56_write_stripe: full_stripe=38928384 devid=3 type=DATA2 offset=49152 opf=0x1 physical=9551872 len=16384
  56.1219: raid56_write_stripe: full_stripe=38928384 devid=1 type=PQ1 offset=49152 opf=0x1 physical=30523392 len=16384
  56.2721: raid56_parity_recover: full stripe=38928384 eb=39010304 mirror=2
  56.2723: raid56_parity_recover: full stripe=38928384 eb=39010304 mirror=2
  56.2724: raid56_parity_recover: full stripe=38928384 eb=39010304 mirror=2

Before we enter raid56_parity_recover(), we have triggered some metadata
write for the full stripe 38928384, this leads to us to read all the
sectors from disk.

Furthermore, btrfs raid56 write will cache its calculated P/Q sectors to
avoid unnecessary read.

This means, for that full stripe, after any partial write, we will have
stale data, along with P/Q calculated using that stale data.

Thankfully due to patch "btrfs: only write the sectors in the vertical stripe
which has data stripes" we haven't submitted all the corrupted P/Q to disk.

When we really need to recover certain range, aka in
raid56_parity_recover(), we will use the cached rbio, along with its
cached sectors (the full stripe is all cached).

This explains why we have no event raid56_scrub_read_recover()
triggered.

Since we have the cached P/Q which is calculated using the stale data,
the recovered one will just be stale.

In our particular test case, it will always return the same incorrect
metadata, thus causing the same error message "parent transid verify
failed on 39010304 wanted 9 found 7" again and again.

[BTRFS DESTRUCTIVE RMW PROBLEM]

Test case btrfs/125 (and above workload) always has its trouble with
the destructive read-modify-write (RMW) cycle:

        0       32K     64K
Data1:  | Good  | Good  |
Data2:  | Bad   | Bad   |
Parity: | Good  | Good  |

In above case, if we trigger any write into Data1, we will use the bad
data in Data2 to re-generate parity, killing the only chance to recovery
Data2, thus Data2 is lost forever.

This destructive RMW cycle is not specific to btrfs RAID56, but there
are some btrfs specific behaviors making the case even worse:

- Btrfs will cache sectors for unrelated vertical stripes.

  In above example, if we're only writing into 0~32K range, btrfs will
  still read data range (32K ~ 64K) of Data1, and (64K~128K) of Data2.
  This behavior is to cache sectors for later update.

  Incidentally commit d4e28d9b5f04 ("btrfs: raid56: make steal_rbio()
  subpage compatible") has a bug which makes RAID56 to never trust the
  cached sectors, thus slightly improve the situation for recovery.

  Unfortunately, follow up fix "btrfs: update stripe_sectors::uptodate in
  steal_rbio" will revert the behavior back to the old one.

- Btrfs raid56 partial write will update all P/Q sectors and cache them

  This means, even if data at (64K ~ 96K) of Data2 is free space, and
  only (96K ~ 128K) of Data2 is really stale data.
  And we write into that (96K ~ 128K), we will update all the parity
  sectors for the full stripe.

  This unnecessary behavior will completely kill the chance of recovery.

  Thankfully, an unrelated optimization "btrfs: only write the sectors
  in the vertical stripe which has data stripes" will prevent
  submitting the write bio for untouched vertical sectors.

  That optimization will keep the on-disk P/Q untouched for a chance for
  later recovery.

[FIX]
Although we have no good way to completely fix the destructive RMW
(unless we go full scrub for each partial write), we can still limit the
damage.

With patch "btrfs: only write the sectors in the vertical stripe which
has data stripes" now we won't really submit the P/Q of unrelated
vertical stripes, so the on-disk P/Q should still be fine.

Now we really need to do is just drop all the cached sectors when doing
recovery.

By this, we have a chance to read the original P/Q from disk, and have a
chance to recover the stale data, while still keep the cache to speed up
regular write path.

In fact, just dropping all the cache for recovery path is good enough to
allow the test case btrfs/125 along with the small script to pass
reliably.

The lack of metadata write after the degraded mount, and forced metadata
COW is saving us this time.

So this patch will fix the behavior by not trust any cache in
__raid56_parity_recover(), to solve the problem while still keep the
cache useful.

But please note that this test pass DOES NOT mean we have solved the
destructive RMW problem, we just do better damage control a little
better.

Related patches:

- btrfs: only write the sectors in the vertical stripe
- d4e28d9b5f04 ("btrfs: raid56: make steal_rbio() subpage compatible")
- btrfs: update stripe_sectors::uptodate in steal_rbio

Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:15:48 +02:00
Qu Wenruo
4ab7e0317f btrfs: only write the sectors in the vertical stripe which has data stripes
commit bd8f7e627703ca5707833d623efcd43f104c7b3f upstream.

If we have only 8K partial write at the beginning of a full RAID56
stripe, we will write the following contents:

                    0  8K           32K             64K
Disk 1	(data):     |XX|            |               |
Disk 2  (data):     |               |               |
Disk 3  (parity):   |XXXXXXXXXXXXXXX|XXXXXXXXXXXXXXX|

|X| means the sector will be written back to disk.

Note that, although we won't write any sectors from disk 2, but we will
write the full 64KiB of parity to disk.

This behavior is fine for now, but not for the future (especially for
RAID56J, as we waste quite some space to journal the unused parity
stripes).

So here we will also utilize the btrfs_raid_bio::dbitmap, anytime we
queue a higher level bio into an rbio, we will update rbio::dbitmap to
indicate which vertical stripes we need to writeback.

And at finish_rmw(), we also check dbitmap to see if we need to write
any sector in the vertical stripe.

So after the patch, above example will only lead to the following
writeback pattern:

                    0  8K           32K             64K
Disk 1	(data):     |XX|            |               |
Disk 2  (data):     |               |               |
Disk 3  (parity):   |XX|            |               |

Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:15:48 +02:00
Filipe Manana
25e75ddb30 btrfs: fix lost error handling when looking up extended ref on log replay
commit 7a6b75b79902e47f46328b57733f2604774fa2d9 upstream.

During log replay, when processing inode references, if we get an error
when looking up for an extended reference at __add_inode_ref(), we ignore
it and proceed, returning success (0) if no other error happens after the
lookup. This is obviously wrong because in case an extended reference
exists and it encodes some name not in the log, we need to unlink it,
otherwise the filesystem state will not match the state it had after the
last fsync.

So just make __add_inode_ref() return an error it gets from the extended
reference lookup.

Fixes: f186373fef005c ("btrfs: extended inode refs")
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:15:34 +02:00
Qu Wenruo
b99aba316b btrfs: reject log replay if there is unsupported RO compat flag
commit dc4d31684974d140250f3ee612c3f0cab13b3146 upstream.

[BUG]
If we have a btrfs image with dirty log, along with an unsupported RO
compatible flag:

log_root		30474240
...
compat_flags		0x0
compat_ro_flags		0x40000003
			( FREE_SPACE_TREE |
			  FREE_SPACE_TREE_VALID |
			  unknown flag: 0x40000000 )

Then even if we can only mount it RO, we will still cause metadata
update for log replay:

  BTRFS info (device dm-1): flagging fs with big metadata feature
  BTRFS info (device dm-1): using free space tree
  BTRFS info (device dm-1): has skinny extents
  BTRFS info (device dm-1): start tree-log replay

This is definitely against RO compact flag requirement.

[CAUSE]
RO compact flag only forces us to do RO mount, but we will still do log
replay for plain RO mount.

Thus this will result us to do log replay and update metadata.

This can be very problematic for new RO compat flag, for example older
kernel can not understand v2 cache, and if we allow metadata update on
RO mount and invalidate/corrupt v2 cache.

[FIX]
Just reject the mount unless rescue=nologreplay is provided:

  BTRFS error (device dm-1): cannot replay dirty log with unsupport optional features (0x40000000), try rescue=nologreplay instead

We don't want to set rescue=nologreply directly, as this would make the
end user to read the old data, and cause confusion.

Since the such case is really rare, we're mostly fine to just reject the
mount with an error message, which also includes the proper workaround.

CC: stable@vger.kernel.org #4.9+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:15:31 +02:00
Qu Wenruo
ad08decfbf btrfs: repair super block num_devices automatically
commit d201238ccd2f30b9bfcfadaeae0972e3a486a176 upstream.

[BUG]
There is a report that a btrfs has a bad super block num devices.

This makes btrfs to reject the fs completely.

  BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here
  BTRFS error (device sdd3): failed to read chunk tree: -22
  BTRFS error (device sdd3): open_ctree failed

[CAUSE]
During btrfs device removal, chunk tree and super block num devs are
updated in two different transactions:

  btrfs_rm_device()
  |- btrfs_rm_dev_item(device)
  |  |- trans = btrfs_start_transaction()
  |  |  Now we got transaction X
  |  |
  |  |- btrfs_del_item()
  |  |  Now device item is removed from chunk tree
  |  |
  |  |- btrfs_commit_transaction()
  |     Transaction X got committed, super num devs untouched,
  |     but device item removed from chunk tree.
  |     (AKA, super num devs is already incorrect)
  |
  |- cur_devices->num_devices--;
  |- cur_devices->total_devices--;
  |- btrfs_set_super_num_devices()
     All those operations are not in transaction X, thus it will
     only be written back to disk in next transaction.

So after the transaction X in btrfs_rm_dev_item() committed, but before
transaction X+1 (which can be minutes away), a power loss happen, then
we got the super num mismatch.

This has been fixed by commit bbac58698a55 ("btrfs: remove device item
and update super block in the same transaction").

[FIX]
Make the super_num_devices check less strict, converting it from a hard
error to a warning, and reset the value to a correct one for the current
or next transaction commit.

As the number of device items is the critical information where the
super block num_devices is only a cached value (and also useful for
cross checking), it's safe to automatically update it. Other device
related problems like missing device are handled after that and may
require other means to resolve, like degraded mount. With this fix,
potentially affected filesystems won't fail mount and require the manual
repair by btrfs check.

Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-14 16:59:14 +02:00
Qu Wenruo
344153d796 btrfs: add "0x" prefix for unsupported optional features
commit d5321a0fa8bc49f11bea0b470800962c17d92d8f upstream.

The following error message lack the "0x" obviously:

  cannot mount because of unsupported optional features (4000)

Add the prefix to make it less confusing. This can happen on older
kernels that try to mount a filesystem with newer features so it makes
sense to backport to older trees.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-14 16:59:14 +02:00
Filipe Manana
a435e43f25 btrfs: always log symlinks in full mode
commit d0e64a981fd841cb0f28fcd6afcac55e6f1e6994 upstream.

On Linux, empty symlinks are invalid, and attempting to create one with
the system call symlink(2) results in an -ENOENT error and this is
explicitly documented in the man page.

If we rename a symlink that was created in the current transaction and its
parent directory was logged before, we actually end up logging the symlink
without logging its content, which is stored in an inline extent. That
means that after a power failure we can end up with an empty symlink,
having no content and an i_size of 0 bytes.

It can be easily reproduced like this:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt

  $ mkdir /mnt/testdir
  $ sync

  # Create a file inside the directory and fsync the directory.
  $ touch /mnt/testdir/foo
  $ xfs_io -c "fsync" /mnt/testdir

  # Create a symlink inside the directory and then rename the symlink.
  $ ln -s /mnt/testdir/foo /mnt/testdir/bar
  $ mv /mnt/testdir/bar /mnt/testdir/baz

  # Now fsync again the directory, this persist the log tree.
  $ xfs_io -c "fsync" /mnt/testdir

  <power failure>

  $ mount /dev/sdc /mnt
  $ stat -c %s /mnt/testdir/baz
  0
  $ readlink /mnt/testdir/baz
  $

Fix this by always logging symlinks in full mode (LOG_INODE_ALL), so that
their content is also logged.

A test case for fstests will follow.

CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-12 12:20:25 +02:00
Ethan Lien
f3d97b22a7 btrfs: fix qgroup reserve overflow the qgroup limit
commit b642b52d0b50f4d398cb4293f64992d0eed2e2ce upstream.

We use extent_changeset->bytes_changed in qgroup_reserve_data() to record
how many bytes we set for EXTENT_QGROUP_RESERVED state. Currently the
bytes_changed is set as "unsigned int", and it will overflow if we try to
fallocate a range larger than 4GiB. The result is we reserve less bytes
and eventually break the qgroup limit.

Unlike regular buffered/direct write, which we use one changeset for
each ordered extent, which can never be larger than 256M.  For
fallocate, we use one changeset for the whole range, thus it no longer
respects the 256M per extent limit, and caused the problem.

