1365 Commits

Author SHA1 Message Date
Peter Zijlstra
d072303a2b sched/fair: Fix calc_cfs_shares() fixed point arithmetics width confusion
commit ea1dc6fc6242f991656e35e2ed3d90ec1cd13418 upstream.

Commit:

  fde7d22e01aa ("sched/fair: Fix overly small weight for interactive group entities")

did something non-obvious but also did it buggy yet latent.

The problem was exposed for real by a later commit in the v4.7 merge window:

  2159197d6677 ("sched/core: Enable increased load resolution on 64-bit kernels")

... after which tg->load_avg and cfs_rq->load.weight had different
units (10 bit fixed point and 20 bit fixed point resp.).

Add a comment to explain the use of cfs_rq->load.weight over the
'natural' cfs_rq->avg.load_avg and add scale_load_down() to correct
for the difference in unit.

Since this is (now, as per a previous commit) the only user of
calc_tg_weight(), collapse it.

The effects of this bug should be randomly inconsistent SMP-balancing
of cgroups workloads.

Reported-by: Jirka Hladky <jhladky@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2159197d6677 ("sched/core: Enable increased load resolution on 64-bit kernels")
Fixes: fde7d22e01aa ("sched/fair: Fix overly small weight for interactive group entities")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-10 10:26:21 +02:00
Andy Lutomirski
1354c2fa63 sched/core: Allow putting thread_info into task_struct
commit c65eacbe290b8141554c71b2c94489e73ade8c8d upstream.

If an arch opts in by setting CONFIG_THREAD_INFO_IN_TASK_STRUCT,
then thread_info is defined as a single 'u32 flags' and is the first
entry of task_struct.  thread_info::task is removed (it serves no
purpose if thread_info is embedded in task_struct), and
thread_info::cpu gets its own slot in task_struct.

This is heavily based on a patch written by Linus.

Originally-from: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a0898196f0476195ca02713691a5037a14f2aac5.1473801993.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: zhangyi (F) <yi.zhang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-21 10:35:04 +01:00
Xuewei Zhang
49de4996f1 sched/fair: Scale bandwidth quota and period without losing quota/period ratio precision
commit 4929a4e6faa0f13289a67cae98139e727f0d4a97 upstream.

The quota/period ratio is used to ensure a child task group won't get
more bandwidth than the parent task group, and is calculated as:

  normalized_cfs_quota() = [(quota_us << 20) / period_us]

If the quota/period ratio was changed during this scaling due to
precision loss, it will cause inconsistency between parent and child
task groups.

See below example:

A userspace container manager (kubelet) does three operations:

 1) Create a parent cgroup, set quota to 1,000us and period to 10,000us.
 2) Create a few children cgroups.
 3) Set quota to 1,000us and period to 10,000us on a child cgroup.

These operations are expected to succeed. However, if the scaling of
147/128 happens before step 3, quota and period of the parent cgroup
will be changed:

  new_quota: 1148437ns,   1148us
 new_period: 11484375ns, 11484us

And when step 3 comes in, the ratio of the child cgroup will be
104857, which will be larger than the parent cgroup ratio (104821),
and will fail.

Scaling them by a factor of 2 will fix the problem.

Tested-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Xuewei Zhang <xueweiz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Fixes: 2e8e19226398 ("sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup")
Link: https://lkml.kernel.org/r/20191004001243.140897-1-xueweiz@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-21 10:34:47 +01:00
Valentin Schneider
e26e9e270b sched/fair: Don't increase sd->balance_interval on newidle balance
[ Upstream commit 3f130a37c442d5c4d66531b240ebe9abfef426b5 ]

When load_balance() fails to move some load because of task affinity,
we end up increasing sd->balance_interval to delay the next periodic
balance in the hopes that next time we look, that annoying pinned
task(s) will be gone.

However, idle_balance() pays no attention to sd->balance_interval, yet
it will still lead to an increase in balance_interval in case of
pinned tasks.

If we're going through several newidle balances (e.g. we have a
periodic task), this can lead to a huge increase of the
balance_interval in a very small amount of time.

To prevent that, don't increase the balance interval when going
through a newidle balance.

This is a similar approach to what is done in commit 58b26c4c0257
("sched: Increment cache_nice_tries only on periodic lb"), where we
disregard newidle balance and rely on periodic balance for more stable
results.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: patrick.bellasi@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1537974727-30788-2-git-send-email-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-28 18:26:00 +01:00
Juri Lelli
5043f2cf14 sched/core: Fix CPU controller for !RT_GROUP_SCHED
[ Upstream commit a07db5c0865799ebed1f88be0df50c581fb65029 ]

On !CONFIG_RT_GROUP_SCHED configurations it is currently not possible to
move RT tasks between cgroups to which CPU controller has been attached;
but it is oddly possible to first move tasks around and then make them
RT (setschedule to FIFO/RR).

E.g.:

  # mkdir /sys/fs/cgroup/cpu,cpuacct/group1
  # chrt -fp 10 $$
  # echo $$ > /sys/fs/cgroup/cpu,cpuacct/group1/tasks
  bash: echo: write error: Invalid argument
  # chrt -op 0 $$
  # echo $$ > /sys/fs/cgroup/cpu,cpuacct/group1/tasks
  # chrt -fp 10 $$
  # cat /sys/fs/cgroup/cpu,cpuacct/group1/tasks
  2345
  2598
  # chrt -p 2345
  pid 2345's current scheduling policy: SCHED_FIFO
  pid 2345's current scheduling priority: 10

Also, as Michal noted, it is currently not possible to enable CPU
controller on unified hierarchy with !CONFIG_RT_GROUP_SCHED (if there
are any kernel RT threads in root cgroup, they can't be migrated to the
newly created CPU controller's root in cgroup_update_dfl_csses()).

Existing code comes with a comment saying the "we don't support RT-tasks
being in separate groups". Such comment is however stale and belongs to
pre-RT_GROUP_SCHED times. Also, it doesn't make much sense for
!RT_GROUP_ SCHED configurations, since checks related to RT bandwidth
are not performed at all in these cases.

Make moving RT tasks between CPU controller groups viable by removing
special case check for RT (and DEADLINE) tasks.

Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: rostedt@goodmis.org
Link: https://lkml.kernel.org/r/20190719063455.27328-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 12:27:45 +02:00
Vincent Guittot
5da394bd2d sched/fair: Fix imbalance due to CPU affinity
[ Upstream commit f6cad8df6b30a5d2bbbd2e698f74b4cafb9fb82b ]

The load_balance() has a dedicated mecanism to detect when an imbalance
is due to CPU affinity and must be handled at parent level. In this case,
the imbalance field of the parent's sched_group is set.

The description of sg_imbalanced() gives a typical example of two groups
of 4 CPUs each and 4 tasks each with a cpumask covering 1 CPU of the first
group and 3 CPUs of the second group. Something like:

	{ 0 1 2 3 } { 4 5 6 7 }
	        *     * * *

But the load_balance fails to fix this UC on my octo cores system
made of 2 clusters of quad cores.

Whereas the load_balance is able to detect that the imbalanced is due to
CPU affinity, it fails to fix it because the imbalance field is cleared
before letting parent level a chance to run. In fact, when the imbalance is
detected, the load_balance reruns without the CPU with pinned tasks. But
there is no other running tasks in the situation described above and
everything looks balanced this time so the imbalance field is immediately
cleared.

The imbalance field should not be cleared if there is no other task to move
when the imbalance is detected.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1561996022-28829-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 12:27:45 +02:00
Jann Horn
da358f365d sched/fair: Don't free p->numa_faults with concurrent readers
commit 16d51a590a8ce3befb1308e0e7ab77f3b661af33 upstream.

When going through execve(), zero out the NUMA fault statistics instead of
freeing them.

During execve, the task is reachable through procfs and the scheduler. A
concurrent /proc/*/sched reader can read data from a freed ->numa_faults
allocation (confirmed by KASAN) and write it back to userspace.
I believe that it would also be possible for a use-after-free read to occur
through a race between a NUMA fault and execve(): task_numa_fault() can
lead to task_numa_compare(), which invokes task_weight() on the currently
running task of a different CPU.

Another way to fix this would be to make ->numa_faults RCU-managed or add
extra locking, but it seems easier to wipe the NUMA fault statistics on
execve.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes: 82727018b0d3 ("sched/numa: Call task_numa_free() from do_execve()")
Link: https://lkml.kernel.org/r/20190716152047.14424-1-jannh@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-04 09:35:02 +02:00
Konstantin Khlebnikov
6f5e198878 sched/core: Handle overflow in cpu_shares_write_u64
[ Upstream commit 5b61d50ab4ef590f5e1d4df15cd2cea5f5715308 ]

Bit shift in scale_load() could overflow shares. This patch saturates
it to MAX_SHARES like following sched_group_set_shares().

Example:

 # echo 9223372036854776832 > cpu.shares
 # cat cpu.shares

Before patch: 1024
After pattch: 262144

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/155125501891.293431.3345233332801109696.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-11 12:23:58 +02:00
Konstantin Khlebnikov
9812286a63 sched/core: Check quota and period overflow at usec to nsec conversion
[ Upstream commit 1a8b4540db732ca16c9e43ac7c08b1b8f0b252d8 ]

Large values could overflow u64 and pass following sanity checks.

