IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit b28a8eebe81c186fdb1a0078263b30576c8e1f42 upstream.
The trampoline code needs to use the address of symbols in the wider
kernel, e.g. vectors. PC-relative addressing wouldn't work as the
trampoline code doesn't run at the address the linker expected.
tramp_ventry uses a literal pool, unless CONFIG_RANDOMIZE_BASE is
set, in which case it uses the data page as a literal pool because
the data page can be unmapped when running in user-space, which is
required for CPUs vulnerable to meltdown.
Pull this logic out as a macro, instead of adding a third copy
of it.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
[ Removed SDEI for stable backport ]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ba2689234be92024e5635d30fe744f4853ad97db upstream.
Some CPUs affected by Spectre-BHB need a sequence of branches, or a
firmware call to be run before any indirect branch. This needs to go
in the vectors. No CPU needs both.
While this can be patched in, it would run on all CPUs as there is a
single set of vectors. If only one part of a big/little combination is
affected, the unaffected CPUs have to run the mitigation too.
Create extra vectors that include the sequence. Subsequent patches will
allow affected CPUs to select this set of vectors. Later patches will
modify the loop count to match what the CPU requires.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
arm64_update_smccc_conduit() is an alternative callback that patches
HVC/SMC. Currently the only user is SSBD. To use this for Spectre-BHB,
it needs to be moved out of the SSBD #ifdef region.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aff65393fa1401e034656e349abd655cfe272de0 upstream.
kpti is an optional feature, for systems not using kpti a set of
vectors for the spectre-bhb mitigations is needed.
Add another set of vectors, __bp_harden_el1_vectors, that will be
used if a mitigation is needed and kpti is not in use.
The EL1 ventries are repeated verbatim as there is no additional
work needed for entry from EL1.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a9c406e6462ff14956d690de7bbe5131a5677dc9 upstream.
Adding a second set of vectors to .entry.tramp.text will make it
larger than a single 4K page.
Allow the trampoline text to occupy up to three pages by adding two
more fixmap slots. Previous changes to tramp_valias allowed it to reach
beyond a single page.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c47e4d04ba0f1ea17353d85d45f611277507e07a upstream.
Spectre-BHB needs to add sequences to the vectors. Having one global
set of vectors is a problem for big/little systems where the sequence
is costly on cpus that are not vulnerable.
Making the vectors per-cpu in the style of KVM's bh_harden_hyp_vecs
requires the vectors to be generated by macros.
Make the kpti re-mapping of the kernel optional, so the macros can be
used without kpti.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 13d7a08352a83ef2252aeb464a5e08dfc06b5dfd upstream.
The macros for building the kpti trampoline are all behind
CONFIG_UNMAP_KERNEL_AT_EL0, and in a region that outputs to the
.entry.tramp.text section.
Move the macros out so they can be used to generate other kinds of
trampoline. Only the symbols need to be guarded by
CONFIG_UNMAP_KERNEL_AT_EL0 and appear in the .entry.tramp.text section.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ed50da7764535f1e24432ded289974f2bf2b0c5a upstream.
The tramp_ventry macro uses tramp_vectors as the address of the vectors
when calculating which ventry in the 'full fat' vectors to branch to.
While there is one set of tramp_vectors, this will be true.
Adding multiple sets of vectors will break this assumption.
Move the generation of the vectors to a macro, and pass the start
of the vectors as an argument to tramp_ventry.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6c5bf79b69f911560fbf82214c0971af6e58e682 upstream.
Systems using kpti enter and exit the kernel through a trampoline mapping
that is always mapped, even when the kernel is not. tramp_valias is a macro
to find the address of a symbol in the trampoline mapping.
Adding extra sets of vectors will expand the size of the entry.tramp.text
section to beyond 4K. tramp_valias will be unable to generate addresses
for symbols beyond 4K as it uses the 12 bit immediate of the add
instruction.
As there are now two registers available when tramp_alias is called,
use the extra register to avoid the 4K limit of the 12 bit immediate.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
[ Removed SDEI for backport ]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c091fb6ae059cda563b2a4d93fdbc548ef34e1d6 upstream.
The trampoline code has a data page that holds the address of the vectors,
which is unmapped when running in user-space. This ensures that with
CONFIG_RANDOMIZE_BASE, the randomised address of the kernel can't be
discovered until after the kernel has been mapped.