The following example test script reproduces the problem:

  $ cat qgroup-overflow.sh
  #!/bin/bash

  DEV=/dev/sdj
  MNT=/mnt/sdj

  mkfs.btrfs -f $DEV
  mount $DEV $MNT

  # Set qgroup limit to 2GiB.
  btrfs quota enable $MNT
  btrfs qgroup limit 2G $MNT

  # Try to fallocate a 3GiB file. This should fail.
  echo
  echo "Try to fallocate a 3GiB file..."
  fallocate -l 3G $MNT/3G.file

  # Try to fallocate a 5GiB file.
  echo
  echo "Try to fallocate a 5GiB file..."
  fallocate -l 5G $MNT/5G.file

  # See we break the qgroup limit.
  echo
  sync
  btrfs qgroup show -r $MNT

  umount $MNT

When running the test:

  $ ./qgroup-overflow.sh
  (...)

  Try to fallocate a 3GiB file...
  fallocate: fallocate failed: Disk quota exceeded

  Try to fallocate a 5GiB file...

  qgroupid         rfer         excl     max_rfer
  --------         ----         ----     --------
  0/5           5.00GiB      5.00GiB      2.00GiB

Since we have no control of how bytes_changed is used, it's better to
set it to u64.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-15 14:15:06 +02:00
Qu Wenruo
73d55fa1b9 btrfs: unlock newly allocated extent buffer after error
commit 19ea40dddf1833db868533958ca066f368862211 upstream.

[BUG]
There is a bug report that injected ENOMEM error could leave a tree
block locked while we return to user-space:

  BTRFS info (device loop0): enabling ssd optimizations
  FAULT_INJECTION: forcing a failure.
  name failslab, interval 1, probability 0, space 0, times 0
  CPU: 0 PID: 7579 Comm: syz-executor Not tainted 5.15.0-rc1 #16
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
  rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
  Call Trace:
   __dump_stack lib/dump_stack.c:88 [inline]
   dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106
   fail_dump lib/fault-inject.c:52 [inline]
   should_fail+0x13c/0x160 lib/fault-inject.c:146
   should_failslab+0x5/0x10 mm/slab_common.c:1328
   slab_pre_alloc_hook.constprop.99+0x4e/0xc0 mm/slab.h:494
   slab_alloc_node mm/slub.c:3120 [inline]
   slab_alloc mm/slub.c:3214 [inline]
   kmem_cache_alloc+0x44/0x280 mm/slub.c:3219
   btrfs_alloc_delayed_extent_op fs/btrfs/delayed-ref.h:299 [inline]
   btrfs_alloc_tree_block+0x38c/0x670 fs/btrfs/extent-tree.c:4833
   __btrfs_cow_block+0x16f/0x7d0 fs/btrfs/ctree.c:415
   btrfs_cow_block+0x12a/0x300 fs/btrfs/ctree.c:570
   btrfs_search_slot+0x6b0/0xee0 fs/btrfs/ctree.c:1768
   btrfs_insert_empty_items+0x80/0xf0 fs/btrfs/ctree.c:3905
   btrfs_new_inode+0x311/0xa60 fs/btrfs/inode.c:6530
   btrfs_create+0x12b/0x270 fs/btrfs/inode.c:6783
   lookup_open+0x660/0x780 fs/namei.c:3282
   open_last_lookups fs/namei.c:3352 [inline]
   path_openat+0x465/0xe20 fs/namei.c:3557
   do_filp_open+0xe3/0x170 fs/namei.c:3588
   do_sys_openat2+0x357/0x4a0 fs/open.c:1200
   do_sys_open+0x87/0xd0 fs/open.c:1216
   do_syscall_x64 arch/x86/entry/common.c:50 [inline]
   do_syscall_64+0x34/0xb0 arch/x86/entry/common.c:80
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x46ae99
  Code: f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 48 89 f8 48
  89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d
  01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48
  RSP: 002b:00007f46711b9c48 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
  RAX: ffffffffffffffda RBX: 000000000078c0a0 RCX: 000000000046ae99
  RDX: 0000000000000000 RSI: 00000000000000a1 RDI: 0000000020005800
  RBP: 00007f46711b9c80 R08: 0000000000000000 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000017
  R13: 0000000000000000 R14: 000000000078c0a0 R15: 00007ffc129da6e0

  ================================================
  WARNING: lock held when returning to user space!
  5.15.0-rc1 #16 Not tainted
  ------------------------------------------------
  syz-executor/7579 is leaving the kernel with locks still held!
  1 lock held by syz-executor/7579:
   #0: ffff888104b73da8 (btrfs-tree-01/1){+.+.}-{3:3}, at:
  __btrfs_tree_lock+0x2e/0x1a0 fs/btrfs/locking.c:112

[CAUSE]
In btrfs_alloc_tree_block(), after btrfs_init_new_buffer(), the new
extent buffer @buf is locked, but if later operations like adding
delayed tree ref fail, we just free @buf without unlocking it,
resulting above warning.

[FIX]
Unlock @buf in out_free_buf: label.

Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsZ9O6Zr0KK1yGn=1rQi6Crh1yeCRdTSBxx9R99L4xdn-Q@mail.gmail.com/
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Denis Efremov <denis.e.efremov@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-16 13:20:28 +01:00
Filipe Manana
01bba3f3b1 btrfs: add missing run of delayed items after unlink during log replay
commit 4751dc99627e4d1465c5bfa8cb7ab31ed418eff5 upstream.

During log replay, whenever we need to check if a name (dentry) exists in
a directory we do searches on the subvolume tree for inode references or
or directory entries (BTRFS_DIR_INDEX_KEY keys, and BTRFS_DIR_ITEM_KEY
keys as well, before kernel 5.17). However when during log replay we
unlink a name, through btrfs_unlink_inode(), we may not delete inode
references and dir index keys from a subvolume tree and instead just add
the deletions to the delayed inode's delayed items, which will only be
run when we commit the transaction used for log replay. This means that
after an unlink operation during log replay, if we attempt to search for
the same name during log replay, we will not see that the name was already
deleted, since the deletion is recorded only on the delayed items.

We run delayed items after every unlink operation during log replay,
except at unlink_old_inode_refs() and at add_inode_ref(). This was due
to an overlook, as delayed items should be run after evert unlink, for
the reasons stated above.

So fix those two cases.

Fixes: 0d836392cadd5 ("Btrfs: fix mount failure after fsync due to hard link recreation")
Fixes: 1f250e929a9c9 ("Btrfs: fix log replay failure after unlink and link combination")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:04:10 +01:00
Dāvis Mosāns
749dc9b5b3 btrfs: send: in case of IO error log it
commit 2e7be9db125a0bf940c5d65eb5c40d8700f738b5 upstream.

Currently if we get IO error while doing send then we abort without
logging information about which file caused issue.  So log it to help
with debugging.

CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Dāvis Mosāns <davispuh@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-23 11:58:37 +01:00
Josef Bacik
e7ef158cdf btrfs: remove BUG_ON(!eie) in find_parent_nodes
[ Upstream commit 9f05c09d6baef789726346397438cca4ec43c3ee ]

If we're looking for leafs that point to a data extent we want to record
the extent items that point at our bytenr.  At this point we have the
reference and we know for a fact that this leaf should have a reference
to our bytenr.  However if there's some sort of corruption we may not
find any references to our leaf, and thus could end up with eie == NULL.
Replace this BUG_ON() with an ASSERT() and then return -EUCLEAN for the
mortals.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 09:04:27 +01:00
Josef Bacik
65b2b7becf btrfs: remove BUG_ON() in find_parent_nodes()
[ Upstream commit fcba0120edf88328524a4878d1d6f4ad39f2ec81 ]

We search for an extent entry with .offset = -1, which shouldn't be a
thing, but corruption happens.  Add an ASSERT() for the developers,
return -EUCLEAN for mortals.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 09:04:27 +01:00
Wang Yugui
71bdb6e417 btrfs: check-integrity: fix a warning on write caching disabled disk
[ Upstream commit a91cf0ffbc244792e0b3ecf7d0fddb2f344b461f ]

When a disk has write caching disabled, we skip submission of a bio with
flush and sync requests before writing the superblock, since it's not
needed. However when the integrity checker is enabled, this results in
reports that there are metadata blocks referred by a superblock that
were not properly flushed. So don't skip the bio submission only when
the integrity checker is enabled for the sake of simplicity, since this
is a debug tool and not meant for use in non-debug builds.

fstests/btrfs/220 trigger a check-integrity warning like the following
when CONFIG_BTRFS_FS_CHECK_INTEGRITY=y and the disk with WCE=0.

  btrfs: attempt to write superblock which references block M @5242880 (sdb2/5242880/0) which is not flushed out of disk's write cache (block flush_gen=1, dev->flush_gen=0)!
  ------------[ cut here ]------------
  WARNING: CPU: 28 PID: 843680 at fs/btrfs/check-integrity.c:2196 btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
  CPU: 28 PID: 843680 Comm: umount Not tainted 5.15.0-0.rc5.39.el8.x86_64 #1
  Hardware name: Dell Inc. Precision T7610/0NK70N, BIOS A18 09/11/2019
  RIP: 0010:btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
  RSP: 0018:ffffb642afb47940 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
  RDX: 00000000ffffffff RSI: ffff8b722fc97d00 RDI: ffff8b722fc97d00
  RBP: ffff8b5601c00000 R08: 0000000000000000 R09: c0000000ffff7fff
  R10: 0000000000000001 R11: ffffb642afb476f8 R12: ffffffffffffffff
  R13: ffffb642afb47974 R14: ffff8b5499254c00 R15: 0000000000000003
  FS:  00007f00a06d4080(0000) GS:ffff8b722fc80000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fff5cff5ff0 CR3: 00000001c0c2a006 CR4: 00000000001706e0
  Call Trace:
   btrfsic_process_written_block+0x2f7/0x850 [btrfs]
   __btrfsic_submit_bio.part.19+0x310/0x330 [btrfs]
   ? bio_associate_blkg_from_css+0xa4/0x2c0
   btrfsic_submit_bio+0x18/0x30 [btrfs]
   write_dev_supers+0x81/0x2a0 [btrfs]
   ? find_get_pages_range_tag+0x219/0x280
   ? pagevec_lookup_range_tag+0x24/0x30
   ? __filemap_fdatawait_range+0x6d/0xf0
   ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
   ? find_first_extent_bit+0x9b/0x160 [btrfs]
   ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
   write_all_supers+0x1b3/0xa70 [btrfs]
   ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
   btrfs_commit_transaction+0x59d/0xac0 [btrfs]
   close_ctree+0x11d/0x339 [btrfs]
   generic_shutdown_super+0x71/0x110
   kill_anon_super+0x14/0x30
   btrfs_kill_super+0x12/0x20 [btrfs]
   deactivate_locked_super+0x31/0x70
   cleanup_mnt+0xb8/0x140
   task_work_run+0x6d/0xb0
   exit_to_user_mode_prepare+0x1f0/0x200
   syscall_exit_to_user_mode+0x12/0x30
   do_syscall_64+0x46/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x7f009f711dfb
  RSP: 002b:00007fff5cff7928 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
  RAX: 0000000000000000 RBX: 000055b68c6c9970 RCX: 00007f009f711dfb
  RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055b68c6c9b50
  RBP: 0000000000000000 R08: 000055b68c6ca900 R09: 00007f009f795580
  R10: 0000000000000000 R11: 0000000000000246 R12: 000055b68c6c9b50
  R13: 00007f00a04bf184 R14: 0000000000000000 R15: 00000000ffffffff
  ---[ end trace 2c4b82abcef9eec4 ]---
  S-65536(sdb2/65536/1)
   -->
  M-1064960(sdb2/1064960/1)

Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Wang Yugui <wangyugui@e16-tech.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-12-08 08:50:11 +01:00
Nikolay Borisov
ed058d735a btrfs: fix memory ordering between normal and ordered work functions
commit 45da9c1767ac31857df572f0a909fbe88fd5a7e9 upstream.

Ordered work functions aren't guaranteed to be handled by the same thread
which executed the normal work functions. The only way execution between
normal/ordered functions is synchronized is via the WORK_DONE_BIT,
unfortunately the used bitops don't guarantee any ordering whatsoever.