 # echo 18446744073750000 > cpu.cfs_period_us
 # cat cpu.cfs_period_us
 40448

 # echo 18446744073750000 > cpu.cfs_quota_us
 # cat cpu.cfs_quota_us
 40448

After this patch they will fail with -EINVAL.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/155125502079.293431.3947497929372138600.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-11 12:23:58 +02:00
Ben Hutchings
1f562beba7 sched: Add sched_smt_active()
Add the sched_smt_active() function needed for some x86 speculation
mitigations.  This was introduced upstream by commits 1b568f0aabf2
"sched/core: Optimize SCHED_SMT", ba2591a5993e "sched/smt: Update
sched_smt_present at runtime", c5511d03ec09 "sched/smt: Make
sched_smt_present track topology", and 321a874a7ef8 "sched/smt: Expose
sched_smt_present static key".  The upstream implementation uses the
static_key_{disable,enable}_cpuslocked() functions, which aren't
practical to backport.

Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-16 19:45:11 +02:00
Xie XiuQi
2f14dae915 sched/numa: Fix a possible divide-by-zero
commit a860fa7b96e1a1c974556327aa1aee852d434c21 upstream.

sched_clock_cpu() may not be consistent between CPUs. If a task
migrates to another CPU, then se.exec_start is set to that CPU's
rq_clock_task() by update_stats_curr_start(). Specifically, the new
value might be before the old value due to clock skew.

So then if in numa_get_avg_runtime() the expression:

  'now - p->last_task_numa_placement'

ends up as -1, then the divider '*period + 1' in task_numa_placement()
is 0 and things go bang. Similar to update_curr(), check if time goes
backwards to avoid this.

[ peterz: Wrote new changelog. ]
[ mingo: Tweaked the code comment. ]

Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cj.chengjian@huawei.com
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20190425080016.GX11158@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-16 19:44:43 +02:00
Phil Auld
20fdfad30c sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup
[ Upstream commit 2e8e19226398db8265a8e675fcc0118b9e80c9e8 ]

With extremely short cfs_period_us setting on a parent task group with a large
number of children the for loop in sched_cfs_period_timer() can run until the
watchdog fires. There is no guarantee that the call to hrtimer_forward_now()
will ever return 0.  The large number of children can make
do_sched_cfs_period_timer() take longer than the period.

 NMI watchdog: Watchdog detected hard LOCKUP on cpu 24
 RIP: 0010:tg_nop+0x0/0x10
  <IRQ>
  walk_tg_tree_from+0x29/0xb0
  unthrottle_cfs_rq+0xe0/0x1a0
  distribute_cfs_runtime+0xd3/0xf0
  sched_cfs_period_timer+0xcb/0x160
  ? sched_cfs_slack_timer+0xd0/0xd0
  __hrtimer_run_queues+0xfb/0x270
  hrtimer_interrupt+0x122/0x270
  smp_apic_timer_interrupt+0x6a/0x140
  apic_timer_interrupt+0xf/0x20
  </IRQ>

To prevent this we add protection to the loop that detects when the loop has run
too many times and scales the period and quota up, proportionally, so that the timer
can complete before then next period expires.  This preserves the relative runtime
quota while preventing the hard lockup.

A warning is issued reporting this state and the new values.

Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190319130005.25492-1-pauld@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-27 09:34:02 +02:00
Mel Gorman
e15f3c3484 sched/fair: Do not re-read ->h_load_next during hierarchical load calculation
commit 0e9f02450da07fc7b1346c8c32c771555173e397 upstream.

A NULL pointer dereference bug was reported on a distribution kernel but
the same issue should be present on mainline kernel. It occured on s390
but should not be arch-specific.  A partial oops looks like:

  Unable to handle kernel pointer dereference in virtual kernel address space
  ...
  Call Trace:
    ...
    try_to_wake_up+0xfc/0x450
    vhost_poll_wakeup+0x3a/0x50 [vhost]
    __wake_up_common+0xbc/0x178
    __wake_up_common_lock+0x9e/0x160
    __wake_up_sync_key+0x4e/0x60
    sock_def_readable+0x5e/0x98

The bug hits any time between 1 hour to 3 days. The dereference occurs
in update_cfs_rq_h_load when accumulating h_load. The problem is that
cfq_rq->h_load_next is not protected by any locking and can be updated
by parallel calls to task_h_load. Depending on the compiler, code may be
generated that re-reads cfq_rq->h_load_next after the check for NULL and
then oops when reading se->avg.load_avg. The dissassembly showed that it
was possible to reread h_load_next after the check for NULL.

While this does not appear to be an issue for later compilers, it's still
an accident if the correct code is generated. Full locking in this path
would have high overhead so this patch uses READ_ONCE to read h_load_next
only once and check for NULL before dereferencing. It was confirmed that
there were no further oops after 10 days of testing.

As Peter pointed out, it is also necessary to use WRITE_ONCE() to avoid any
potential problems with store tearing.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Fixes: 685207963be9 ("sched: Move h_load calculation to task_h_load()")
Link: https://lkml.kernel.org/r/20190319123610.nsivgf3mjbjjesxb@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 09:33:56 +02:00
Christoph Lameter
bdf3c006b9 vmstat: make vmstat_updater deferrable again and shut down on idle
[ Upstream commit 0eb77e9880321915322d42913c3b53241739c8aa ]

Currently the vmstat updater is not deferrable as a result of commit
ba4877b9ca51 ("vmstat: do not use deferrable delayed work for
vmstat_update").  This in turn can cause multiple interruptions of the
applications because the vmstat updater may run at

Make vmstate_update deferrable again and provide a function that folds
the differentials when the processor is going to idle mode thus
addressing the issue of the above commit in a clean way.

Note that the shepherd thread will continue scanning the differentials
from another processor and will reenable the vmstat workers if it
detects any changes.

Fixes: ba4877b9ca51 ("vmstat: do not use deferrable delayed work for vmstat_update")
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-03 06:23:21 +02:00
Yuyang Du
e43196819c sched/fair: Fix new task's load avg removed from source CPU in wake_up_new_task()
[ Upstream commit 0905f04eb21fc1c2e690bed5d0418a061d56c225 ]

If a newly created task is selected to go to a different CPU in fork
balance when it wakes up the first time, its load averages should
not be removed from the source CPU since they are never added to
it before. The same is also applicable to a never used group entity.

Fix it in remove_entity_load_avg(): when entity's last_update_time
is 0, simply return. This should precisely identify the case in
question, because in other migrations, the last_update_time is set
to 0 after remove_entity_load_avg().

Reported-by: Steve Muckle <steve.muckle@linaro.org>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
[peterz: cfs_rq_last_update_time]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20151216233427.GJ28098@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-03 06:23:20 +02:00
Steven Rostedt (VMware)
4f29112ec9 sched/core: Allow __sched_setscheduler() in interrupts when PI is not used
commit 896bbb2522587e3b8eb2a0d204d43ccc1042a00d upstream.

When priority inheritance was added back in 2.6.18 to sched_setscheduler(), it
added a path to taking an rt-mutex wait_lock, which is not IRQ safe. As PI
is not a common occurrence, lockdep will likely never trigger if
sched_setscheduler was called from interrupt context. A BUG_ON() was added
to trigger if __sched_setscheduler() was ever called from interrupt context
because there was a possibility to take the wait_lock.

Today the wait_lock is irq safe, but the path to taking it in
sched_setscheduler() is the same as the path to taking it from normal
context. The wait_lock is taken with raw_spin_lock_irq() and released with
raw_spin_unlock_irq() which will indiscriminately enable interrupts,
which would be bad in interrupt context.

The problem is that normalize_rt_tasks, which is called by triggering the
sysrq nice-all-RT-tasks was changed to call __sched_setscheduler(), and this
is done from interrupt context!

Now __sched_setscheduler() takes a "pi" parameter that is used to know if
the priority inheritance should be called or not. As the BUG_ON() only cares
about calling the PI code, it should only bug if called from interrupt
context with the "pi" parameter set to true.

Reported-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: dbc7f069b93a ("sched: Use replace normalize_task() with __sched_setscheduler()")
Link: http://lkml.kernel.org/r/20170308124654.10e598f2@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-01 09:46:41 +01:00
Catalin Marinas
8a1d3de19b cpuidle: Do not access cpuidle_devices when !CONFIG_CPU_IDLE
commit 9bd616e3dbedfc103f158197c8ad93678849b1ed upstream.

The cpuidle_devices per-CPU variable is only defined when CPU_IDLE is
enabled. Commit c8cc7d4de7a4 ("sched/idle: Reorganize the idle loop")
removed the #ifdef CONFIG_CPU_IDLE around cpuidle_idle_call() with the
compiler optimising away __this_cpu_read(cpuidle_devices). However, with
CONFIG_UBSAN && !CONFIG_CPU_IDLE, this optimisation no longer happens
and the kernel fails to link since cpuidle_devices is not defined.

This patch introduces an accessor function for the current CPU cpuidle
device (returning NULL when !CONFIG_CPU_IDLE) and uses it in
cpuidle_idle_call().

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: 4.5+ <stable@vger.kernel.org> # 4.5+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-10 07:41:43 -08:00
Phil Auld
4a2b54a750 sched/fair: Fix throttle_list starvation with low CFS quota
commit baa9be4ffb55876923dc9716abc0a448e510ba30 upstream.

With a very low cpu.cfs_quota_us setting, such as the minimum of 1000,
distribute_cfs_runtime may not empty the throttled_list before it runs
out of runtime to distribute. In that case, due to the change from
c06f04c7048 to put throttled entries at the head of the list, later entries
on the list will starve.  Essentially, the same X processes will get pulled
off the list, given CPU time and then, when expired, get put back on the
head of the list where distribute_cfs_runtime will give runtime to the same
set of processes leaving the rest.

Fix the issue by setting a bit in struct cfs_bandwidth when
distribute_cfs_runtime is running, so that the code in throttle_cfs_rq can
decide to put the throttled entry on the tail or the head of the list.  The
bit is set/cleared by the callers of distribute_cfs_runtime while they hold
cfs_bandwidth->lock.