If the trampoline text page is extended to include multiple sets of
vectors, it will be larger than a single page, making it tricky to
find the data page without knowing the size of the trampoline text
pages, which will vary with PAGE_SIZE.
Move the data page to appear before the text page. This allows the
data page to be found without knowing the size of the trampoline text
pages. 'tramp_vectors' is used to refer to the beginning of the
.entry.tramp.text section, do that explicitly.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
[ removed SDEI for backport ]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 03aff3a77a58b5b52a77e00537a42090ad57b80b upstream.
Kpti stashes x30 in far_el1 while it uses x30 for all its work.
Making the vectors a per-cpu data structure will require a second
register.
Allow tramp_exit two registers before it unmaps the kernel, by
leaving x30 on the stack, and stashing x29 in far_el1.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d739da1694a0eaef0358a42b76904b611539b77b upstream.
Subsequent patches will add additional sets of vectors that use
the same tricks as the kpti vectors to reach the full-fat vectors.
The full-fat vectors contain some cleanup for kpti that is patched
in by alternatives when kpti is in use. Once there are additional
vectors, the cleanup will be needed in more cases.
But on big/little systems, the cleanup would be harmful if no
trampoline vector were in use. Instead of forcing CPUs that don't
need a trampoline vector to use one, make the trampoline cleanup
optional.
Entry at the top of the vectors will skip the cleanup. The trampoline
vectors can then skip the first instruction, triggering the cleanup
to run.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4330e2c5c04c27bebf89d34e0bc14e6943413067 upstream.
Subsequent patches add even more code to the ventry slots.
Ensure kernels that overflow a ventry slot don't get built.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8c2dcbd2c4443bad0b4242fb62baa47b260b8f79 upstream.
Add a helper to extract the register field from a given
instruction.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2d0d656700d67239a57afaf617439143d8dac9be upstream.
Add the CPU Partnumbers for the new Arm designs.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20211019163153.3692640-2-suzuki.poulose@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8a6b88e66233f5f1779b0a1342aa9dc030dddcd5 upstream.
Add the MIDR part number info for the Arm Cortex-A77.
Signed-off-by: Rob Herring <robh@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201028182839.166037-1-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0cf57b86859c49381addb3ce47be70aadf5fd2c0 upstream.
New CPU, new part number. You know the drill.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c2b5bba3967a000764e9148e6f020d776b7ecd82 upstream.
Since ARM64_ERRATUM_1188873 only affects AArch32 EL0, it makes some
sense that it should depend on COMPAT.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e03a4e5bb7430f9294c12f02c69eb045d010e942 upstream.
Document that we actually work around ARM erratum 1188873
Fixes: 95b861a4a6d9 ("arm64: arch_timer: Add workaround for ARM erratum 1188873")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 040f340134751d73bd03ee92fabb992946c55b3d upstream.
arm64_1188873_read_cntvct_el0() is protected by the correct
CONFIG_ARM64_ERRATUM_1188873 #ifdef, but the only reference to it is
also inside of an CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND section,
and causes a warning if that is disabled:
drivers/clocksource/arm_arch_timer.c:323:20: error: 'arm64_1188873_read_cntvct_el0' defined but not used [-Werror=unused-function]
Since the erratum requires that we always apply the workaround
in the timer driver, select that symbol as we do for SoC
specific errata.
Fixes: 95b861a4a6d9 ("arm64: arch_timer: Add workaround for ARM erratum 1188873")
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 95b861a4a6d94f64d5242605569218160ebacdbe upstream.
When running on Cortex-A76, a timer access from an AArch32 EL0
task may end up with a corrupted value or register. The workaround for
this is to trap these accesses at EL1/EL2 and execute them there.
This only affects versions r0p0, r1p0 and r2p0 of the CPU.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0064030c6fd4ca6cfab42de037b2a89445beeead upstream.
Should we ever have a workaround for an erratum that is detected using
a capability and affecting a particular CPU, it'd be nice to have
a way to probe them directly.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 651bb2e9dca6e6dbad3fba5f6e6086a23575b8b5 upstream.