This manifested as seemingly inexplicable crashes on ARM64, where
async_chunk::inode is seen as non-null in async_cow_submit which causes
submit_compressed_extents to be called and crash occurs because
async_chunk::inode suddenly became NULL. The call trace was similar to:

    pc : submit_compressed_extents+0x38/0x3d0
    lr : async_cow_submit+0x50/0xd0
    sp : ffff800015d4bc20

    <registers omitted for brevity>

    Call trace:
     submit_compressed_extents+0x38/0x3d0
     async_cow_submit+0x50/0xd0
     run_ordered_work+0xc8/0x280
     btrfs_work_helper+0x98/0x250
     process_one_work+0x1f0/0x4ac
     worker_thread+0x188/0x504
     kthread+0x110/0x114
     ret_from_fork+0x10/0x18

Fix this by adding respective barrier calls which ensure that all
accesses preceding setting of WORK_DONE_BIT are strictly ordered before
setting the flag. At the same time add a read barrier after reading of
WORK_DONE_BIT in run_ordered_work which ensures all subsequent loads
would be strictly ordered after reading the bit. This in turn ensures
are all accesses before WORK_DONE_BIT are going to be strictly ordered
before any access that can occur in ordered_func.

Reported-by: Chris Murphy <lists@colorremedies.com>
Fixes: 08a9ff326418 ("btrfs: Added btrfs_workqueue_struct implemented ordered execution based on kernel workqueue")
CC: stable@vger.kernel.org # 4.4+
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2011928
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Chris Murphy <chris@colorremedies.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26 11:36:23 +01:00
Anand Jain
0b818a9341 btrfs: call btrfs_check_rw_degradable only if there is a missing device
commit 5c78a5e7aa835c4f08a7c90fe02d19f95a776f29 upstream.

In open_ctree() in btrfs_check_rw_degradable() [1], we check each block
group individually if at least the minimum number of devices is available
for that profile. If all the devices are available, then we don't have to
check degradable.

[1]
open_ctree()
::
3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {

Also before calling btrfs_check_rw_degradable() in open_ctee() at the
line number shown below [2] we call btrfs_read_chunk_tree() and down to
add_missing_dev() to record number of missing devices.

[2]
open_ctree()
::
3454         ret = btrfs_read_chunk_tree(fs_info);

btrfs_read_chunk_tree()
  read_one_chunk() / read_one_dev()
    add_missing_dev()

So, check if there is any missing device before btrfs_check_rw_degradable()
in open_ctree().

Also, with this the mount command could save ~16ms.[3] in the most
common case, that is no device is missing.

[3]
 1) * 16934.96 us | btrfs_check_rw_degradable [btrfs]();

CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26 11:36:00 +01:00
Filipe Manana
ed0231340a btrfs: fix lost error handling when replaying directory deletes
commit 10adb1152d957a4d570ad630f93a88bb961616c1 upstream.

At replay_dir_deletes(), if find_dir_range() returns an error we break out
of the main while loop and then assign a value of 0 (success) to the 'ret'
variable, resulting in completely ignoring that an error happened. Fix
that by jumping to the 'out' label when find_dir_range() returns an error
(negative value).

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26 11:35:59 +01:00
Li Zhang
9d985857a7 btrfs: clear MISSING device status bit in btrfs_close_one_device
commit 5d03dbebba2594d2e6fbf3b5dd9060c5a835de3b upstream.

Reported bug: https://github.com/kdave/btrfs-progs/issues/389

There's a problem with scrub reporting aborted status but returning
error code 0, on a filesystem with missing and readded device.

Roughly these steps:

- mkfs -d raid1 dev1 dev2
- fill with data
- unmount
- make dev1 disappear
- mount -o degraded
- copy more data
- make dev1 appear again

Running scrub afterwards reports that the command was aborted, but the
system log message says the exit code was 0.

It seems that the cause of the error is decrementing
fs_devices->missing_devices but not clearing device->dev_state.  Every
time we umount filesystem, it would call close_ctree, And it would
eventually involve btrfs_close_one_device to close the device, but it
only decrements fs_devices->missing_devices but does not clear the
device BTRFS_DEV_STATE_MISSING bit. Worse, this bug will cause Integer
Overflow, because every time umount, fs_devices->missing_devices will
decrease. If fs_devices->missing_devices value hit 0, it would overflow.

With added debugging:

   loop1: detected capacity change from 0 to 20971520
   BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 1 transid 21 /dev/loop1 scanned by systemd-udevd (2311)
   loop2: detected capacity change from 0 to 20971520
   BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 2 transid 17 /dev/loop2 scanned by systemd-udevd (2313)
   BTRFS info (device loop1): flagging fs with big metadata feature
   BTRFS info (device loop1): allowing degraded mounts
   BTRFS info (device loop1): using free space tree
   BTRFS info (device loop1): has skinny extents
   BTRFS info (device loop1):  before clear_missing.00000000f706684d /dev/loop1 0
   BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
   BTRFS info (device loop1):  before clear_missing.0000000000000000 /dev/loop2 1
   BTRFS info (device loop1): flagging fs with big metadata feature
   BTRFS info (device loop1): allowing degraded mounts
   BTRFS info (device loop1): using free space tree
   BTRFS info (device loop1): has skinny extents
   BTRFS info (device loop1):  before clear_missing.00000000f706684d /dev/loop1 0
   BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
   BTRFS info (device loop1):  before clear_missing.0000000000000000 /dev/loop2 0
   BTRFS info (device loop1): flagging fs with big metadata feature
   BTRFS info (device loop1): allowing degraded mounts
   BTRFS info (device loop1): using free space tree
   BTRFS info (device loop1): has skinny extents
   BTRFS info (device loop1):  before clear_missing.00000000f706684d /dev/loop1 18446744073709551615
   BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
   BTRFS info (device loop1):  before clear_missing.0000000000000000 /dev/loop2 18446744073709551615

If fs_devices->missing_devices is 0, next time it would be 18446744073709551615

After apply this patch, the fs_devices->missing_devices seems to be
right:

  $ truncate -s 10g test1
  $ truncate -s 10g test2
  $ losetup /dev/loop1 test1
  $ losetup /dev/loop2 test2
  $ mkfs.btrfs -draid1 -mraid1 /dev/loop1 /dev/loop2 -f
  $ losetup -d /dev/loop2
  $ mount -o degraded /dev/loop1 /mnt/1
  $ umount /mnt/1
  $ mount -o degraded /dev/loop1 /mnt/1
  $ umount /mnt/1
  $ mount -o degraded /dev/loop1 /mnt/1
  $ umount /mnt/1
  $ dmesg

   loop1: detected capacity change from 0 to 20971520
   loop2: detected capacity change from 0 to 20971520
   BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 1 transid 5 /dev/loop1 scanned by mkfs.btrfs (1863)
   BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 2 transid 5 /dev/loop2 scanned by mkfs.btrfs (1863)
   BTRFS info (device loop1): flagging fs with big metadata feature
   BTRFS info (device loop1): allowing degraded mounts
   BTRFS info (device loop1): disk space caching is enabled
   BTRFS info (device loop1): has skinny extents
   BTRFS info (device loop1):  before clear_missing.00000000975bd577 /dev/loop1 0
   BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
   BTRFS info (device loop1):  before clear_missing.0000000000000000 /dev/loop2 1
   BTRFS info (device loop1): checking UUID tree
   BTRFS info (device loop1): flagging fs with big metadata feature
   BTRFS info (device loop1): allowing degraded mounts
   BTRFS info (device loop1): disk space caching is enabled
   BTRFS info (device loop1): has skinny extents
   BTRFS info (device loop1):  before clear_missing.00000000975bd577 /dev/loop1 0
   BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
   BTRFS info (device loop1):  before clear_missing.0000000000000000 /dev/loop2 1
   BTRFS info (device loop1): flagging fs with big metadata feature
   BTRFS info (device loop1): allowing degraded mounts
   BTRFS info (device loop1): disk space caching is enabled
   BTRFS info (device loop1): has skinny extents
   BTRFS info (device loop1):  before clear_missing.00000000975bd577 /dev/loop1 0
   BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
   BTRFS info (device loop1):  before clear_missing.0000000000000000 /dev/loop2 1

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Li Zhang <zhanglikernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26 11:35:59 +01:00
Filipe Manana
f03a8a85e9 btrfs: deal with errors when checking if a dir entry exists during log replay
[ Upstream commit 77a5b9e3d14cbce49ceed2766b2003c034c066dc ]

Currently inode_in_dir() ignores errors returned from
btrfs_lookup_dir_index_item() and from btrfs_lookup_dir_item(), treating
any errors as if the directory entry does not exists in the fs/subvolume
tree, which is obviously not correct, as we can get errors such as -EIO
when reading extent buffers while searching the fs/subvolume's tree.

Fix that by making inode_in_dir() return the errors and making its only
caller, add_inode_ref(), deal with returned errors as well.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-10-27 09:53:14 +02:00
Filipe Manana
a262f5711a btrfs: check for error when looking up inode during dir entry replay
commit cfd312695b71df04c3a2597859ff12c470d1e2e4 upstream.

At replay_one_name(), we are treating any error from btrfs_lookup_inode()
as if the inode does not exists. Fix this by checking for an error and
returning it to the caller.

CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-20 11:23:01 +02:00
Filipe Manana
00c93450db btrfs: deal with errors when adding inode reference during log replay
commit 52db77791fe24538c8aa2a183248399715f6b380 upstream.

At __inode_add_ref(), we treating any error returned from
btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning
that there is no existing directory entry in the fs/subvolume tree.
This is not correct since we can get errors such as, for example, -EIO
when reading extent buffers while searching the fs/subvolume's btree.

So fix that and return the error to the caller when it is not -ENOENT.

CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-20 11:23:01 +02:00
Filipe Manana
8d733c5d59 btrfs: deal with errors when replaying dir entry during log replay
commit e15ac6413745e3def00e663de00aea5a717311c1 upstream.

At replay_one_one(), we are treating any error returned from
btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning
that there is no existing directory entry in the fs/subvolume tree.
This is not correct since we can get errors such as, for example, -EIO
when reading extent buffers while searching the fs/subvolume's btree.

So fix that and return the error to the caller when it is not -ENOENT.

CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-20 11:23:01 +02:00
Desmond Cheong Zhi Xi
e44d9cfb15 btrfs: reset replace target device to allocation state on close
commit 0d977e0eba234e01a60bdde27314dc21374201b3 upstream.

This crash was observed with a failed assertion on device close:

  BTRFS: Transaction aborted (error -28)
  WARNING: CPU: 1 PID: 3902 at fs/btrfs/extent-tree.c:2150 btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
  Modules linked in: btrfs blake2b_generic libcrc32c crc32c_intel xor zstd_decompress zstd_compress xxhash lzo_compress lzo_decompress raid6_pq loop
  CPU: 1 PID: 3902 Comm: kworker/u8:4 Not tainted 5.14.0-rc5-default+ #1532
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
  Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
  RIP: 0010:btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
  RSP: 0018:ffffb7a5452d7d80 EFLAGS: 00010282
  RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
  RDX: 0000000000000001 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
  RBP: ffff97834176a378 R08: 0000000000000001 R09: 0000000000000001
  R10: 0000000000000000 R11: 0000000000000001 R12: ffff97835195d388
  R13: 0000000005b08000 R14: ffff978385484000 R15: 000000000000016c
  FS:  0000000000000000(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000056190d003fe8 CR3: 000000002a81e005 CR4: 0000000000170ea0
  Call Trace:
   flush_space+0x197/0x2f0 [btrfs]
   btrfs_async_reclaim_metadata_space+0x139/0x300 [btrfs]
   process_one_work+0x262/0x5e0
   worker_thread+0x4c/0x320
   ? process_one_work+0x5e0/0x5e0
   kthread+0x144/0x170
   ? set_kthread_struct+0x40/0x40
   ret_from_fork+0x1f/0x30
  irq event stamp: 19334989
  hardirqs last  enabled at (19334997): [<ffffffffab0e0c87>] console_unlock+0x2b7/0x400
  hardirqs last disabled at (19335006): [<ffffffffab0e0d0d>] console_unlock+0x33d/0x400
  softirqs last  enabled at (19334900): [<ffffffffaba0030d>] __do_softirq+0x30d/0x574
  softirqs last disabled at (19334893): [<ffffffffab0721ec>] irq_exit_rcu+0x12c/0x140
  ---[ end trace 45939e308e0dd3c7 ]---
  BTRFS: error (device vdd) in btrfs_run_delayed_refs:2150: errno=-28 No space left
  BTRFS info (device vdd): forced readonly
  BTRFS warning (device vdd): failed setting block group ro: -30
  BTRFS info (device vdd): suspending dev_replace for unmount
  assertion failed: !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state), in fs/btrfs/volumes.c:1150
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.h:3431!
  invalid opcode: 0000 [#1] PREEMPT SMP
  CPU: 1 PID: 3982 Comm: umount Tainted: G        W         5.14.0-rc5-default+ #1532
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
  RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
  RSP: 0018:ffffb7a5454c7db8 EFLAGS: 00010246
  RAX: 0000000000000068 RBX: ffff978364b91c00 RCX: 0000000000000000
  RDX: 0000000000000000 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
  RBP: ffff9783523a4c00 R08: 0000000000000001 R09: 0000000000000001
  R10: 0000000000000000 R11: 0000000000000001 R12: ffff9783523a4d18
  R13: 0000000000000000 R14: 0000000000000004 R15: 0000000000000003
  FS:  00007f61c8f42800(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000056190cffa810 CR3: 0000000030b96002 CR4: 0000000000170ea0
  Call Trace:
   btrfs_close_one_device.cold+0x11/0x55 [btrfs]
   close_fs_devices+0x44/0xb0 [btrfs]
   btrfs_close_devices+0x48/0x160 [btrfs]
   generic_shutdown_super+0x69/0x100
   kill_anon_super+0x14/0x30
   btrfs_kill_super+0x12/0x20 [btrfs]
   deactivate_locked_super+0x2c/0xa0
   cleanup_mnt+0x144/0x1b0
   task_work_run+0x59/0xa0
   exit_to_user_mode_loop+0xe7/0xf0
   exit_to_user_mode_prepare+0xaf/0xf0
   syscall_exit_to_user_mode+0x19/0x50
   do_syscall_64+0x4a/0x90
   entry_SYSCALL_64_after_hwframe+0x44/0xae