This is easy to reproduce with a handful of CPU consumers. I use 'crash' on
the live system. In some cases you can simply look at the throttled list and
see the later entries are not changing:

  crash> list cfs_rq.throttled_list -H 0xffff90b54f6ade40 -s cfs_rq.runtime_remaining | paste - - | awk '{print $1"  "$4}' | pr -t -n3
    1     ffff90b56cb2d200  -976050
    2     ffff90b56cb2cc00  -484925
    3     ffff90b56cb2bc00  -658814
    4     ffff90b56cb2ba00  -275365
    5     ffff90b166a45600  -135138
    6     ffff90b56cb2da00  -282505
    7     ffff90b56cb2e000  -148065
    8     ffff90b56cb2fa00  -872591
    9     ffff90b56cb2c000  -84687
   10     ffff90b56cb2f000  -87237
   11     ffff90b166a40a00  -164582

  crash> list cfs_rq.throttled_list -H 0xffff90b54f6ade40 -s cfs_rq.runtime_remaining | paste - - | awk '{print $1"  "$4}' | pr -t -n3
    1     ffff90b56cb2d200  -994147
    2     ffff90b56cb2cc00  -306051
    3     ffff90b56cb2bc00  -961321
    4     ffff90b56cb2ba00  -24490
    5     ffff90b166a45600  -135138
    6     ffff90b56cb2da00  -282505
    7     ffff90b56cb2e000  -148065
    8     ffff90b56cb2fa00  -872591
    9     ffff90b56cb2c000  -84687
   10     ffff90b56cb2f000  -87237
   11     ffff90b166a40a00  -164582

Sometimes it is easier to see by finding a process getting starved and looking
at the sched_info:

  crash> task ffff8eb765994500 sched_info
  PID: 7800   TASK: ffff8eb765994500  CPU: 16  COMMAND: "cputest"
    sched_info = {
      pcount = 8,
      run_delay = 697094208,
      last_arrival = 240260125039,
      last_queued = 240260327513
    },
  crash> task ffff8eb765994500 sched_info
  PID: 7800   TASK: ffff8eb765994500  CPU: 16  COMMAND: "cputest"
    sched_info = {
      pcount = 8,
      run_delay = 697094208,
      last_arrival = 240260125039,
      last_queued = 240260327513
    },

Signed-off-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: c06f04c70489 ("sched: Fix potential near-infinite distribute_cfs_runtime() loop")
Link: http://lkml.kernel.org/r/20181008143639.GA4019@pauld.bos.csb
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-10 07:41:43 -08:00
Peter Zijlstra
137b1ce318 sched/cgroup: Fix cgroup entity load tracking tear-down
[ Upstream commit 6fe1f348b3dd1f700f9630562b7d38afd6949568 ]

When a cgroup's CPU runqueue is destroyed, it should remove its
remaining load accounting from its parent cgroup.

The current site for doing so it unsuited because its far too late and
unordered against other cgroup removal (->css_free() will be, but we're also
in an RCU callback).

Put it in the ->css_offline() callback, which is the start of cgroup
destruction, right after the group has been made unavailable to
userspace. The ->css_offline() callbacks are called in hierarchical order
after the following v4.4 commit:

  aa226ff4a1ce ("cgroup: make sure a parent css isn't offlined before its children")

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160121212416.GL6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-11-10 07:41:35 -08:00
Davidlohr Bueso
094c145f4c sched/rt: Fix rq->clock_update_flags < RQCF_ACT_SKIP warning
[ Upstream commit d29a20645d5e929aa7e8616f28e5d8e1c49263ec ]

While running rt-tests' pi_stress program I got the following splat:

  rq->clock_update_flags < RQCF_ACT_SKIP
  WARNING: CPU: 27 PID: 0 at kernel/sched/sched.h:960 assert_clock_updated.isra.38.part.39+0x13/0x20

  [...]

  <IRQ>
  enqueue_top_rt_rq+0xf4/0x150
  ? cpufreq_dbs_governor_start+0x170/0x170
  sched_rt_rq_enqueue+0x65/0x80
  sched_rt_period_timer+0x156/0x360
  ? sched_rt_rq_enqueue+0x80/0x80
  __hrtimer_run_queues+0xfa/0x260
  hrtimer_interrupt+0xcb/0x220
  smp_apic_timer_interrupt+0x62/0x120
  apic_timer_interrupt+0xf/0x20
  </IRQ>

  [...]

  do_idle+0x183/0x1e0
  cpu_startup_entry+0x5f/0x70
  start_secondary+0x192/0x1d0
  secondary_startup_64+0xa5/0xb0

We can get rid of it be the "traditional" means of adding an
update_rq_clock() call after acquiring the rq->lock in
do_sched_rt_period_timer().

The case for the RT task throttling (which this workload also hits)
can be ignored in that the skip_update call is actually bogus and
quite the contrary (the request bits are removed/reverted).

By setting RQCF_UPDATED we really don't care if the skip is happening
or not and will therefore make the assert_clock_updated() check happy.

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Cc: linux-kernel@vger.kernel.org
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180402164954.16255-1-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-30 07:49:08 +02:00
Vlastimil Babka
d5367b8982 sched/numa: Use down_read_trylock() for the mmap_sem
[ Upstream commit 8655d5497735b288f8a9b458bd22e7d1bf95bb61 ]

A customer has reported a soft-lockup when running an intensive
memory stress test, where the trace on multiple CPU's looks like this:

 RIP: 0010:[<ffffffff810c53fe>]
  [<ffffffff810c53fe>] native_queued_spin_lock_slowpath+0x10e/0x190
...
 Call Trace:
  [<ffffffff81182d07>] queued_spin_lock_slowpath+0x7/0xa
  [<ffffffff811bc331>] change_protection_range+0x3b1/0x930
  [<ffffffff811d4be8>] change_prot_numa+0x18/0x30
  [<ffffffff810adefe>] task_numa_work+0x1fe/0x310
  [<ffffffff81098322>] task_work_run+0x72/0x90

Further investigation showed that the lock contention here is pmd_lock().

The task_numa_work() function makes sure that only one thread is let to perform
the work in a single scan period (via cmpxchg), but if there's a thread with
mmap_sem locked for writing for several periods, multiple threads in
task_numa_work() can build up a convoy waiting for mmap_sem for read and then
all get unblocked at once.

This patch changes the down_read() to the trylock version, which prevents the
build up. For a workload experiencing mmap_sem contention, it's probably better
to postpone the NUMA balancing work anyway. This seems to have fixed the soft
lockups involving pmd_lock(), which is in line with the convoy theory.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170515131316.21909-1-vbabka@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-04-13 19:50:09 +02:00
Paul E. McKenney
49bca2f6c7 sched: Stop resched_cpu() from sending IPIs to offline CPUs
[ Upstream commit a0982dfa03efca6c239c52cabebcea4afb93ea6b ]

The rcutorture test suite occasionally provokes a splat due to invoking
resched_cpu() on an offline CPU:

WARNING: CPU: 2 PID: 8 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40
Modules linked in:
CPU: 2 PID: 8 Comm: rcu_preempt Not tainted 4.14.0-rc4+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
task: ffff902ede9daf00 task.stack: ffff96c50010c000
RIP: 0010:native_smp_send_reschedule+0x37/0x40
RSP: 0018:ffff96c50010fdb8 EFLAGS: 00010096
RAX: 000000000000002e RBX: ffff902edaab4680 RCX: 0000000000000003
RDX: 0000000080000003 RSI: 0000000000000000 RDI: 00000000ffffffff
RBP: ffff96c50010fdb8 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000000 R11: 00000000299f36ae R12: 0000000000000001
R13: ffffffff9de64240 R14: 0000000000000001 R15: ffffffff9de64240
FS:  0000000000000000(0000) GS:ffff902edfc80000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000f7d4c642 CR3: 000000001e0e2000 CR4: 00000000000006e0
Call Trace:
 resched_curr+0x8f/0x1c0
 resched_cpu+0x2c/0x40
 rcu_implicit_dynticks_qs+0x152/0x220
 force_qs_rnp+0x147/0x1d0
 ? sync_rcu_exp_select_cpus+0x450/0x450
 rcu_gp_kthread+0x5a9/0x950
 kthread+0x142/0x180
 ? force_qs_rnp+0x1d0/0x1d0
 ? kthread_create_on_node+0x40/0x40
 ret_from_fork+0x27/0x40
Code: 14 01 0f 92 c0 84 c0 74 14 48 8b 05 14 4f f4 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 38 89 ca 9d e8 e5 56 08 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 52 9e 37 02 85 c0 75 38 55 48
---[ end trace 26df9e5df4bba4ac ]---

This splat cannot be generated by expedited grace periods because they
always invoke resched_cpu() on the current CPU, which is good because
expedited grace periods require that resched_cpu() unconditionally
succeed.  However, other parts of RCU can tolerate resched_cpu() acting
as a no-op, at least as long as it doesn't happen too often.