This happens when close_ctree is called while a dev_replace hasn't
completed. In close_ctree, we suspend the dev_replace, but keep the
replace target around so that we can resume the dev_replace procedure
when we mount the root again. This is the call trace:

  close_ctree():
    btrfs_dev_replace_suspend_for_unmount();
    btrfs_close_devices():
      btrfs_close_fs_devices():
        btrfs_close_one_device():
          ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
                 &device->dev_state));

However, since the replace target sticks around, there is a device
with BTRFS_DEV_STATE_REPLACE_TGT set on close, and we fail the
assertion in btrfs_close_one_device.

To fix this, if we come across the replace target device when
closing, we should properly reset it back to allocation state. This
fix also ensures that if a non-target device has a corrupted state and
has the BTRFS_DEV_STATE_REPLACE_TGT bit set, the assertion will still
catch the error.

Reported-by: David Sterba <dsterba@suse.com>
Fixes: b2a616676839 ("btrfs: fix rw device counting in __btrfs_free_extra_devids")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-22 11:47:57 +02:00
Qu Wenruo
1059d8a3e2 Revert "btrfs: compression: don't try to compress if we don't have enough pages"
commit 4e9655763b82a91e4c341835bb504a2b1590f984 upstream.

This reverts commit f2165627319ffd33a6217275e5690b1ab5c45763.

[BUG]
It's no longer possible to create compressed inline extent after commit
f2165627319f ("btrfs: compression: don't try to compress if we don't
have enough pages").

[CAUSE]
For compression code, there are several possible reasons we have a range
that needs to be compressed while it's no more than one page.

- Compressed inline write
  The data is always smaller than one sector and the test lacks the
  condition to properly recognize a non-inline extent.

- Compressed subpage write
  For the incoming subpage compressed write support, we require page
  alignment of the delalloc range.
  And for 64K page size, we can compress just one page into smaller
  sectors.

For those reasons, the requirement for the data to be more than one page
is not correct, and is already causing regression for compressed inline
data writeback.  The idea of skipping one page to avoid wasting CPU time
could be revisited in the future.

[FIX]
Fix it by reverting the offending commit.

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/afa2742.c084f5d6.17b6b08dffc@tnonline.net
Fixes: f2165627319f ("btrfs: compression: don't try to compress if we don't have enough pages")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-22 11:47:48 +02:00
NeilBrown
9732f81ed6 btrfs: prevent rename2 from exchanging a subvol with a directory from different parents
[ Upstream commit 3f79f6f6247c83f448c8026c3ee16d4636ef8d4f ]

Cross-rename lacks a check when that would prevent exchanging a
directory and subvolume from different parent subvolume. This causes
data inconsistencies and is caught before commit by tree-checker,
turning the filesystem to read-only.

Calling the renameat2 with RENAME_EXCHANGE flags like

  renameat2(AT_FDCWD, namesrc, AT_FDCWD, namedest, (1 << 1))

on two paths:

  namesrc = dir1/subvol1/dir2
 namedest = subvol2/subvol3

will cause key order problem with following write time tree-checker
report:

  [1194842.307890] BTRFS critical (device loop1): corrupt leaf: root=5 block=27574272 slot=10 ino=258, invalid previous key objectid, have 257 expect 258
  [1194842.322221] BTRFS info (device loop1): leaf 27574272 gen 8 total ptrs 11 free space 15444 owner 5
  [1194842.331562] BTRFS info (device loop1): refs 2 lock_owner 0 current 26561
  [1194842.338772]        item 0 key (256 1 0) itemoff 16123 itemsize 160
  [1194842.338793]                inode generation 3 size 16 mode 40755
  [1194842.338801]        item 1 key (256 12 256) itemoff 16111 itemsize 12
  [1194842.338809]        item 2 key (256 84 2248503653) itemoff 16077 itemsize 34
  [1194842.338817]                dir oid 258 type 2
  [1194842.338823]        item 3 key (256 84 2363071922) itemoff 16043 itemsize 34
  [1194842.338830]                dir oid 257 type 2
  [1194842.338836]        item 4 key (256 96 2) itemoff 16009 itemsize 34
  [1194842.338843]        item 5 key (256 96 3) itemoff 15975 itemsize 34
  [1194842.338852]        item 6 key (257 1 0) itemoff 15815 itemsize 160
  [1194842.338863]                inode generation 6 size 8 mode 40755
  [1194842.338869]        item 7 key (257 12 256) itemoff 15801 itemsize 14
  [1194842.338876]        item 8 key (257 84 2505409169) itemoff 15767 itemsize 34
  [1194842.338883]                dir oid 256 type 2
  [1194842.338888]        item 9 key (257 96 2) itemoff 15733 itemsize 34
  [1194842.338895]        item 10 key (258 12 256) itemoff 15719 itemsize 14
  [1194842.339163] BTRFS error (device loop1): block=27574272 write time tree block corruption detected
  [1194842.339245] ------------[ cut here ]------------
  [1194842.443422] WARNING: CPU: 6 PID: 26561 at fs/btrfs/disk-io.c:449 csum_one_extent_buffer+0xed/0x100 [btrfs]
  [1194842.511863] CPU: 6 PID: 26561 Comm: kworker/u17:2 Not tainted 5.14.0-rc3-git+ #793
  [1194842.511870] Hardware name: empty empty/S3993, BIOS PAQEX0-3 02/24/2008
  [1194842.511876] Workqueue: btrfs-worker-high btrfs_work_helper [btrfs]
  [1194842.511976] RIP: 0010:csum_one_extent_buffer+0xed/0x100 [btrfs]
  [1194842.512068] RSP: 0018:ffffa2c284d77da0 EFLAGS: 00010282
  [1194842.512074] RAX: 0000000000000000 RBX: 0000000000001000 RCX: ffff928867bd9978
  [1194842.512078] RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff928867bd9970
  [1194842.512081] RBP: ffff92876b958000 R08: 0000000000000001 R09: 00000000000c0003
  [1194842.512085] R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
  [1194842.512088] R13: ffff92875f989f98 R14: 0000000000000000 R15: 0000000000000000
  [1194842.512092] FS:  0000000000000000(0000) GS:ffff928867a00000(0000) knlGS:0000000000000000
  [1194842.512095] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [1194842.512099] CR2: 000055f5384da1f0 CR3: 0000000102fe4000 CR4: 00000000000006e0
  [1194842.512103] Call Trace:
  [1194842.512128]  ? run_one_async_free+0x10/0x10 [btrfs]
  [1194842.631729]  btree_csum_one_bio+0x1ac/0x1d0 [btrfs]
  [1194842.631837]  run_one_async_start+0x18/0x30 [btrfs]
  [1194842.631938]  btrfs_work_helper+0xd5/0x1d0 [btrfs]
  [1194842.647482]  process_one_work+0x262/0x5e0
  [1194842.647520]  worker_thread+0x4c/0x320
  [1194842.655935]  ? process_one_work+0x5e0/0x5e0
  [1194842.655946]  kthread+0x135/0x160
  [1194842.655953]  ? set_kthread_struct+0x40/0x40
  [1194842.655965]  ret_from_fork+0x1f/0x30
  [1194842.672465] irq event stamp: 1729
  [1194842.672469] hardirqs last  enabled at (1735): [<ffffffffbd1104f5>] console_trylock_spinning+0x185/0x1a0
  [1194842.672477] hardirqs last disabled at (1740): [<ffffffffbd1104cc>] console_trylock_spinning+0x15c/0x1a0
  [1194842.672482] softirqs last  enabled at (1666): [<ffffffffbdc002e1>] __do_softirq+0x2e1/0x50a
  [1194842.672491] softirqs last disabled at (1651): [<ffffffffbd08aab7>] __irq_exit_rcu+0xa7/0xd0

The corrupted data will not be written, and filesystem can be unmounted
and mounted again (all changes since the last commit will be lost).

Add the missing check for new_ino so that all non-subvolumes must reside
under the same parent subvolume. There's an exception allowing to
exchange two subvolumes from any parents as the directory representing a
subvolume is only a logical link and does not have any other structures
related to the parent subvolume, unlike files, directories etc, that
are always in the inode namespace of the parent subvolume.

Fixes: cdd1fedf8261 ("btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT")
CC: stable@vger.kernel.org # 4.7+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-26 08:36:48 -04:00
Goldwyn Rodrigues
ad929b7bfb btrfs: mark compressed range uptodate only if all bio succeed
[ Upstream commit 240246f6b913b0c23733cfd2def1d283f8cc9bbe ]

In compression write endio sequence, the range which the compressed_bio
writes is marked as uptodate if the last bio of the compressed (sub)bios
is completed successfully. There could be previous bio which may
have failed which is recorded in cb->errors.

Set the writeback range as uptodate only if cb->errors is zero, as opposed
to checking only the last bio's status.

Backporting notes: in all versions up to 4.4 the last argument is always
replaced by "!cb->errors".

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-08 08:54:28 +02:00
Desmond Cheong Zhi Xi
d96a56a760 btrfs: fix rw device counting in __btrfs_free_extra_devids
commit b2a616676839e2a6b02c8e40be7f886f882ed194 upstream.

When removing a writeable device in __btrfs_free_extra_devids, the rw
device count should be decremented.

This error was caught by Syzbot which reported a warning in
close_fs_devices:

  WARNING: CPU: 1 PID: 9355 at fs/btrfs/volumes.c:1168 close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168
  Modules linked in:
  CPU: 0 PID: 9355 Comm: syz-executor552 Not tainted 5.13.0-rc1-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  RIP: 0010:close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168
  RSP: 0018:ffffc9000333f2f0 EFLAGS: 00010293
  RAX: ffffffff8365f5c3 RBX: 0000000000000001 RCX: ffff888029afd4c0
  RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
  RBP: ffff88802846f508 R08: ffffffff8365f525 R09: ffffed100337d128
  R10: ffffed100337d128 R11: 0000000000000000 R12: dffffc0000000000
  R13: ffff888019be8868 R14: 1ffff1100337d10d R15: 1ffff1100337d10a
  FS:  00007f6f53828700(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000000000047c410 CR3: 00000000302a6000 CR4: 00000000001506f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   btrfs_close_devices+0xc9/0x450 fs/btrfs/volumes.c:1180
   open_ctree+0x8e1/0x3968 fs/btrfs/disk-io.c:3693
   btrfs_fill_super fs/btrfs/super.c:1382 [inline]
   btrfs_mount_root+0xac5/0xc60 fs/btrfs/super.c:1749
   legacy_get_tree+0xea/0x180 fs/fs_context.c:592
   vfs_get_tree+0x86/0x270 fs/super.c:1498
   fc_mount fs/namespace.c:993 [inline]
   vfs_kern_mount+0xc9/0x160 fs/namespace.c:1023
   btrfs_mount+0x3d3/0xb50 fs/btrfs/super.c:1809
   legacy_get_tree+0xea/0x180 fs/fs_context.c:592
   vfs_get_tree+0x86/0x270 fs/super.c:1498
   do_new_mount fs/namespace.c:2905 [inline]
   path_mount+0x196f/0x2be0 fs/namespace.c:3235
   do_mount fs/namespace.c:3248 [inline]
   __do_sys_mount fs/namespace.c:3456 [inline]
   __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3433
   do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Because fs_devices->rw_devices was not 0 after
closing all devices. Here is the call trace that was observed:

  btrfs_mount_root():
    btrfs_scan_one_device():
      device_list_add();   <---------------- device added
    btrfs_open_devices():
      open_fs_devices():
        btrfs_open_one_device();   <-------- writable device opened,
	                                     rw device count ++
    btrfs_fill_super():
      open_ctree():
        btrfs_free_extra_devids():
	  __btrfs_free_extra_devids();  <--- writable device removed,
	                              rw device count not decremented
	  fail_tree_roots:
	    btrfs_close_devices():
	      close_fs_devices();   <------- rw device count off by 1

As a note, prior to commit cf89af146b7e ("btrfs: dev-replace: fail
mount if we don't have replace item with target device"), rw_devices
was decremented on removing a writable device in
__btrfs_free_extra_devids only if the BTRFS_DEV_STATE_REPLACE_TGT bit
was not set for the device. However, this check does not need to be
reinstated as it is now redundant and incorrect.

In __btrfs_free_extra_devids, we skip removing the device if it is the
target for replacement. This is done by checking whether device->devid
== BTRFS_DEV_REPLACE_DEVID. Since BTRFS_DEV_STATE_REPLACE_TGT is set
only on the device with devid BTRFS_DEV_REPLACE_DEVID, no devices
should have the BTRFS_DEV_STATE_REPLACE_TGT bit set after the check,
and so it's redundant to test for that bit.

Additionally, following commit 82372bc816d7 ("Btrfs: make
the logic of source device removing more clear"), rw_devices is
incremented whenever a writeable device is added to the alloc
list (including the target device in btrfs_dev_replace_finishing), so
all removals of writable devices from the alloc list should also be
accompanied by a decrement to rw_devices.

Reported-by: syzbot+a70e2ad0879f160b9217@syzkaller.appspotmail.com
Fixes: cf89af146b7e ("btrfs: dev-replace: fail mount if we don't have replace item with target device")
CC: stable@vger.kernel.org # 5.10+
Tested-by: syzbot+a70e2ad0879f160b9217@syzkaller.appspotmail.com
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04 12:23:44 +02:00
David Sterba
a91010f5e2 btrfs: compression: don't try to compress if we don't have enough pages
commit f2165627319ffd33a6217275e5690b1ab5c45763 upstream

The early check if we should attempt compression does not take into
account the number of input pages. It can happen that there's only one
page, eg. a tail page after some ranges of the BTRFS_MAX_UNCOMPRESSED
have been processed, or an isolated page that won't be converted to an
inline extent.

The single page would be compressed but a later check would drop it
again because the result size must be at least one block shorter than
the input. That can never work with just one page.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: David Sterba <dsterba@suse.com>
[sudip: adjust context]
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-28 11:13:52 +02:00
David Sterba
ea61234a1c btrfs: clear log tree recovering status if starting transaction fails
[ Upstream commit 1aeb6b563aea18cd55c73cf666d1d3245a00f08c ]

When a log recovery is in progress, lots of operations have to take that
into account, so we keep this status per tree during the operation. Long
time ago error handling revamp patch 79787eaab461 ("btrfs: replace many
BUG_ONs with proper error handling") removed clearing of the status in
an error branch. Add it back as was intended in e02119d5a7b4 ("Btrfs:
Add a write ahead tree log to optimize synchronous operations").

There are probably no visible effects, log replay is done only during
mount and if it fails all structures are cleared so the stale status
won't be kept.

Fixes: 79787eaab461 ("btrfs: replace many BUG_ONs with proper error handling")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-20 16:15:48 +02:00
Christophe Leroy
7333841bae btrfs: disable build on platforms having page size 256K
[ Upstream commit b05fbcc36be1f8597a1febef4892053a0b2f3f60 ]

With a config having PAGE_SIZE set to 256K, BTRFS build fails
with the following message

  include/linux/compiler_types.h:326:38: error: call to
  '__compiletime_assert_791' declared with attribute error:
  BUILD_BUG_ON failed: (BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0

BTRFS_MAX_COMPRESSED being 128K, BTRFS cannot support platforms with
256K pages at the time being.

There are two platforms that can select 256K pages:
 - hexagon
 - powerpc

Disable BTRFS when 256K page size is selected. Supporting this would
require changes to the subpage mode that's currently being developed.
Given that 256K is many times larger than page sizes commonly used and
for what the algorithms and structures have been tuned, it's out of
scope and disabling build is a reasonable option.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-20 16:15:45 +02:00
Josef Bacik
41a5f2820a btrfs: abort transaction if we fail to update the delayed inode
[ Upstream commit 04587ad9bef6ce9d510325b4ba9852b6129eebdb ]

If we fail to update the delayed inode we need to abort the transaction,
because we could leave an inode with the improper counts or some other
such corruption behind.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-20 16:15:45 +02:00
Josef Bacik
5a9e95173b btrfs: fix error handling in __btrfs_update_delayed_inode
[ Upstream commit bb385bedded3ccbd794559600de4a09448810f4a ]

If we get an error while looking up the inode item we'll simply bail
without cleaning up the delayed node.  This results in this style of
warning happening on commit:

  WARNING: CPU: 0 PID: 76403 at fs/btrfs/delayed-inode.c:1365 btrfs_assert_delayed_root_empty+0x5b/0x90
  CPU: 0 PID: 76403 Comm: fsstress Tainted: G        W         5.13.0-rc1+ #373
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  RIP: 0010:btrfs_assert_delayed_root_empty+0x5b/0x90
  RSP: 0018:ffffb8bb815a7e50 EFLAGS: 00010286
  RAX: 0000000000000000 RBX: ffff95d6d07e1888 RCX: ffff95d6c0fa3000
  RDX: 0000000000000002 RSI: 000000000029e91c RDI: ffff95d6c0fc8060
  RBP: ffff95d6c0fc8060 R08: 00008d6d701a2c1d R09: 0000000000000000
  R10: ffff95d6d1760ea0 R11: 0000000000000001 R12: ffff95d6c15a4d00
  R13: ffff95d6c0fa3000 R14: 0000000000000000 R15: ffffb8bb815a7e90
  FS:  00007f490e8dbb80(0000) GS:ffff95d73bc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f6e75555cb0 CR3: 00000001101ce001 CR4: 0000000000370ef0
  Call Trace:
   btrfs_commit_transaction+0x43c/0xb00
   ? finish_wait+0x80/0x80
   ? vfs_fsync_range+0x90/0x90
   iterate_supers+0x8c/0x100
   ksys_sync+0x50/0x90
   __do_sys_sync+0xa/0x10
   do_syscall_64+0x3d/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Because the iref isn't dropped and this leaves an elevated node->count,
so any release just re-queues it onto the delayed inodes list.  Fix this
by going to the out label to handle the proper cleanup of the delayed
node.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-20 16:15:45 +02:00
David Sterba
e00c01b74a btrfs: clear defrag status of a root if starting transaction fails
commit 6819703f5a365c95488b07066a8744841bf14231 upstream.

The defrag loop processes leaves in batches and starting transaction for
each. The whole defragmentation on a given root is protected by a bit
but in case the transaction fails, the bit is not cleared

In case the transaction fails the bit would prevent starting
defragmentation again, so make sure it's cleared.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-20 16:15:40 +02:00
Filipe Manana
ce3986380a btrfs: send: fix invalid path for unlink operations after parent orphanization
commit d8ac76cdd1755b21e8c008c28d0b7251c0b14986 upstream.

During an incremental send operation, when processing the new references
for the current inode, we might send an unlink operation for another inode
that has a conflicting path and has more than one hard link. However this
path was computed and cached before we processed previous new references
for the current inode. We may have orphanized a directory of that path
while processing a previous new reference, in which case the path will
be invalid and cause the receiver process to fail.

The following reproducer triggers the problem and explains how/why it
happens in its comments:

  $ cat test-send-unlink.sh
  #!/bin/bash

  DEV=/dev/sdi
  MNT=/mnt/sdi

  mkfs.btrfs -f $DEV >/dev/null
  mount $DEV $MNT

  # Create our test files and directory. Inode 259 (file3) has two hard
  # links.
  touch $MNT/file1
  touch $MNT/file2
  touch $MNT/file3

  mkdir $MNT/A
  ln $MNT/file3 $MNT/A/hard_link

  # Filesystem looks like:
  #
  # .                                     (ino 256)
  # |----- file1                          (ino 257)
  # |----- file2                          (ino 258)
  # |----- file3                          (ino 259)
  # |----- A/                             (ino 260)
  #        |---- hard_link                (ino 259)
  #

  # Now create the base snapshot, which is going to be the parent snapshot
  # for a later incremental send.
  btrfs subvolume snapshot -r $MNT $MNT/snap1
  btrfs send -f /tmp/snap1.send $MNT/snap1

  # Move inode 257 into directory inode 260. This results in computing the
  # path for inode 260 as "/A" and caching it.
  mv $MNT/file1 $MNT/A/file1

  # Move inode 258 (file2) into directory inode 260, with a name of
  # "hard_link", moving first inode 259 away since it currently has that
  # location and name.
  mv $MNT/A/hard_link $MNT/tmp
  mv $MNT/file2 $MNT/A/hard_link

  # Now rename inode 260 to something else (B for example) and then create
  # a hard link for inode 258 that has the old name and location of inode
  # 260 ("/A").
  mv $MNT/A $MNT/B
  ln $MNT/B/hard_link $MNT/A

  # Filesystem now looks like:
  #
  # .                                     (ino 256)
  # |----- tmp                            (ino 259)
  # |----- file3                          (ino 259)
  # |----- B/                             (ino 260)
  # |      |---- file1                    (ino 257)
  # |      |---- hard_link                (ino 258)
  # |
  # |----- A                              (ino 258)

  # Create another snapshot of our subvolume and use it for an incremental
  # send.
  btrfs subvolume snapshot -r $MNT $MNT/snap2
  btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2

  # Now unmount the filesystem, create a new one, mount it and try to
  # apply both send streams to recreate both snapshots.
  umount $DEV

  mkfs.btrfs -f $DEV >/dev/null

  mount $DEV $MNT

  # First add the first snapshot to the new filesystem by applying the
  # first send stream.
  btrfs receive -f /tmp/snap1.send $MNT

  # The incremental receive operation below used to fail with the
  # following error:
  #
  #    ERROR: unlink A/hard_link failed: No such file or directory
  #
  # This is because when send is processing inode 257, it generates the
  # path for inode 260 as "/A", since that inode is its parent in the send
  # snapshot, and caches that path.
  #
  # Later when processing inode 258, it first processes its new reference
  # that has the path of "/A", which results in orphanizing inode 260
  # because there is a a path collision. This results in issuing a rename
  # operation from "/A" to "/o260-6-0".
  #
  # Finally when processing the new reference "B/hard_link" for inode 258,
  # it notices that it collides with inode 259 (not yet processed, because
  # it has a higher inode number), since that inode has the name
  # "hard_link" under the directory inode 260. It also checks that inode
  # 259 has two hardlinks, so it decides to issue a unlink operation for
  # the name "hard_link" for inode 259. However the path passed to the
  # unlink operation is "/A/hard_link", which is incorrect since currently
  # "/A" does not exists, due to the orphanization of inode 260 mentioned
  # before. The path is incorrect because it was computed and cached
  # before the orphanization. This results in the receiver to fail with
  # the above error.
  btrfs receive -f /tmp/snap2.send $MNT

  umount $MNT

When running the test, it fails like this:

  $ ./test-send-unlink.sh
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
  At subvol /mnt/sdi/snap1
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
  At subvol /mnt/sdi/snap2
  At subvol snap1
  At snapshot snap2
  ERROR: unlink A/hard_link failed: No such file or directory

Fix this by recomputing a path before issuing an unlink operation when
processing the new references for the current inode if we previously
have orphanized a directory.

A test case for fstests will follow soon.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-20 16:15:40 +02:00
Ritesh Harjani
9995f42ea1 btrfs: return value from btrfs_mark_extent_written() in case of error
commit e7b2ec3d3d4ebeb4cff7ae45cf430182fa6a49fb upstream.

We always return 0 even in case of an error in btrfs_mark_extent_written().
Fix it to return proper error value in case of a failure. All callers
handle it.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-16 11:54:59 +02:00
Anand Jain
6b678e02e6 btrfs: fix unmountable seed device after fstrim
commit 5e753a817b2d5991dfe8a801b7b1e8e79a1c5a20 upstream.