This commit therefore makes resched_cpu() invoke resched_curr() only if
the CPU is either online or is the current CPU.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>

Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-03-22 09:23:27 +01:00
Paul E. McKenney
35be5af4d2 sched: Stop switched_to_rt() from sending IPIs to offline CPUs
[ Upstream commit 2fe2582649aa2355f79acddb86bd4d6c5363eb63 ]

The rcutorture test suite occasionally provokes a splat due to invoking
rt_mutex_lock() which needs to boost the priority of a task currently
sitting on a runqueue that belongs to an offline CPU:

WARNING: CPU: 0 PID: 12 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40
Modules linked in:
CPU: 0 PID: 12 Comm: rcub/7 Not tainted 4.14.0-rc4+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
task: ffff9ed3de5f8cc0 task.stack: ffffbbf80012c000
RIP: 0010:native_smp_send_reschedule+0x37/0x40
RSP: 0018:ffffbbf80012fd10 EFLAGS: 00010082
RAX: 000000000000002f RBX: ffff9ed3dd9cb300 RCX: 0000000000000004
RDX: 0000000080000004 RSI: 0000000000000086 RDI: 00000000ffffffff
RBP: ffffbbf80012fd10 R08: 000000000009da7a R09: 0000000000007b9d
R10: 0000000000000001 R11: ffffffffbb57c2cd R12: 000000000000000d
R13: ffff9ed3de5f8cc0 R14: 0000000000000061 R15: ffff9ed3ded59200
FS:  0000000000000000(0000) GS:ffff9ed3dea00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000080686f0 CR3: 000000001b9e0000 CR4: 00000000000006f0
Call Trace:
 resched_curr+0x61/0xd0
 switched_to_rt+0x8f/0xa0
 rt_mutex_setprio+0x25c/0x410
 task_blocks_on_rt_mutex+0x1b3/0x1f0
 rt_mutex_slowlock+0xa9/0x1e0
 rt_mutex_lock+0x29/0x30
 rcu_boost_kthread+0x127/0x3c0
 kthread+0x104/0x140
 ? rcu_report_unblock_qs_rnp+0x90/0x90
 ? kthread_create_on_node+0x40/0x40
 ret_from_fork+0x22/0x30
Code: f0 00 0f 92 c0 84 c0 74 14 48 8b 05 34 74 c5 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 a0 c6 fc b9 e8 d5 b5 06 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 a2 d1 13 02 85 c0 75 38 55 48

But the target task's priority has already been adjusted, so the only
purpose of switched_to_rt() invoking resched_curr() is to wake up the
CPU running some task that needs to be preempted by the boosted task.
But the CPU is offline, which presumably means that the task must be
migrated to some other CPU, and that this other CPU will undertake any
needed preemption at the time of migration.  Because the runqueue lock
is held when resched_curr() is invoked, we know that the boosted task
cannot go anywhere, so it is not necessary to invoke resched_curr()
in this particular case.

This commit therefore makes switched_to_rt() refrain from invoking
resched_curr() when the target CPU is offline.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-03-22 09:23:27 +01:00
Steven Rostedt (VMware)
911357aed6 sched/rt: Up the root domain ref count when passing it around via IPIs
commit 364f56653708ba8bcdefd4f0da2a42904baa8eeb upstream.

When issuing an IPI RT push, where an IPI is sent to each CPU that has more
than one RT task scheduled on it, it references the root domain's rto_mask,
that contains all the CPUs within the root domain that has more than one RT
task in the runable state. The problem is, after the IPIs are initiated, the
rq->lock is released. This means that the root domain that is associated to
the run queue could be freed while the IPIs are going around.

Add a sched_get_rd() and a sched_put_rd() that will increment and decrement
the root domain's ref count respectively. This way when initiating the IPIs,
the scheduler will up the root domain's ref count before releasing the
rq->lock, ensuring that the root domain does not go away until the IPI round
is complete.

Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 4bdced5c9a292 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-16 20:09:40 +01:00
Steven Rostedt (VMware)
af9de1a10f sched/rt: Use container_of() to get root domain in rto_push_irq_work_func()
commit ad0f1d9d65938aec72a698116cd73a980916895e upstream.

When the rto_push_irq_work_func() is called, it looks at the RT overloaded
bitmask in the root domain via the runqueue (rq->rd). The problem is that
during CPU up and down, nothing here stops rq->rd from changing between
taking the rq->rd->rto_lock and releasing it. That means the lock that is
released is not the same lock that was taken.

Instead of using this_rq()->rd to get the root domain, as the irq work is
part of the root domain, we can simply get the root domain from the irq work
that is passed to the routine:

 container_of(work, struct root_domain, rto_push_work)

This keeps the root domain consistent.

Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 4bdced5c9a292 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-02-16 20:09:40 +01:00
Daniel Bristot de Oliveira
1d00e3d9b7 sched/deadline: Use the revised wakeup rule for suspending constrained dl tasks
commit 3effcb4247e74a51f5d8b775a1ee4abf87cc089a upstream.

We have been facing some problems with self-suspending constrained
deadline tasks. The main reason is that the original CBS was not
designed for such sort of tasks.

One problem reported by Xunlei Pang takes place when a task
suspends, and then is awakened before the deadline, but so close
to the deadline that its remaining runtime can cause the task
to have an absolute density higher than allowed. In such situation,
the original CBS assumes that the task is facing an early activation,
and so it replenishes the task and set another deadline, one deadline
in the future. This rule works fine for implicit deadline tasks.
Moreover, it allows the system to adapt the period of a task in which
the external event source suffered from a clock drift.

However, this opens the window for bandwidth leakage for constrained
deadline tasks. For instance, a task with the following parameters:

  runtime   = 5 ms
  deadline  = 7 ms
  [density] = 5 / 7 = 0.71
  period    = 1000 ms

If the task runs for 1 ms, and then suspends for another 1ms,
it will be awakened with the following parameters:

  remaining runtime = 4
  laxity = 5

presenting a absolute density of 4 / 5 = 0.80.

In this case, the original CBS would assume the task had an early
wakeup. Then, CBS will reset the runtime, and the absolute deadline will
be postponed by one relative deadline, allowing the task to run.

The problem is that, if the task runs this pattern forever, it will keep
receiving bandwidth, being able to run 1ms every 2ms. Following this
behavior, the task would be able to run 500 ms in 1 sec. Thus running
more than the 5 ms / 1 sec the admission control allowed it to run.

Trying to address the self-suspending case, Luca Abeni, Giuseppe
Lipari, and Juri Lelli [1] revisited the CBS in order to deal with
self-suspending tasks. In the new approach, rather than
replenishing/postponing the absolute deadline, the revised wakeup rule
adjusts the remaining runtime, reducing it to fit into the allowed
density.

A revised version of the idea is:

At a given time t, the maximum absolute density of a task cannot be
higher than its relative density, that is:

  runtime / (deadline - t) <= dl_runtime / dl_deadline

Knowing the laxity of a task (deadline - t), it is possible to move
it to the other side of the equality, thus enabling to define max
remaining runtime a task can use within the absolute deadline, without
over-running the allowed density:

  runtime = (dl_runtime / dl_deadline) * (deadline - t)

For instance, in our previous example, the task could still run:

  runtime = ( 5 / 7 ) * 5
  runtime = 3.57 ms

Without causing damage for other deadline tasks. It is note worthy
that the laxity cannot be negative because that would cause a negative
runtime. Thus, this patch depends on the patch:

  df8eac8cafce ("sched/deadline: Throttle a constrained deadline task activated after the deadline")

Which throttles a constrained deadline task activated after the
deadline.

Finally, it is also possible to use the revised wakeup rule for
all other tasks, but that would require some more discussions
about pros and cons.

[The main difference from the original commit is that
 the BW_SHIFT define was not present yet. As BW_SHIFT was
 introduced in a new feature, I just used the value (20),
 likewise we used to use before the #define.
 Other changes were required because of comments. - bistrot]

Reported-by: Xunlei Pang <xpang@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
[peterz: replaced dl_is_constrained with dl_is_implicit]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/5c800ab3a74a168a84ee5f3f84d12a02e11383be.1495803804.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-31 12:06:07 +01:00
Xunlei Pang
8bd58b61d2 sched/deadline: Zero out positive runtime after throttling constrained tasks
commit ae83b56a56f8d9643dedbee86b457fa1c5d42f59 upstream.

When a contrained task is throttled by dl_check_constrained_dl(),
it may carry the remaining positive runtime, as a result when
dl_task_timer() fires and calls replenish_dl_entity(), it will
not be replenished correctly due to the positive dl_se->runtime.

This patch assigns its runtime to 0 if positive after throttling.

Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: df8eac8cafce ("sched/deadline: Throttle a constrained deadline task activated after the deadline)
Link: http://lkml.kernel.org/r/1494421417-27550-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-23 19:50:15 +01:00
Andy Lutomirski
18a5348d49 sched/core: Idle_task_exit() shouldn't use switch_mm_irqs_off()
commit 252d2a4117bc181b287eeddf848863788da733ae upstream.

idle_task_exit() can be called with IRQs on x86 on and therefore
should use switch_mm(), not switch_mm_irqs_off().

This doesn't seem to cause any problems right now, but it will
confuse my upcoming TLB flush changes.  Nonetheless, I think it
should be backported because it's trivial.  There won't be any
meaningful performance impact because idle_task_exit() is only
used when offlining a CPU.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: f98db6013c55 ("sched/core: Add switch_mm_irqs_off() and use it in the scheduler")
Link: http://lkml.kernel.org/r/ca3d1a9fa93a0b49f5a8ff729eda3640fb6abdf9.1497034141.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25 14:22:09 +01:00
Andy Lutomirski
425f13a366 sched/core: Add switch_mm_irqs_off() and use it in the scheduler
commit f98db6013c557c216da5038d9c52045be55cd039 upstream.

By default, this is the same thing as switch_mm().

x86 will override it as an optimization.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/df401df47bdd6be3e389c6f1e3f5310d70e81b2c.1461688545.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25 14:22:09 +01:00
Steven Rostedt (VMware)
51b3eac39a sched/deadline: Use deadline instead of period when calculating overflow
[ Upstream commit 2317d5f1c34913bac5971d93d69fb6c31bb74670 ]

I was testing Daniel's changes with his test case, and tweaked it a
little. Instead of having the runtime equal to the deadline, I
increased the deadline ten fold.

Daniel's test case had:

	attr.sched_runtime  = 2 * 1000 * 1000;		/* 2 ms */
	attr.sched_deadline = 2 * 1000 * 1000;		/* 2 ms */
	attr.sched_period   = 2 * 1000 * 1000 * 1000;	/* 2 s */

To make it more interesting, I changed it to:

	attr.sched_runtime  =  2 * 1000 * 1000;		/* 2 ms */
	attr.sched_deadline = 20 * 1000 * 1000;		/* 20 ms */
	attr.sched_period   =  2 * 1000 * 1000 * 1000;	/* 2 s */

The results were rather surprising. The behavior that Daniel's patch
was fixing came back. The task started using much more than .1% of the
CPU. More like 20%.

Looking into this I found that it was due to the dl_entity_overflow()
constantly returning true. That's because it uses the relative period
against relative runtime vs the absolute deadline against absolute
runtime.

  runtime / (deadline - t) > dl_runtime / dl_period

There's even a comment mentioning this, and saying that when relative
deadline equals relative period, that the equation is the same as using
deadline instead of period. That comment is backwards! What we really
want is:

  runtime / (deadline - t) > dl_runtime / dl_deadline

We care about if the runtime can make its deadline, not its period. And
then we can say "when the deadline equals the period, the equation is
the same as using dl_period instead of dl_deadline".

After correcting this, now when the task gets enqueued, it can throttle
correctly, and Daniel's fix to the throttling of sleeping deadline
tasks works even when the runtime and deadline are not the same.

Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/02135a27f1ae3fe5fd032568a5a2f370e190e8d7.1488392936.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20 10:04:55 +01:00
Daniel Bristot de Oliveira
ca91884bcf sched/deadline: Throttle a constrained deadline task activated after the deadline
[ Upstream commit df8eac8cafce7d086be3bd5cf5a838fa37594dfb ]

During the activation, CBS checks if it can reuse the current task's
runtime and period. If the deadline of the task is in the past, CBS
cannot use the runtime, and so it replenishes the task. This rule
works fine for implicit deadline tasks (deadline == period), and the
CBS was designed for implicit deadline tasks. However, a task with
constrained deadline (deadine < period) might be awakened after the
deadline, but before the next period. In this case, replenishing the
task would allow it to run for runtime / deadline. As in this case
deadline < period, CBS enables a task to run for more than the
runtime / period. In a very loaded system, this can cause a domino
effect, making other tasks miss their deadlines.

To avoid this problem, in the activation of a constrained deadline
task after the deadline but before the next period, throttle the
task and set the replenishing timer to the begin of the next period,
unless it is boosted.

Reproducer:

 --------------- %< ---------------
  int main (int argc, char **argv)
  {
	int ret;
	int flags = 0;
	unsigned long l = 0;
	struct timespec ts;
	struct sched_attr attr;

	memset(&attr, 0, sizeof(attr));
	attr.size = sizeof(attr);

	attr.sched_policy   = SCHED_DEADLINE;
	attr.sched_runtime  = 2 * 1000 * 1000;		/* 2 ms */
	attr.sched_deadline = 2 * 1000 * 1000;		/* 2 ms */
	attr.sched_period   = 2 * 1000 * 1000 * 1000;	/* 2 s */

	ts.tv_sec = 0;
	ts.tv_nsec = 2000 * 1000;			/* 2 ms */

	ret = sched_setattr(0, &attr, flags);

	if (ret < 0) {
		perror("sched_setattr");
		exit(-1);
	}

	for(;;) {
		/* XXX: you may need to adjust the loop */
		for (l = 0; l < 150000; l++);
		/*
		 * The ideia is to go to sleep right before the deadline
		 * and then wake up before the next period to receive
		 * a new replenishment.
		 */
		nanosleep(&ts, NULL);
	}

	exit(0);
  }
  --------------- >% ---------------

On my box, this reproducer uses almost 50% of the CPU time, which is
obviously wrong for a task with 2/2000 reservation.

Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/edf58354e01db46bf42df8d2dd32418833f68c89.1488392936.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20 10:04:55 +01:00
Daniel Bristot de Oliveira
cd0e18d2f2 sched/deadline: Make sure the replenishment timer fires in the next period
[ Upstream commit 5ac69d37784b237707a7b15d199cdb6c6fdb6780 ]

Currently, the replenishment timer is set to fire at the deadline
of a task. Although that works for implicit deadline tasks because the
deadline is equals to the begin of the next period, that is not correct
for constrained deadline tasks (deadline < period).

For instance:

f.c:
 --------------- %< ---------------
int main (void)
{
	for(;;);
}
 --------------- >% ---------------

  # gcc -o f f.c

  # trace-cmd record -e sched:sched_switch                              \
				   -e syscalls:sys_exit_sched_setattr   \
   chrt -d --sched-runtime  490000000					\
           --sched-deadline 500000000					\
	   --sched-period  1000000000 0 ./f

  # trace-cmd report | grep "{pid of ./f}"

After setting parameters, the task is replenished and continue running
until being throttled:

         f-11295 [003] 13322.113776: sys_exit_sched_setattr: 0x0

The task is throttled after running 492318 ms, as expected:

         f-11295 [003] 13322.606094: sched_switch:   f:11295 [-1] R ==> watchdog/3:32 [0]

But then, the task is replenished 500719 ms after the first
replenishment:

    <idle>-0     [003] 13322.614495: sched_switch:   swapper/3:0 [120] R ==> f:11295 [-1]

Running for 490277 ms:

         f-11295 [003] 13323.104772: sched_switch:   f:11295 [-1] R ==>  swapper/3:0 [120]

Hence, in the first period, the task runs 2 * runtime, and that is a bug.

During the first replenishment, the next deadline is set one period away.
So the runtime / period starts to be respected. However, as the second
replenishment took place in the wrong instant, the next replenishment
will also be held in a wrong instant of time. Rather than occurring in
the nth period away from the first activation, it is taking place
in the (nth period - relative deadline).

Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Luca Abeni <luca.abeni@santannapisa.it>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/ac50d89887c25285b47465638354b63362f8adff.1488392936.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20 10:04:55 +01:00
Steven Rostedt
af36d95af5 sched/rt: Do not pull from current CPU if only one CPU to pull
commit f73c52a5bcd1710994e53fbccc378c42b97a06b6 upstream.

Daniel Wagner reported a crash on the BeagleBone Black SoC.

This is a single CPU architecture, and does not have a functional
arch_send_call_function_single_ipi() implementation which can crash
the kernel if that is called.

As it only has one CPU, it shouldn't be called, but if the kernel is
compiled for SMP, the push/pull RT scheduling logic now calls it for
irq_work if the one CPU is overloaded, it can use that function to call
itself and crash the kernel.

Ideally, we should disable the SCHED_FEAT(RT_PUSH_IPI) if the system
only has a single CPU. But SCHED_FEAT is a constant if sched debugging
is turned off. Another fix can also be used, and this should also help
with normal SMP machines. That is, do not initiate the pull code if
there's only one RT overloaded CPU, and that CPU happens to be the
current CPU that is scheduling in a lower priority task.

Even on a system with many CPUs, if there's many RT tasks waiting to
run on a single CPU, and that CPU schedules in another RT task of lower
priority, it will initiate the PULL logic in case there's a higher
priority RT task on another CPU that is waiting to run. But if there is
no other CPU with waiting RT tasks, it will initiate the RT pull logic
on itself (as it still has RT tasks waiting to run). This is a wasted
effort.

Not only does this help with SMP code where the current CPU is the only
one with RT overloaded tasks, it should also solve the issue that
Daniel encountered, because it will prevent the PULL logic from
executing, as there's only one CPU on the system, and the check added
here will cause it to exit the RT pull code.

Reported-by: Daniel Wagner <wagi@monom.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Fixes: 4bdced5c9 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/20171202130454.4cbbfe8d@vmware.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20 10:04:52 +01:00
Steven Rostedt (Red Hat)
cb1831a83e sched/rt: Simplify the IPI based RT balancing logic
commit 4bdced5c9a2922521e325896a7bbbf0132c94e56 upstream.

When a CPU lowers its priority (schedules out a high priority task for a
lower priority one), a check is made to see if any other CPU has overloaded
RT tasks (more than one). It checks the rto_mask to determine this and if so
it will request to pull one of those tasks to itself if the non running RT
task is of higher priority than the new priority of the next task to run on
the current CPU.

When we deal with large number of CPUs, the original pull logic suffered
from large lock contention on a single CPU run queue, which caused a huge
latency across all CPUs. This was caused by only having one CPU having
overloaded RT tasks and a bunch of other CPUs lowering their priority. To
solve this issue, commit:

  b6366f048e0c ("sched/rt: Use IPI to trigger RT task push migration instead of pulling")

changed the way to request a pull. Instead of grabbing the lock of the
overloaded CPU's runqueue, it simply sent an IPI to that CPU to do the work.

Although the IPI logic worked very well in removing the large latency build
up, it still could suffer from a large number of IPIs being sent to a single
CPU. On a 80 CPU box, I measured over 200us of processing IPIs. Worse yet,
when I tested this on a 120 CPU box, with a stress test that had lots of
RT tasks scheduling on all CPUs, it actually triggered the hard lockup
detector! One CPU had so many IPIs sent to it, and due to the restart
mechanism that is triggered when the source run queue has a priority status
change, the CPU spent minutes! processing the IPIs.

Thinking about this further, I realized there's no reason for each run queue
to send its own IPI. As all CPUs with overloaded tasks must be scanned
regardless if there's one or many CPUs lowering their priority, because
there's no current way to find the CPU with the highest priority task that
can schedule to one of these CPUs, there really only needs to be one IPI
being sent around at a time.