The following test case reproduces an issue of wrongly freeing in-use
blocks on the readonly seed device when fstrim is called on the rw sprout
device. As shown below.

Create a seed device and add a sprout device to it:

  $ mkfs.btrfs -fq -dsingle -msingle /dev/loop0
  $ btrfstune -S 1 /dev/loop0
  $ mount /dev/loop0 /btrfs
  $ btrfs dev add -f /dev/loop1 /btrfs
  BTRFS info (device loop0): relocating block group 290455552 flags system
  BTRFS info (device loop0): relocating block group 1048576 flags system
  BTRFS info (device loop0): disk added /dev/loop1
  $ umount /btrfs

Mount the sprout device and run fstrim:

  $ mount /dev/loop1 /btrfs
  $ fstrim /btrfs
  $ umount /btrfs

Now try to mount the seed device, and it fails:

  $ mount /dev/loop0 /btrfs
  mount: /btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error.

Block 5292032 is missing on the readonly seed device:

 $ dmesg -kt | tail
 <snip>
 BTRFS error (device loop0): bad tree block start, want 5292032 have 0
 BTRFS warning (device loop0): couldn't read-tree root
 BTRFS error (device loop0): open_ctree failed

>From the dump-tree of the seed device (taken before the fstrim). Block
5292032 belonged to the block group starting at 5242880:

  $ btrfs inspect dump-tree -e /dev/loop0 | grep -A1 BLOCK_GROUP
  <snip>
  item 3 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16169 itemsize 24
  	block group used 114688 chunk_objectid 256 flags METADATA
  <snip>

>From the dump-tree of the sprout device (taken before the fstrim).
fstrim used block-group 5242880 to find the related free space to free:

  $ btrfs inspect dump-tree -e /dev/loop1 | grep -A1 BLOCK_GROUP
  <snip>
  item 1 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16226 itemsize 24
  	block group used 32768 chunk_objectid 256 flags METADATA
  <snip>

BPF kernel tracing the fstrim command finds the missing block 5292032
within the range of the discarded blocks as below:

  kprobe:btrfs_discard_extent {
  	printf("freeing start %llu end %llu num_bytes %llu:\n",
  		arg1, arg1+arg2, arg2);
  }

  freeing start 5259264 end 5406720 num_bytes 147456
  <snip>

Fix this by avoiding the discard command to the readonly seed device.

Reported-by: Chris Murphy <lists@colorremedies.com>
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:24:08 +02:00
Josef Bacik
c5cfa81562 btrfs: fixup error handling in fixup_inode_link_counts
commit 011b28acf940eb61c000059dd9e2cfcbf52ed96b upstream.

This function has the following pattern

	while (1) {
		ret = whatever();
		if (ret)
			goto out;
	}
	ret = 0
out:
	return ret;

However several places in this while loop we simply break; when there's
a problem, thus clearing the return value, and in one case we do a
return -EIO, and leak the memory for the path.

Fix this by re-arranging the loop to deal with ret == 1 coming from
btrfs_search_slot, and then simply delete the

	ret = 0;
out:

bit so everybody can break if there is an error, which will allow for
proper error handling to occur.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:24:07 +02:00
Josef Bacik
adaafc32d8 btrfs: return errors from btrfs_del_csums in cleanup_ref_head
commit 856bd270dc4db209c779ce1e9555c7641ffbc88e upstream.

We are unconditionally returning 0 in cleanup_ref_head, despite the fact
that btrfs_del_csums could fail.  We need to return the error so the
transaction gets aborted properly, fix this by returning ret from
btrfs_del_csums in cleanup_ref_head.

Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:24:07 +02:00
Josef Bacik
8299bb94fa btrfs: fix error handling in btrfs_del_csums
commit b86652be7c83f70bf406bed18ecf55adb9bfb91b upstream.

Error injection stress would sometimes fail with checksums on disk that
did not have a corresponding extent.  This occurred because the pattern
in btrfs_del_csums was

	while (1) {
		ret = btrfs_search_slot();
		if (ret < 0)
			break;
	}
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;

If we got an error from btrfs_search_slot we'd clear the error because
we were breaking instead of goto out.  Instead of using goto out, simply
handle the cases where we may leave a random value in ret, and get rid
of the

	ret = 0;
out:

pattern and simply allow break to have the proper error reporting.  With
this fix we properly abort the transaction and do not commit thinking we
successfully deleted the csum.

Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:24:07 +02:00
Josef Bacik
543a6f5284 btrfs: mark ordered extent and inode with error if we fail to finish
commit d61bec08b904cf171835db98168f82bc338e92e4 upstream.

While doing error injection testing I saw that sometimes we'd get an
abort that wouldn't stop the current transaction commit from completing.
This abort was coming from finish ordered IO, but at this point in the
transaction commit we should have gotten an error and stopped.

It turns out the abort came from finish ordered io while trying to write
out the free space cache.  It occurred to me that any failure inside of
finish_ordered_io isn't actually raised to the person doing the writing,
so we could have any number of failures in this path and think the
ordered extent completed successfully and the inode was fine.

Fix this by marking the ordered extent with BTRFS_ORDERED_IOERR, and
marking the mapping of the inode with mapping_set_error, so any callers
that simply call fdatawait will also get the error.

With this we're seeing the IO error on the free space inode when we fail
to do the finish_ordered_io.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:24:07 +02:00
Josef Bacik
6eccfb28f8 btrfs: do not BUG_ON in link_to_fixup_dir
[ Upstream commit 91df99a6eb50d5a1bc70fff4a09a0b7ae6aab96d ]

While doing error injection testing I got the following panic

  kernel BUG at fs/btrfs/tree-log.c:1862!
  invalid opcode: 0000 [#1] SMP NOPTI
  CPU: 1 PID: 7836 Comm: mount Not tainted 5.13.0-rc1+ #305
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  RIP: 0010:link_to_fixup_dir+0xd5/0xe0
  RSP: 0018:ffffb5800180fa30 EFLAGS: 00010216
  RAX: fffffffffffffffb RBX: 00000000fffffffb RCX: ffff8f595287faf0
  RDX: ffffb5800180fa37 RSI: ffff8f5954978800 RDI: 0000000000000000
  RBP: ffff8f5953af9450 R08: 0000000000000019 R09: 0000000000000001
  R10: 000151f408682970 R11: 0000000120021001 R12: ffff8f5954978800
  R13: ffff8f595287faf0 R14: ffff8f5953c77dd0 R15: 0000000000000065
  FS:  00007fc5284c8c40(0000) GS:ffff8f59bbd00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fc5287f47c0 CR3: 000000011275e002 CR4: 0000000000370ee0
  Call Trace:
   replay_one_buffer+0x409/0x470
   ? btree_read_extent_buffer_pages+0xd0/0x110
   walk_up_log_tree+0x157/0x1e0
   walk_log_tree+0xa6/0x1d0
   btrfs_recover_log_trees+0x1da/0x360
   ? replay_one_extent+0x7b0/0x7b0
   open_ctree+0x1486/0x1720
   btrfs_mount_root.cold+0x12/0xea
   ? __kmalloc_track_caller+0x12f/0x240
   legacy_get_tree+0x24/0x40
   vfs_get_tree+0x22/0xb0
   vfs_kern_mount.part.0+0x71/0xb0
   btrfs_mount+0x10d/0x380
   ? vfs_parse_fs_string+0x4d/0x90
   legacy_get_tree+0x24/0x40
   vfs_get_tree+0x22/0xb0
   path_mount+0x433/0xa10
   __x64_sys_mount+0xe3/0x120
   do_syscall_64+0x3d/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae

We can get -EIO or any number of legitimate errors from
btrfs_search_slot(), panicing here is not the appropriate response.  The
error path for this code handles errors properly, simply return the
error.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-03 08:38:10 +02:00
Filipe Manana
b782361def btrfs: fix race when picking most recent mod log operation for an old root
[ Upstream commit f9690f426b2134cc3e74bfc5d9dfd6a4b2ca5281 ]

Commit dbcc7d57bffc0c ("btrfs: fix race when cloning extent buffer during
rewind of an old root"), fixed a race when we need to rewind the extent
buffer of an old root. It was caused by picking a new mod log operation
for the extent buffer while getting a cloned extent buffer with an outdated
number of items (off by -1), because we cloned the extent buffer without
locking it first.

However there is still another similar race, but in the opposite direction.
The cloned extent buffer has a number of items that does not match the
number of tree mod log operations that are going to be replayed. This is
because right after we got the last (most recent) tree mod log operation to
replay and before locking and cloning the extent buffer, another task adds
a new pointer to the extent buffer, which results in adding a new tree mod
log operation and incrementing the number of items in the extent buffer.
So after cloning we have mismatch between the number of items in the extent
buffer and the number of mod log operations we are going to apply to it.
This results in hitting a BUG_ON() that produces the following stack trace:

   ------------[ cut here ]------------
   kernel BUG at fs/btrfs/tree-mod-log.c:675!
   invalid opcode: 0000 [#1] SMP KASAN PTI
   CPU: 3 PID: 4811 Comm: crawl_1215 Tainted: G        W         5.12.0-7d1efdf501f8-misc-next+ #99
   Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
   RIP: 0010:tree_mod_log_rewind+0x3b1/0x3c0
   Code: 05 48 8d 74 10 (...)
   RSP: 0018:ffffc90001027090 EFLAGS: 00010293
   RAX: 0000000000000000 RBX: ffff8880a8514600 RCX: ffffffffaa9e59b6
   RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff8880a851462c
   RBP: ffffc900010270e0 R08: 00000000000000c0 R09: ffffed1004333417
   R10: ffff88802199a0b7 R11: ffffed1004333416 R12: 000000000000000e
   R13: ffff888135af8748 R14: ffff88818766ff00 R15: ffff8880a851462c
   FS:  00007f29acf62700(0000) GS:ffff8881f2200000(0000) knlGS:0000000000000000
   CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   CR2: 00007f0e6013f718 CR3: 000000010d42e003 CR4: 0000000000170ee0
   Call Trace:
    btrfs_get_old_root+0x16a/0x5c0
    ? lock_downgrade+0x400/0x400
    btrfs_search_old_slot+0x192/0x520
    ? btrfs_search_slot+0x1090/0x1090
    ? free_extent_buffer.part.61+0xd7/0x140
    ? free_extent_buffer+0x13/0x20
    resolve_indirect_refs+0x3e9/0xfc0
    ? lock_downgrade+0x400/0x400
    ? __kasan_check_read+0x11/0x20
    ? add_prelim_ref.part.11+0x150/0x150
    ? lock_downgrade+0x400/0x400
    ? __kasan_check_read+0x11/0x20
    ? lock_acquired+0xbb/0x620
    ? __kasan_check_write+0x14/0x20
    ? do_raw_spin_unlock+0xa8/0x140
    ? rb_insert_color+0x340/0x360
    ? prelim_ref_insert+0x12d/0x430
    find_parent_nodes+0x5c3/0x1830
    ? stack_trace_save+0x87/0xb0
    ? resolve_indirect_refs+0xfc0/0xfc0
    ? fs_reclaim_acquire+0x67/0xf0
    ? __kasan_check_read+0x11/0x20
    ? lockdep_hardirqs_on_prepare+0x210/0x210
    ? fs_reclaim_acquire+0x67/0xf0
    ? __kasan_check_read+0x11/0x20
    ? ___might_sleep+0x10f/0x1e0
    ? __kasan_kmalloc+0x9d/0xd0
    ? trace_hardirqs_on+0x55/0x120
    btrfs_find_all_roots_safe+0x142/0x1e0
    ? find_parent_nodes+0x1830/0x1830
    ? trace_hardirqs_on+0x55/0x120
    ? ulist_free+0x1f/0x30
    ? btrfs_inode_flags_to_xflags+0x50/0x50
    iterate_extent_inodes+0x20e/0x580
    ? tree_backref_for_extent+0x230/0x230
    ? release_extent_buffer+0x225/0x280
    ? read_extent_buffer+0xdd/0x110
    ? lock_downgrade+0x400/0x400
    ? __kasan_check_read+0x11/0x20
    ? lock_acquired+0xbb/0x620
    ? __kasan_check_write+0x14/0x20
    ? do_raw_spin_unlock+0xa8/0x140
    ? _raw_spin_unlock+0x22/0x30
    ? release_extent_buffer+0x225/0x280
    iterate_inodes_from_logical+0x129/0x170
    ? iterate_inodes_from_logical+0x129/0x170
    ? btrfs_inode_flags_to_xflags+0x50/0x50
    ? iterate_extent_inodes+0x580/0x580
    ? __vmalloc_node+0x92/0xb0
    ? init_data_container+0x34/0xb0
    ? init_data_container+0x34/0xb0
    ? kvmalloc_node+0x60/0x80
    btrfs_ioctl_logical_to_ino+0x158/0x230
    btrfs_ioctl+0x2038/0x4360
    ? __kasan_check_write+0x14/0x20
    ? mmput+0x3b/0x220
    ? btrfs_ioctl_get_supported_features+0x30/0x30
    ? __kasan_check_read+0x11/0x20
    ? __kasan_check_read+0x11/0x20
    ? lock_release+0xc8/0x650
    ? __might_fault+0x64/0xd0
    ? __kasan_check_read+0x11/0x20
    ? lock_downgrade+0x400/0x400
    ? lockdep_hardirqs_on_prepare+0x210/0x210
    ? lockdep_hardirqs_on_prepare+0x13/0x210
    ? _raw_spin_unlock_irqrestore+0x51/0x63
    ? __kasan_check_read+0x11/0x20
    ? do_vfs_ioctl+0xfc/0x9d0
    ? ioctl_file_clone+0xe0/0xe0
    ? lock_downgrade+0x400/0x400
    ? lockdep_hardirqs_on_prepare+0x210/0x210
    ? __kasan_check_read+0x11/0x20
    ? lock_release+0xc8/0x650
    ? __task_pid_nr_ns+0xd3/0x250
    ? __kasan_check_read+0x11/0x20
    ? __fget_files+0x160/0x230
    ? __fget_light+0xf2/0x110
    __x64_sys_ioctl+0xc3/0x100
    do_syscall_64+0x37/0x80
    entry_SYSCALL_64_after_hwframe+0x44/0xae
   RIP: 0033:0x7f29ae85b427
   Code: 00 00 90 48 8b (...)
   RSP: 002b:00007f29acf5fcf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
   RAX: ffffffffffffffda RBX: 00007f29acf5ff40 RCX: 00007f29ae85b427
   RDX: 00007f29acf5ff48 RSI: 00000000c038943b RDI: 0000000000000003
   RBP: 0000000001000000 R08: 0000000000000000 R09: 00007f29acf60120
   R10: 00005640d5fc7b00 R11: 0000000000000246 R12: 0000000000000003
   R13: 00007f29acf5ff48 R14: 00007f29acf5ff40 R15: 00007f29acf5fef8
   Modules linked in:
   ---[ end trace 85e5fce078dfbe04 ]---