This greatly simplifies the code!

The new approach is to have each root domain have its own irq work, as the
rto_mask is per root domain. The root domain has the following fields
attached to it:

  rto_push_work	 - the irq work to process each CPU set in rto_mask
  rto_lock	 - the lock to protect some of the other rto fields
  rto_loop_start - an atomic that keeps contention down on rto_lock
		    the first CPU scheduling in a lower priority task
		    is the one to kick off the process.
  rto_loop_next	 - an atomic that gets incremented for each CPU that
		    schedules in a lower priority task.
  rto_loop	 - a variable protected by rto_lock that is used to
		    compare against rto_loop_next
  rto_cpu	 - The cpu to send the next IPI to, also protected by
		    the rto_lock.

When a CPU schedules in a lower priority task and wants to make sure
overloaded CPUs know about it. It increments the rto_loop_next. Then it
atomically sets rto_loop_start with a cmpxchg. If the old value is not "0",
then it is done, as another CPU is kicking off the IPI loop. If the old
value is "0", then it will take the rto_lock to synchronize with a possible
IPI being sent around to the overloaded CPUs.

If rto_cpu is greater than or equal to nr_cpu_ids, then there's either no
IPI being sent around, or one is about to finish. Then rto_cpu is set to the
first CPU in rto_mask and an IPI is sent to that CPU. If there's no CPUs set
in rto_mask, then there's nothing to be done.

When the CPU receives the IPI, it will first try to push any RT tasks that is
queued on the CPU but can't run because a higher priority RT task is
currently running on that CPU.

Then it takes the rto_lock and looks for the next CPU in the rto_mask. If it
finds one, it simply sends an IPI to that CPU and the process continues.

If there's no more CPUs in the rto_mask, then rto_loop is compared with
rto_loop_next. If they match, everything is done and the process is over. If
they do not match, then a CPU scheduled in a lower priority task as the IPI
was being passed around, and the process needs to start again. The first CPU
in rto_mask is sent the IPI.

This change removes this duplication of work in the IPI logic, and greatly
lowers the latency caused by the IPIs. This removed the lockup happening on
the 120 CPU machine. It also simplifies the code tremendously. What else
could anyone ask for?

Thanks to Peter Zijlstra for simplifying the rto_loop_start atomic logic and
supplying me with the rto_start_trylock() and rto_start_unlock() helper
functions.

Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170424114732.1aac6dc4@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-30 08:37:25 +00:00
Paul E. McKenney
8ff3471878 sched: Make resched_cpu() unconditional
commit 7c2102e56a3f7d85b5d8f33efbd7aecc1f36fdd8 upstream.

The current implementation of synchronize_sched_expedited() incorrectly
assumes that resched_cpu() is unconditional, which it is not.  This means
that synchronize_sched_expedited() can hang when resched_cpu()'s trylock
fails as follows (analysis by Neeraj Upadhyay):

o	CPU1 is waiting for expedited wait to complete:

	sync_rcu_exp_select_cpus
	     rdp->exp_dynticks_snap & 0x1   // returns 1 for CPU5
	     IPI sent to CPU5

	synchronize_sched_expedited_wait
		 ret = swait_event_timeout(rsp->expedited_wq,
					   sync_rcu_preempt_exp_done(rnp_root),
					   jiffies_stall);

	expmask = 0x20, CPU 5 in idle path (in cpuidle_enter())

o	CPU5 handles IPI and fails to acquire rq lock.

	Handles IPI
	     sync_sched_exp_handler
		 resched_cpu
		     returns while failing to try lock acquire rq->lock
		 need_resched is not set

o	CPU5 calls  rcu_idle_enter() and as need_resched is not set, goes to
	idle (schedule() is not called).

o	CPU 1 reports RCU stall.

Given that resched_cpu() is now used only by RCU, this commit fixes the
assumption by making resched_cpu() unconditional.

Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Suggested-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-30 08:37:19 +00:00
Oleg Nesterov
0f85c0954b sched/autogroup: Fix autogroup_move_group() to never skip sched_move_task()
commit 18f649ef344127ef6de23a5a4272dbe2fdb73dde upstream.

The PF_EXITING check in task_wants_autogroup() is no longer needed. Remove
it, but see the next patch.

However the comment is correct in that autogroup_move_group() must always
change task_group() for every thread so the sysctl_ check is very wrong;
we can race with cgroups and even sys_setsid() is not safe because a task
running with task_group() == ag->tg must participate in refcounting:

	int main(void)
	{
		int sctl = open("/proc/sys/kernel/sched_autogroup_enabled", O_WRONLY);

		assert(sctl > 0);
		if (fork()) {
			wait(NULL); // destroy the child's ag/tg
			pause();
		}

		assert(pwrite(sctl, "1\n", 2, 0) == 2);
		assert(setsid() > 0);
		if (fork())
			pause();

		kill(getppid(), SIGKILL);
		sleep(1);

		// The child has gone, the grandchild runs with kref == 1
		assert(pwrite(sctl, "0\n", 2, 0) == 2);
		assert(setsid() > 0);

		// runs with the freed ag/tg
		for (;;)
			sleep(1);

		return 0;
	}

crashes the kernel. It doesn't really need sleep(1), it doesn't matter if
autogroup_move_group() actually frees the task_group or this happens later.

Reported-by: Vern Lovejoy <vlovejoy@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hartsjc@redhat.com
Cc: vbendel@redhat.com
Link: http://lkml.kernel.org/r/20161114184609.GA15965@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sumit Semwal <sumit.semwal@linaro.org>
 [sumits: submit to 4.4 LTS, post testing on Hikey]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-27 10:23:17 +02:00
Peter Zijlstra
90fd673873 sched/cpuset/pm: Fix cpuset vs. suspend-resume bugs
commit 50e76632339d4655859523a39249dd95ee5e93e7 upstream.

Cpusets vs. suspend-resume is _completely_ broken. And it got noticed
because it now resulted in non-cpuset usage breaking too.

On suspend cpuset_cpu_inactive() doesn't call into
cpuset_update_active_cpus() because it doesn't want to move tasks about,
there is no need, all tasks are frozen and won't run again until after
we've resumed everything.

But this means that when we finally do call into
cpuset_update_active_cpus() after resuming the last frozen cpu in
cpuset_cpu_active(), the top_cpuset will not have any difference with
the cpu_active_mask and this it will not in fact do _anything_.

So the cpuset configuration will not be restored. This was largely
hidden because we would unconditionally create identity domains and
mobile users would not in fact use cpusets much. And servers what do use
cpusets tend to not suspend-resume much.

An addition problem is that we'd not in fact wait for the cpuset work to
finish before resuming the tasks, allowing spurious migrations outside
of the specified domains.

Fix the rebuild by introducing cpuset_force_rebuild() and fix the
ordering with cpuset_wait_for_hotplug().

Reported-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: deb7aa308ea2 ("cpuset: reorganize CPU / memory hotplug handling")
Link: http://lkml.kernel.org/r/20170907091338.orwxrqkbfkki3c24@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-12 11:27:35 +02:00
Wanpeng Li
62208707b4 sched/cputime: Fix prev steal time accouting during CPU hotplug
commit 3d89e5478bf550a50c99e93adf659369798263b0 upstream.

Commit:

  e9532e69b8d1 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")

... set rq->prev_* to 0 after a CPU hotplug comes back, in order to
fix the case where (after CPU hotplug) steal time is smaller than
rq->prev_steal_time.

However, this should never happen. Steal time was only smaller because of the
KVM-specific bug fixed by the previous patch.  Worse, the previous patch
triggers a bug on CPU hot-unplug/plug operation: because
rq->prev_steal_time is cleared, all of the CPU's past steal time will be
accounted again on hot-plug.

Since the root cause has been fixed, we can just revert commit e9532e69b8d1.

Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 'commit e9532e69b8d1 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")'
Link: http://lkml.kernel.org/r/1465813966-3116-3-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andres Oportus <andresoportus@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-06 19:19:43 -07:00
Konstantin Khlebnikov
0e0967e262 sched/cgroup: Move sched_online_group() back into css_online() to fix crash
commit 96b777452d8881480fd5be50112f791c17db4b6b upstream.

Commit:

  2f5177f0fd7e ("sched/cgroup: Fix/cleanup cgroup teardown/init")

.. moved sched_online_group() from css_online() to css_alloc().
It exposes half-baked task group into global lists before initializing
generic cgroup stuff.

LTP testcase (third in cgroup_regression_test) written for testing
similar race in kernels 2.6.26-2.6.28 easily triggers this oops:

  BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
  IP: kernfs_path_from_node_locked+0x260/0x320
  CPU: 1 PID: 30346 Comm: cat Not tainted 4.10.0-rc5-test #4
  Call Trace:
  ? kernfs_path_from_node+0x4f/0x60
  kernfs_path_from_node+0x3e/0x60
  print_rt_rq+0x44/0x2b0
  print_rt_stats+0x7a/0xd0
  print_cpu+0x2fc/0xe80
  ? __might_sleep+0x4a/0x80
  sched_debug_show+0x17/0x30
  seq_read+0xf2/0x3b0
  proc_reg_read+0x42/0x70
  __vfs_read+0x28/0x130
  ? security_file_permission+0x9b/0xc0
  ? rw_verify_area+0x4e/0xb0
  vfs_read+0xa5/0x170
  SyS_read+0x46/0xa0
  entry_SYSCALL_64_fastpath+0x1e/0xad

Here the task group is already linked into the global RCU-protected 'task_groups'
list, but the css->cgroup pointer is still NULL.

This patch reverts this chunk and moves online back to css_online().

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2f5177f0fd7e ("sched/cgroup: Fix/cleanup cgroup teardown/init")
Link: http://lkml.kernel.org/r/148655324740.424917.5302984537258726349.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-06 19:19:42 -07:00
Lauro Ramos Venancio
988067ec96 sched/topology: Optimize build_group_mask()
commit f32d782e31bf079f600dcec126ed117b0577e85c upstream.

The group mask is always used in intersection with the group CPUs. So,
when building the group mask, we don't have to care about CPUs that are
not part of the group.

Signed-off-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lwang@redhat.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1492717903-5195-2-git-send-email-lvenanci@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-21 07:44:59 +02:00
Peter Zijlstra
5c34f49776 sched/topology: Fix overlapping sched_group_mask
commit 73bb059f9b8a00c5e1bf2f7ca83138c05d05e600 upstream.

The point of sched_group_mask is to select those CPUs from
sched_group_cpus that can actually arrive at this balance domain.

The current code gets it wrong, as can be readily demonstrated with a
topology like:

  node   0   1   2   3
    0:  10  20  30  20
    1:  20  10  20  30
    2:  30  20  10  20
    3:  20  30  20  10

Where (for example) domain 1 on CPU1 ends up with a mask that includes
CPU0:

  [] CPU1 attaching sched-domain:
  []  domain 0: span 0-2 level NUMA
  []   groups: 1 (mask: 1), 2, 0
  []   domain 1: span 0-3 level NUMA
  []    groups: 0-2 (mask: 0-2) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072)

This causes sched_balance_cpu() to compute the wrong CPU and
consequently should_we_balance() will terminate early resulting in
missed load-balance opportunities.

The fixed topology looks like:

  [] CPU1 attaching sched-domain:
  []  domain 0: span 0-2 level NUMA
  []   groups: 1 (mask: 1), 2, 0
  []   domain 1: span 0-3 level NUMA
  []    groups: 0-2 (mask: 1) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072)

(note: this relies on OVERLAP domains to always have children, this is
 true because the regular topology domains are still here -- this is
 before degenerate trimming)

Debugged-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: e3589f6c81e4 ("sched: Allow for overlapping sched_domain spans")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-21 07:44:59 +02:00
Matt Fleming
6ca11db55f sched/loadavg: Avoid loadavg spikes caused by delayed NO_HZ accounting
commit 6e5f32f7a43f45ee55c401c0b9585eb01f9629a8 upstream.

If we crossed a sample window while in NO_HZ we will add LOAD_FREQ to
the pending sample window time on exit, setting the next update not
one window into the future, but two.

This situation on exiting NO_HZ is described by:

  this_rq->calc_load_update < jiffies < calc_load_update

In this scenario, what we should be doing is:

  this_rq->calc_load_update = calc_load_update		     [ next window ]

But what we actually do is:

  this_rq->calc_load_update = calc_load_update + LOAD_FREQ   [ next+1 window ]

This has the effect of delaying load average updates for potentially
up to ~9seconds.

This can result in huge spikes in the load average values due to
per-cpu uninterruptible task counts being out of sync when accumulated
across all CPUs.

It's safe to update the per-cpu active count if we wake between sample
windows because any load that we left in 'calc_load_idle' will have
been zero'd when the idle load was folded in calc_global_load().

This issue is easy to reproduce before,

  commit 9d89c257dfb9 ("sched/fair: Rewrite runnable load and utilization average tracking")

just by forking short-lived process pipelines built from ps(1) and
grep(1) in a loop. I'm unable to reproduce the spikes after that
commit, but the bug still seems to be present from code review.

Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Fixes: commit 5167e8d ("sched/nohz: Rewrite and fix load-avg computation -- again")
Link: http://lkml.kernel.org/r/20170217120731.11868-2-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-05 14:37:21 +02:00
Konstantin Khlebnikov
ada79b5ecd sched/fair: Initialize throttle_count for new task-groups lazily
commit 094f469172e00d6ab0a3130b0e01c83b3cf3a98d upstream.

Cgroup created inside throttled group must inherit current throttle_count.
Broken throttle_count allows to nominate throttled entries as a next buddy,
later this leads to null pointer dereference in pick_next_task_fair().

This patch initialize cfs_rq->throttle_count at first enqueue: laziness
allows to skip locking all rq at group creation. Lazy approach also allows
to skip full sub-tree scan at throttling hierarchy (not in this patch).

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Link: http://lkml.kernel.org/r/146608182119.21870.8439834428248129633.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Ben Pineau <benjamin.pineau@mirakl.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25 14:30:12 +02:00
Konstantin Khlebnikov
f01ae9cb0d sched/fair: Do not announce throttled next buddy in dequeue_task_fair()
commit 754bd598be9bbc953bc709a9e8ed7f3188bfb9d7 upstream.

Hierarchy could be already throttled at this point. Throttled next
buddy could trigger a NULL pointer dereference in pick_next_task_fair().

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/146608183552.21905.15924473394414832071.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Ben Pineau <benjamin.pineau@mirakl.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25 14:30:12 +02:00
Sebastian Andrzej Siewior
2bed598769 sched/rt: Add a missing rescheduling point
commit 619bd4a71874a8fd78eb6ccf9f272c5e98bcc7b7 upstream.

Since the change in commit:

  fd7a4bed1835 ("sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks")

... we don't reschedule a task under certain circumstances:

Lets say task-A, SCHED_OTHER, is running on CPU0 (and it may run only on
CPU0) and holds a PI lock. This task is removed from the CPU because it
used up its time slice and another SCHED_OTHER task is running. Task-B on
CPU1 runs at RT priority and asks for the lock owned by task-A. This
results in a priority boost for task-A. Task-B goes to sleep until the
lock has been made available. Task-A is already runnable (but not active),
so it receives no wake up.

The reality now is that task-A gets on the CPU once the scheduler decides
to remove the current task despite the fact that a high priority task is
enqueued and waiting. This may take a long time.

The desired behaviour is that CPU0 immediately reschedules after the
priority boost which made task-A the task with the lowest priority.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: fd7a4bed1835 ("sched, rt: Convert switched_{from, to}_rt() prio_changed_rt() to balance callbacks")
Link: http://lkml.kernel.org/r/20170124144006.29821-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-31 09:49:54 +02:00
Balbir Singh
a37a538e82 sched/core: Fix a race between try_to_wake_up() and a woken up task
commit 135e8c9250dd5c8c9aae5984fde6f230d0cbfeaf upstream.

The origin of the issue I've seen is related to
a missing memory barrier between check for task->state and
the check for task->on_rq.

The task being woken up is already awake from a schedule()
and is doing the following:

	do {
		schedule()
		set_current_state(TASK_(UN)INTERRUPTIBLE);
	} while (!cond);

The waker, actually gets stuck doing the following in
try_to_wake_up():

	while (p->on_cpu)
		cpu_relax();

Analysis:

The instance I've seen involves the following race:

 CPU1					CPU2

 while () {
   if (cond)
     break;
   do {
     schedule();
     set_current_state(TASK_UN..)
   } while (!cond);
					wakeup_routine()
					  spin_lock_irqsave(wait_lock)
   raw_spin_lock_irqsave(wait_lock)	  wake_up_process()
 }					  try_to_wake_up()
 set_current_state(TASK_RUNNING);	  ..
 list_del(&waiter.list);

CPU2 wakes up CPU1, but before it can get the wait_lock and set
current state to TASK_RUNNING the following occurs:

 CPU3
 wakeup_routine()
 raw_spin_lock_irqsave(wait_lock)
 if (!list_empty)
   wake_up_process()
   try_to_wake_up()
   raw_spin_lock_irqsave(p->pi_lock)
   ..
   if (p->on_rq && ttwu_wakeup())
   ..
   while (p->on_cpu)
     cpu_relax()
   ..

CPU3 tries to wake up the task on CPU1 again since it finds
it on the wait_queue, CPU1 is spinning on wait_lock, but immediately
after CPU2, CPU3 got it.

CPU3 checks the state of p on CPU1, it is TASK_UNINTERRUPTIBLE and
the task is spinning on the wait_lock. Interestingly since p->on_rq
is checked under pi_lock, I've noticed that try_to_wake_up() finds
p->on_rq to be 0. This was the most confusing bit of the analysis,
but p->on_rq is changed under runqueue lock, rq_lock, the p->on_rq
check is not reliable without this fix IMHO. The race is visible
(based on the analysis) only when ttwu_queue() does a remote wakeup
via ttwu_queue_remote. In which case the p->on_rq change is not
done uder the pi_lock.

The result is that after a while the entire system locks up on
the raw_spin_irqlock_save(wait_lock) and the holder spins infintely

Reproduction of the issue:

The issue can be reproduced after a long run on my system with 80
threads and having to tweak available memory to very low and running
memory stress-ng mmapfork test. It usually takes a long time to
reproduce. I am trying to work on a test case that can reproduce
the issue faster, but thats work in progress. I am still testing the
changes on my still in a loop and the tests seem OK thus far.

Big thanks to Benjamin and Nick for helping debug this as well.
Ben helped catch the missing barrier, Nick caught every missing
bit in my theory.