  (gdb) l *(tree_mod_log_rewind+0x3b1)
  0xffffffff819e5b21 is in tree_mod_log_rewind (fs/btrfs/tree-mod-log.c:675).
  670                      * the modification. As we're going backwards, we do the
  671                      * opposite of each operation here.
  672                      */
  673                     switch (tm->op) {
  674                     case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
  675                             BUG_ON(tm->slot < n);
  676                             fallthrough;
  677                     case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
  678                     case BTRFS_MOD_LOG_KEY_REMOVE:
  679                             btrfs_set_node_key(eb, &tm->key, tm->slot);
  (gdb) quit

The following steps explain in more detail how it happens:

1) We have one tree mod log user (through fiemap or the logical ino ioctl),
   with a sequence number of 1, so we have fs_info->tree_mod_seq == 1.
   This is task A;

2) Another task is at ctree.c:balance_level() and we have eb X currently as
   the root of the tree, and we promote its single child, eb Y, as the new
   root.

   Then, at ctree.c:balance_level(), we call:

      ret = btrfs_tree_mod_log_insert_root(root->node, child, true);

3) At btrfs_tree_mod_log_insert_root() we create a tree mod log operation
   of type BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, with a ->logical field
   pointing to ebX->start. We only have one item in eb X, so we create
   only one tree mod log operation, and store in the "tm_list" array;

4) Then, still at btrfs_tree_mod_log_insert_root(), we create a tree mod
   log element of operation type BTRFS_MOD_LOG_ROOT_REPLACE, ->logical set
   to ebY->start, ->old_root.logical set to ebX->start, ->old_root.level
   set to the level of eb X and ->generation set to the generation of eb X;

5) Then btrfs_tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
   "tm_list" as argument. After that, tree_mod_log_free_eb() calls
   tree_mod_log_insert(). This inserts the mod log operation of type
   BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING from step 3 into the rbtree
   with a sequence number of 2 (and fs_info->tree_mod_seq set to 2);

6) Then, after inserting the "tm_list" single element into the tree mod
   log rbtree, the BTRFS_MOD_LOG_ROOT_REPLACE element is inserted, which
   gets the sequence number 3 (and fs_info->tree_mod_seq set to 3);

7) Back to ctree.c:balance_level(), we free eb X by calling
   btrfs_free_tree_block() on it. Because eb X was created in the current
   transaction, has no other references and writeback did not happen for
   it, we add it back to the free space cache/tree;

8) Later some other task B allocates the metadata extent from eb X, since
   it is marked as free space in the space cache/tree, and uses it as a
   node for some other btree;

9) The tree mod log user task calls btrfs_search_old_slot(), which calls
   btrfs_get_old_root(), and finally that calls tree_mod_log_oldest_root()
   with time_seq == 1 and eb_root == eb Y;

10) The first iteration of the while loop finds the tree mod log element
    with sequence number 3, for the logical address of eb Y and of type
    BTRFS_MOD_LOG_ROOT_REPLACE;

11) Because the operation type is BTRFS_MOD_LOG_ROOT_REPLACE, we don't
    break out of the loop, and set root_logical to point to
    tm->old_root.logical, which corresponds to the logical address of
    eb X;

12) On the next iteration of the while loop, the call to
    tree_mod_log_search_oldest() returns the smallest tree mod log element
    for the logical address of eb X, which has a sequence number of 2, an
    operation type of BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and
    corresponds to the old slot 0 of eb X (eb X had only 1 item in it
    before being freed at step 7);

13) We then break out of the while loop and return the tree mod log
    operation of type BTRFS_MOD_LOG_ROOT_REPLACE (eb Y), and not the one
    for slot 0 of eb X, to btrfs_get_old_root();

14) At btrfs_get_old_root(), we process the BTRFS_MOD_LOG_ROOT_REPLACE
    operation and set "logical" to the logical address of eb X, which was
    the old root. We then call tree_mod_log_search() passing it the logical
    address of eb X and time_seq == 1;

15) But before calling tree_mod_log_search(), task B locks eb X, adds a
    key to eb X, which results in adding a tree mod log operation of type
    BTRFS_MOD_LOG_KEY_ADD, with a sequence number of 4, to the tree mod
    log, and increments the number of items in eb X from 0 to 1.
    Now fs_info->tree_mod_seq has a value of 4;

16) Task A then calls tree_mod_log_search(), which returns the most recent
    tree mod log operation for eb X, which is the one just added by task B
    at the previous step, with a sequence number of 4, a type of
    BTRFS_MOD_LOG_KEY_ADD and for slot 0;

17) Before task A locks and clones eb X, task A adds another key to eb X,
    which results in adding a new BTRFS_MOD_LOG_KEY_ADD mod log operation,
    with a sequence number of 5, for slot 1 of eb X, increments the
    number of items in eb X from 1 to 2, and unlocks eb X.
    Now fs_info->tree_mod_seq has a value of 5;

18) Task A then locks eb X and clones it. The clone has a value of 2 for
    the number of items and the pointer "tm" points to the tree mod log
    operation with sequence number 4, not the most recent one with a
    sequence number of 5, so there is mismatch between the number of
    mod log operations that are going to be applied to the cloned version
    of eb X and the number of items in the clone;

19) Task A then calls tree_mod_log_rewind() with the clone of eb X, the
    tree mod log operation with sequence number 4 and a type of
    BTRFS_MOD_LOG_KEY_ADD, and time_seq == 1;

20) At tree_mod_log_rewind(), we set the local variable "n" with a value
    of 2, which is the number of items in the clone of eb X.

    Then in the first iteration of the while loop, we process the mod log
    operation with sequence number 4, which is targeted at slot 0 and has
    a type of BTRFS_MOD_LOG_KEY_ADD. This results in decrementing "n" from
    2 to 1.

    Then we pick the next tree mod log operation for eb X, which is the
    tree mod log operation with a sequence number of 2, a type of
    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and for slot 0, it is the one
    added in step 5 to the tree mod log tree.

    We go back to the top of the loop to process this mod log operation,
    and because its slot is 0 and "n" has a value of 1, we hit the BUG_ON:

        (...)
        switch (tm->op) {
        case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
                BUG_ON(tm->slot < n);
                fallthrough;
	(...)

Fix this by checking for a more recent tree mod log operation after locking
and cloning the extent buffer of the old root node, and use it as the first
operation to apply to the cloned extent buffer when rewinding it.

Stable backport notes: due to moved code and renames, in =< 5.11 the
change should be applied to ctree.c:get_old_root.

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210404040732.GZ32440@hungrycats.org/
Fixes: 834328a8493079 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-22 10:59:19 +02:00
Josef Bacik
45fc5070ed btrfs: convert logic BUG_ON()'s in replace_path to ASSERT()'s
[ Upstream commit 7a9213a93546e7eaef90e6e153af6b8fc7553f10 ]

A few BUG_ON()'s in replace_path are purely to keep us from making
logical mistakes, so replace them with ASSERT()'s.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-22 10:59:16 +02:00
Filipe Manana
67749abac7 btrfs: fix metadata extent leak after failure to create subvolume
commit 67addf29004c5be9fa0383c82a364bb59afc7f84 upstream.

When creating a subvolume we allocate an extent buffer for its root node
after starting a transaction. We setup a root item for the subvolume that
points to that extent buffer and then attempt to insert the root item into
the root tree - however if that fails, due to ENOMEM for example, we do
not free the extent buffer previously allocated and we do not abort the
transaction (as at that point we did nothing that can not be undone).

This means that we effectively do not return the metadata extent back to
the free space cache/tree and we leave a delayed reference for it which
causes a metadata extent item to be added to the extent tree, in the next
transaction commit, without having backreferences. When this happens
'btrfs check' reports the following:

  $ btrfs check /dev/sdi
  Opening filesystem to check...
  Checking filesystem on /dev/sdi
  UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb
  [1/7] checking root items
  [2/7] checking extents
  ref mismatch on [30425088 16384] extent item 1, found 0
  backref 30425088 root 256 not referenced back 0x564a91c23d70
  incorrect global backref count on 30425088 found 1 wanted 0
  backpointer mismatch on [30425088 16384]
  owner ref check failed [30425088 16384]
  ERROR: errors found in extent allocation tree or chunk allocation
  [3/7] checking free space cache
  [4/7] checking fs roots
  [5/7] checking only csums items (without verifying data)
  [6/7] checking root refs
  [7/7] checking quota groups skipped (not enabled on this FS)
  found 212992 bytes used, error(s) found
  total csum bytes: 0
  total tree bytes: 131072
  total fs tree bytes: 32768
  total extent tree bytes: 16384
  btree space waste bytes: 124669
  file data blocks allocated: 65536
   referenced 65536

So fix this by freeing the metadata extent if btrfs_insert_root() returns
an error.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-22 10:59:14 +02:00
David Sterba
412795cfdd btrfs: fix slab cache flags for free space tree bitmap
commit 34e49994d0dcdb2d31d4d2908d04f4e9ce57e4d7 upstream.

The free space tree bitmap slab cache is created with SLAB_RED_ZONE but
that's a debugging flag and not always enabled. Also the other slabs are
created with at least SLAB_MEM_SPREAD that we want as well to average
the memory placement cost.

Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 3acd48507dc4 ("btrfs: fix allocation of free space cache v1 bitmap pages")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-24 11:07:32 +01:00
Filipe Manana
12dc6889bc btrfs: fix race when cloning extent buffer during rewind of an old root
commit dbcc7d57bffc0c8cac9dac11bec548597d59a6a5 upstream.