Signed-off-by: Balbir Singh <bsingharora@gmail.com>
[ Updated comment to clarify matching barriers. Many
  architectures do not have a full barrier in switch_to()
  so that cannot be relied upon. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicholas Piggin <nicholas.piggin@gmail.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e02cce7b-d9ca-1ad0-7a61-ea97c7582b37@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-24 10:07:42 +02:00
Gavin Guo
f2b8424f35 sched/numa: Fix use-after-free bug in the task_numa_compare
[ Upstream commit 1dff76b92f69051e579bdc131e01500da9fa2a91 ]

The following message can be observed on the Ubuntu v3.13.0-65 with KASan
backported:

  ==================================================================
  BUG: KASan: use after free in task_numa_find_cpu+0x64c/0x890 at addr ffff880dd393ecd8
  Read of size 8 by task qemu-system-x86/3998900
  =============================================================================
  BUG kmalloc-128 (Tainted: G    B        ): kasan: bad access detected
  -----------------------------------------------------------------------------

  INFO: Allocated in task_numa_fault+0xc1b/0xed0 age=41980 cpu=18 pid=3998890
	__slab_alloc+0x4f8/0x560
	__kmalloc+0x1eb/0x280
	task_numa_fault+0xc1b/0xed0
	do_numa_page+0x192/0x200
	handle_mm_fault+0x808/0x1160
	__do_page_fault+0x218/0x750
	do_page_fault+0x1a/0x70
	page_fault+0x28/0x30
	SyS_poll+0x66/0x1a0
	system_call_fastpath+0x1a/0x1f
  INFO: Freed in task_numa_free+0x1d2/0x200 age=62 cpu=18 pid=0
	__slab_free+0x2ab/0x3f0
	kfree+0x161/0x170
	task_numa_free+0x1d2/0x200
	finish_task_switch+0x1d2/0x210
	__schedule+0x5d4/0xc60
	schedule_preempt_disabled+0x40/0xc0
	cpu_startup_entry+0x2da/0x340
	start_secondary+0x28f/0x360
  Call Trace:
   [<ffffffff81a6ce35>] dump_stack+0x45/0x56
   [<ffffffff81244aed>] print_trailer+0xfd/0x170
   [<ffffffff8124ac36>] object_err+0x36/0x40
   [<ffffffff8124cbf9>] kasan_report_error+0x1e9/0x3a0
   [<ffffffff8124d260>] kasan_report+0x40/0x50
   [<ffffffff810dda7c>] ? task_numa_find_cpu+0x64c/0x890
   [<ffffffff8124bee9>] __asan_load8+0x69/0xa0
   [<ffffffff814f5c38>] ? find_next_bit+0xd8/0x120
   [<ffffffff810dda7c>] task_numa_find_cpu+0x64c/0x890
   [<ffffffff810de16c>] task_numa_migrate+0x4ac/0x7b0
   [<ffffffff810de523>] numa_migrate_preferred+0xb3/0xc0
   [<ffffffff810e0b88>] task_numa_fault+0xb88/0xed0
   [<ffffffff8120ef02>] do_numa_page+0x192/0x200
   [<ffffffff81211038>] handle_mm_fault+0x808/0x1160
   [<ffffffff810d7dbd>] ? sched_clock_cpu+0x10d/0x160
   [<ffffffff81068c52>] ? native_load_tls+0x82/0xa0
   [<ffffffff81a7bd68>] __do_page_fault+0x218/0x750
   [<ffffffff810c2186>] ? hrtimer_try_to_cancel+0x76/0x160
   [<ffffffff81a6f5e7>] ? schedule_hrtimeout_range_clock.part.24+0xf7/0x1c0
   [<ffffffff81a7c2ba>] do_page_fault+0x1a/0x70
   [<ffffffff81a772e8>] page_fault+0x28/0x30
   [<ffffffff8128cbd4>] ? do_sys_poll+0x1c4/0x6d0
   [<ffffffff810e64f6>] ? enqueue_task_fair+0x4b6/0xaa0
   [<ffffffff810233c9>] ? sched_clock+0x9/0x10
   [<ffffffff810cf70a>] ? resched_task+0x7a/0xc0
   [<ffffffff810d0663>] ? check_preempt_curr+0xb3/0x130
   [<ffffffff8128b5c0>] ? poll_select_copy_remaining+0x170/0x170
   [<ffffffff810d3bc0>] ? wake_up_state+0x10/0x20
   [<ffffffff8112a28f>] ? drop_futex_key_refs.isra.14+0x1f/0x90
   [<ffffffff8112d40e>] ? futex_requeue+0x3de/0xba0
   [<ffffffff8112e49e>] ? do_futex+0xbe/0x8f0
   [<ffffffff81022c89>] ? read_tsc+0x9/0x20
   [<ffffffff8111bd9d>] ? ktime_get_ts+0x12d/0x170
   [<ffffffff8108f699>] ? timespec_add_safe+0x59/0xe0
   [<ffffffff8128d1f6>] SyS_poll+0x66/0x1a0
   [<ffffffff81a830dd>] system_call_fastpath+0x1a/0x1f

As commit 1effd9f19324 ("sched/numa: Fix unsafe get_task_struct() in
task_numa_assign()") points out, the rcu_read_lock() cannot protect the
task_struct from being freed in the finish_task_switch(). And the bug
happens in the process of calculation of imp which requires the access of
p->numa_faults being freed in the following path:

do_exit()
        current->flags |= PF_EXITING;
    release_task()
        ~~delayed_put_task_struct()~~
    schedule()
    ...
    ...
rq->curr = next;
    context_switch()
        finish_task_switch()
            put_task_struct()
                __put_task_struct()
		    task_numa_free()

The fix here to get_task_struct() early before end of dst_rq->lock to
protect the calculation process and also put_task_struct() in the
corresponding point if finally the dst_rq->curr somehow cannot be
assigned.

Additional credit to Liang Chen who helped fix the error logic and add the
put_task_struct() to the place it missed.

Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jay.vosburgh@canonical.com
Cc: liang.chen@canonical.com
Link: http://lkml.kernel.org/r/1453264618-17645-1-git-send-email-gavin.guo@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-15 08:27:45 +02:00
Wanpeng Li
15abaa07a2 sched/nohz: Fix affine unpinned timers mess
commit 444969223c81c7d0a95136b7b4cfdcfbc96ac5bd upstream.

The following commit:

  9642d18eee2c ("nohz: Affine unpinned timers to housekeepers")'

intended to affine unpinned timers to housekeepers:

  unpinned timers(full dynaticks, idle)   =>   nearest busy housekeepers(otherwise, fallback to any housekeepers)
  unpinned timers(full dynaticks, busy)   =>   nearest busy housekeepers(otherwise, fallback to any housekeepers)
  unpinned timers(houserkeepers, idle)    =>   nearest busy housekeepers(otherwise, fallback to itself)

However, the !idle_cpu(i) && is_housekeeping_cpu(cpu) check modified the
intention to:

  unpinned timers(full dynaticks, idle)   =>   any housekeepers(no mattter cpu topology)
  unpinned timers(full dynaticks, busy)   =>   any housekeepers(no mattter cpu topology)
  unpinned timers(housekeepers, idle)     =>   any busy cpus(otherwise, fallback to any housekeepers)

This patch fixes it by checking if there are busy housekeepers nearby,
otherwise falls to any housekeepers/itself. After the patch:

  unpinned timers(full dynaticks, idle)   =>   nearest busy housekeepers(otherwise, fallback to any housekeepers)
  unpinned timers(full dynaticks, busy)   =>   nearest busy housekeepers(otherwise, fallback to any housekeepers)
  unpinned timers(housekeepers, idle)     =>   nearest busy housekeepers(otherwise, fallback to itself)

Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ Fixed the changelog. ]
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: 'commit 9642d18eee2c ("nohz: Affine unpinned timers to housekeepers")'
Link: http://lkml.kernel.org/r/1462344334-8303-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-07 08:32:41 +02:00
Peter Zijlstra
c3cf68ec55 sched/cputime: Fix NO_HZ_FULL getrusage() monotonicity regression
commit 173be9a14f7b2e901cf77c18b1aafd4d672e9d9e upstream.

Mike reports:

 Roughly 10% of the time, ltp testcase getrusage04 fails:
 getrusage04    0  TINFO  :  Expected timers granularity is 4000 us
 getrusage04    0  TINFO  :  Using 1 as multiply factor for max [us]time increment (1000+4000us)!
 getrusage04    0  TINFO  :  utime:           0us; stime:         179us
 getrusage04    0  TINFO  :  utime:        3751us; stime:           0us
 getrusage04    1  TFAIL  :  getrusage04.c:133: stime increased > 5000us:

And tracked it down to the case where the task simply doesn't get
_any_ [us]time ticks.

Update the code to assume all rtime is utime when we lack information,
thus ensuring a task that elides the tick gets time accounted.

Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Fixes: 9d7fb0427648 ("sched/cputime: Guarantee stime + utime == rtime")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-07 08:32:41 +02:00
Peter Zijlstra
34bf12312b sched/fair: Fix effective_load() to consistently use smoothed load
commit 7dd4912594daf769a46744848b05bd5bc6d62469 upstream.

Starting with the following commit:

  fde7d22e01aa ("sched/fair: Fix overly small weight for interactive group entities")

calc_tg_weight() doesn't compute the right value as expected by effective_load().

The difference is in the 'correction' term. In order to ensure \Sum
rw_j >= rw_i we cannot use tg->load_avg directly, since that might be
lagging a correction on the current cfs_rq->avg.load_avg value.
Therefore we use tg->load_avg - cfs_rq->tg_load_avg_contrib +
cfs_rq->avg.load_avg.

Now, per the referenced commit, calc_tg_weight() doesn't use
cfs_rq->avg.load_avg, as is later used in @w, but uses
cfs_rq->load.weight instead.

So stop using calc_tg_weight() and do it explicitly.

The effects of this bug are wake_affine() making randomly
poor choices in cgroup-intense workloads.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: fde7d22e01aa ("sched/fair: Fix overly small weight for interactive group entities")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-10 11:49:28 +02:00