While resolving backreferences, as part of a logical ino ioctl call or
fiemap, we can end up hitting a BUG_ON() when replaying tree mod log
operations of a root, triggering a stack trace like the following:

  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.c:1210!
  invalid opcode: 0000 [#1] SMP KASAN PTI
  CPU: 1 PID: 19054 Comm: crawl_335 Tainted: G        W         5.11.0-2d11c0084b02-misc-next+ #89
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
  RIP: 0010:__tree_mod_log_rewind+0x3b1/0x3c0
  Code: 05 48 8d 74 10 (...)
  RSP: 0018:ffffc90001eb70b8 EFLAGS: 00010297
  RAX: 0000000000000000 RBX: ffff88812344e400 RCX: ffffffffb28933b6
  RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff88812344e42c
  RBP: ffffc90001eb7108 R08: 1ffff11020b60a20 R09: ffffed1020b60a20
  R10: ffff888105b050f9 R11: ffffed1020b60a1f R12: 00000000000000ee
  R13: ffff8880195520c0 R14: ffff8881bc958500 R15: ffff88812344e42c
  FS:  00007fd1955e8700(0000) GS:ffff8881f5600000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007efdb7928718 CR3: 000000010103a006 CR4: 0000000000170ee0
  Call Trace:
   btrfs_search_old_slot+0x265/0x10d0
   ? lock_acquired+0xbb/0x600
   ? btrfs_search_slot+0x1090/0x1090
   ? free_extent_buffer.part.61+0xd7/0x140
   ? free_extent_buffer+0x13/0x20
   resolve_indirect_refs+0x3e9/0xfc0
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? add_prelim_ref.part.11+0x150/0x150
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? lock_acquired+0xbb/0x600
   ? __kasan_check_write+0x14/0x20
   ? do_raw_spin_unlock+0xa8/0x140
   ? rb_insert_color+0x30/0x360
   ? prelim_ref_insert+0x12d/0x430
   find_parent_nodes+0x5c3/0x1830
   ? resolve_indirect_refs+0xfc0/0xfc0
   ? lock_release+0xc8/0x620
   ? fs_reclaim_acquire+0x67/0xf0
   ? lock_acquire+0xc7/0x510
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x160/0x210
   ? lock_release+0xc8/0x620
   ? fs_reclaim_acquire+0x67/0xf0
   ? lock_acquire+0xc7/0x510
   ? poison_range+0x38/0x40
   ? unpoison_range+0x14/0x40
   ? trace_hardirqs_on+0x55/0x120
   btrfs_find_all_roots_safe+0x142/0x1e0
   ? find_parent_nodes+0x1830/0x1830
   ? btrfs_inode_flags_to_xflags+0x50/0x50
   iterate_extent_inodes+0x20e/0x580
   ? tree_backref_for_extent+0x230/0x230
   ? lock_downgrade+0x3d0/0x3d0
   ? read_extent_buffer+0xdd/0x110
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? lock_acquired+0xbb/0x600
   ? __kasan_check_write+0x14/0x20
   ? _raw_spin_unlock+0x22/0x30
   ? __kasan_check_write+0x14/0x20
   iterate_inodes_from_logical+0x129/0x170
   ? iterate_inodes_from_logical+0x129/0x170
   ? btrfs_inode_flags_to_xflags+0x50/0x50
   ? iterate_extent_inodes+0x580/0x580
   ? __vmalloc_node+0x92/0xb0
   ? init_data_container+0x34/0xb0
   ? init_data_container+0x34/0xb0
   ? kvmalloc_node+0x60/0x80
   btrfs_ioctl_logical_to_ino+0x158/0x230
   btrfs_ioctl+0x205e/0x4040
   ? __might_sleep+0x71/0xe0
   ? btrfs_ioctl_get_supported_features+0x30/0x30
   ? getrusage+0x4b6/0x9c0
   ? __kasan_check_read+0x11/0x20
   ? lock_release+0xc8/0x620
   ? __might_fault+0x64/0xd0
   ? lock_acquire+0xc7/0x510
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? __kasan_check_read+0x11/0x20
   ? do_vfs_ioctl+0xfc/0x9d0
   ? ioctl_file_clone+0xe0/0xe0
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? __kasan_check_read+0x11/0x20
   ? lock_release+0xc8/0x620
   ? __task_pid_nr_ns+0xd3/0x250
   ? lock_acquire+0xc7/0x510
   ? __fget_files+0x160/0x230
   ? __fget_light+0xf2/0x110
   __x64_sys_ioctl+0xc3/0x100
   do_syscall_64+0x37/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7fd1976e2427
  Code: 00 00 90 48 8b 05 (...)
  RSP: 002b:00007fd1955e5cf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  RAX: ffffffffffffffda RBX: 00007fd1955e5f40 RCX: 00007fd1976e2427
  RDX: 00007fd1955e5f48 RSI: 00000000c038943b RDI: 0000000000000004
  RBP: 0000000001000000 R08: 0000000000000000 R09: 00007fd1955e6120
  R10: 0000557835366b00 R11: 0000000000000246 R12: 0000000000000004
  R13: 00007fd1955e5f48 R14: 00007fd1955e5f40 R15: 00007fd1955e5ef8
  Modules linked in:
  ---[ end trace ec8931a1c36e57be ]---

  (gdb) l *(__tree_mod_log_rewind+0x3b1)
  0xffffffff81893521 is in __tree_mod_log_rewind (fs/btrfs/ctree.c:1210).
  1205                     * the modification. as we're going backwards, we do the
  1206                     * opposite of each operation here.
  1207                     */
  1208                    switch (tm->op) {
  1209                    case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
  1210                            BUG_ON(tm->slot < n);
  1211                            fallthrough;
  1212                    case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
  1213                    case MOD_LOG_KEY_REMOVE:
  1214                            btrfs_set_node_key(eb, &tm->key, tm->slot);

Here's what happens to hit that BUG_ON():

1) We have one tree mod log user (through fiemap or the logical ino ioctl),
   with a sequence number of 1, so we have fs_info->tree_mod_seq == 1;

2) Another task is at ctree.c:balance_level() and we have eb X currently as
   the root of the tree, and we promote its single child, eb Y, as the new
   root.

   Then, at ctree.c:balance_level(), we call:

      tree_mod_log_insert_root(eb X, eb Y, 1);

3) At tree_mod_log_insert_root() we create tree mod log elements for each
   slot of eb X, of operation type MOD_LOG_KEY_REMOVE_WHILE_FREEING each
   with a ->logical pointing to ebX->start. These are placed in an array
   named tm_list.
   Lets assume there are N elements (N pointers in eb X);

4) Then, still at tree_mod_log_insert_root(), we create a tree mod log
   element of operation type MOD_LOG_ROOT_REPLACE, ->logical set to
   ebY->start, ->old_root.logical set to ebX->start, ->old_root.level set
   to the level of eb X and ->generation set to the generation of eb X;

5) Then tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
   tm_list as argument. After that, tree_mod_log_free_eb() calls
   __tree_mod_log_insert() for each member of tm_list in reverse order,
   from highest slot in eb X, slot N - 1, to slot 0 of eb X;

6) __tree_mod_log_insert() sets the sequence number of each given tree mod
   log operation - it increments fs_info->tree_mod_seq and sets
   fs_info->tree_mod_seq as the sequence number of the given tree mod log
   operation.

   This means that for the tm_list created at tree_mod_log_insert_root(),
   the element corresponding to slot 0 of eb X has the highest sequence
   number (1 + N), and the element corresponding to the last slot has the
   lowest sequence number (2);

7) Then, after inserting tm_list's elements into the tree mod log rbtree,
   the MOD_LOG_ROOT_REPLACE element is inserted, which gets the highest
   sequence number, which is N + 2;

8) Back to ctree.c:balance_level(), we free eb X by calling
   btrfs_free_tree_block() on it. Because eb X was created in the current
   transaction, has no other references and writeback did not happen for
   it, we add it back to the free space cache/tree;

9) Later some other task T allocates the metadata extent from eb X, since
   it is marked as free space in the space cache/tree, and uses it as a
   node for some other btree;

10) The tree mod log user task calls btrfs_search_old_slot(), which calls
    get_old_root(), and finally that calls __tree_mod_log_oldest_root()
    with time_seq == 1 and eb_root == eb Y;

11) First iteration of the while loop finds the tree mod log element with
    sequence number N + 2, for the logical address of eb Y and of type
    MOD_LOG_ROOT_REPLACE;

12) Because the operation type is MOD_LOG_ROOT_REPLACE, we don't break out
    of the loop, and set root_logical to point to tm->old_root.logical
    which corresponds to the logical address of eb X;

13) On the next iteration of the while loop, the call to
    tree_mod_log_search_oldest() returns the smallest tree mod log element
    for the logical address of eb X, which has a sequence number of 2, an
    operation type of MOD_LOG_KEY_REMOVE_WHILE_FREEING and corresponds to
    the old slot N - 1 of eb X (eb X had N items in it before being freed);

14) We then break out of the while loop and return the tree mod log operation
    of type MOD_LOG_ROOT_REPLACE (eb Y), and not the one for slot N - 1 of
    eb X, to get_old_root();

15) At get_old_root(), we process the MOD_LOG_ROOT_REPLACE operation
    and set "logical" to the logical address of eb X, which was the old
    root. We then call tree_mod_log_search() passing it the logical
    address of eb X and time_seq == 1;

16) Then before calling tree_mod_log_search(), task T adds a key to eb X,
    which results in adding a tree mod log operation of type
    MOD_LOG_KEY_ADD to the tree mod log - this is done at
    ctree.c:insert_ptr() - but after adding the tree mod log operation
    and before updating the number of items in eb X from 0 to 1...

17) The task at get_old_root() calls tree_mod_log_search() and gets the
    tree mod log operation of type MOD_LOG_KEY_ADD just added by task T.
    Then it enters the following if branch:

    if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
       (...)
    } (...)

    Calls read_tree_block() for eb X, which gets a reference on eb X but
    does not lock it - task T has it locked.
    Then it clones eb X while it has nritems set to 0 in its header, before
    task T sets nritems to 1 in eb X's header. From hereupon we use the
    clone of eb X which no other task has access to;

18) Then we call __tree_mod_log_rewind(), passing it the MOD_LOG_KEY_ADD
    mod log operation we just got from tree_mod_log_search() in the
    previous step and the cloned version of eb X;

19) At __tree_mod_log_rewind(), we set the local variable "n" to the number
    of items set in eb X's clone, which is 0. Then we enter the while loop,
    and in its first iteration we process the MOD_LOG_KEY_ADD operation,
    which just decrements "n" from 0 to (u32)-1, since "n" is declared with
    a type of u32. At the end of this iteration we call rb_next() to find the
    next tree mod log operation for eb X, that gives us the mod log operation
    of type MOD_LOG_KEY_REMOVE_WHILE_FREEING, for slot 0, with a sequence
    number of N + 1 (steps 3 to 6);

20) Then we go back to the top of the while loop and trigger the following
    BUG_ON():

        (...)
        switch (tm->op) {
        case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
                 BUG_ON(tm->slot < n);
                 fallthrough;
        (...)

    Because "n" has a value of (u32)-1 (4294967295) and tm->slot is 0.

Fix this by taking a read lock on the extent buffer before cloning it at
ctree.c:get_old_root(). This should be done regardless of the extent
buffer having been freed and reused, as a concurrent task might be
modifying it (while holding a write lock on it).

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210227155037.GN28049@hungrycats.org/
Fixes: 834328a8493079 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-24 11:07:32 +01:00
Nikolay Borisov
ab28b08864 btrfs: unlock extents in btrfs_zero_range in case of quota reservation errors
commit 4f6a49de64fd1b1dba5229c02047376da7cf24fd upstream.

If btrfs_qgroup_reserve_data returns an error (i.e quota limit reached)
the handling logic directly goes to the 'out' label without first
unlocking the extent range between lockstart, lockend. This results in
deadlocks as other processes try to lock the same extent.

Fixes: a7f8b1c2ac21 ("btrfs: file: reserve qgroup space after the hole punch range is locked")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-11 14:04:59 +01:00
Nikolay Borisov
db1dde1bf1 btrfs: free correct amount of space in btrfs_delayed_inode_reserve_metadata
commit 0f9c03d824f6f522d3bc43629635c9765546ebc5 upstream.

Following commit f218ea6c4792 ("btrfs: delayed-inode: Remove wrong
qgroup meta reservation calls") this function now reserves num_bytes,
rather than the fixed amount of nodesize. As such this requires the
same amount to be freed in case of failure. Fix this by adjusting
the amount we are freeing.

Fixes: f218ea6c4792 ("btrfs: delayed-inode: Remove wrong qgroup meta reservation calls")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-11 14:04:59 +01:00
Dan Carpenter
f27ce3a7c5 btrfs: validate qgroup inherit for SNAP_CREATE_V2 ioctl
commit 5011c5a663b9c6d6aff3d394f11049b371199627 upstream.

The problem is we're copying "inherit" from user space but we don't
necessarily know that we're copying enough data for a 64 byte
struct.  Then the next problem is that 'inherit' has a variable size
array at the end, and we have to verify that array is the size we
expected.

Fixes: 6f72c7e20dba ("Btrfs: add qgroup inheritance")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-11 14:04:59 +01:00