We're currently stuck with DT when it comes to handling errata, which
is pretty restrictive. In order to make things more flexible, let's
introduce an infrastructure that could support alternative discovery
methods. No change in functionality.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
[ morse: Removed the changes to HiSilicon erratum 161010101, which isn't
present in v4.9 ]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 16d10ef29f25aba923779234bb93a451b14d20e6 upstream.
Currently we have code inline in the arch timer probe path to cater for
Freescale erratum A-008585, complete with ifdeffery. This is a little
ugly, and will get worse as we try to add more errata handling.
This patch refactors the handling of Freescale erratum A-008585. Now the
erratum is described in a generic arch_timer_erratum_workaround
structure, and the probe path can iterate over these to detect errata
and enable workarounds.
This will simplify the addition and maintenance of code handling
Hisilicon erratum 161010101.
Signed-off-by: Ding Tianhong <dingtianhong@huawei.com>
[Mark: split patch, correct Kconfig, reword commit message]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5444ea6a7f46276876e94ecf8d44615af1ef22f7 upstream.
Having a command line option to flip the errata handling for a
particular erratum is a little bit unusual, and it's vastly superior to
pass this in the DT. By common consensus, it's best to kill off the
command line parameter.
Signed-off-by: Ding Tianhong <dingtianhong@huawei.com>
[Mark: split patch, reword commit message]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit be5b299830c63ed76e0357473c4218c85fb388b3 ]
Add helpers for detecting an errata on list of midr ranges
of affected CPUs, with the same work around.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[ardb: add Cortex-A35 to kpti_safe_list[] as well]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1df310505d6d544802016f6bae49aab836ae8510 ]
Add helpers for checking if the given CPU midr falls in a range
of variants/revisions for a given model.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5e7951ce19abf4113645ae789c033917356ee96f ]
We are about to introduce generic MIDR range helpers. Clean
up the existing helpers in erratum handling, preparing them
to use generic version.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5b4747c5dce7a873e1e7fe1608835825f714267a ]
When a CPU is brought up, it is checked against the caps that are
known to be enabled on the system (via verify_local_cpu_capabilities()).
Based on the state of the capability on the CPU vs. that of System we
could have the following combinations of conflict.
x-----------------------------x
| Type | System | Late CPU |
|-----------------------------|
| a | y | n |
|-----------------------------|
| b | n | y |
x-----------------------------x
Case (a) is not permitted for caps which are system features, which the
system expects all the CPUs to have (e.g VHE). While (a) is ignored for
all errata work arounds. However, there could be exceptions to the plain
filtering approach. e.g, KPTI is an optional feature for a late CPU as
long as the system already enables it.
Case (b) is not permitted for errata work arounds that cannot be activated
after the kernel has finished booting.And we ignore (b) for features. Here,
yet again, KPTI is an exception, where if a late CPU needs KPTI we are too
late to enable it (because we change the allocation of ASIDs etc).
Add two different flags to indicate how the conflict should be handled.
ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - CPUs may have the capability
ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - CPUs may not have the cappability.
Now that we have the flags to describe the behavior of the errata and
the features, as we treat them, define types for ERRATUM and FEATURE.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 143ba05d867af34827faf99e0eed4de27106c7cb ]
We use arm64_cpu_capabilities to represent CPU ELF HWCAPs exposed
to the userspace and the CPU hwcaps used by the kernel, which
include cpu features and CPU errata work arounds. Capabilities
have some properties that decide how they should be treated :
1) Detection, i.e scope : A cap could be "detected" either :
- if it is present on at least one CPU (SCOPE_LOCAL_CPU)
Or
- if it is present on all the CPUs (SCOPE_SYSTEM)
2) When is it enabled ? - A cap is treated as "enabled" when the
system takes some action based on whether the capability is detected or
not. e.g, setting some control register, patching the kernel code.
Right now, we treat all caps are enabled at boot-time, after all
the CPUs are brought up by the kernel. But there are certain caps,
which are enabled early during the boot (e.g, VHE, GIC_CPUIF for NMI)
and kernel starts using them, even before the secondary CPUs are brought
up. We would need a way to describe this for each capability.
3) Conflict on a late CPU - When a CPU is brought up, it is checked
against the caps that are known to be enabled on the system (via
verify_local_cpu_capabilities()). Based on the state of the capability
on the CPU vs. that of System we could have the following combinations
of conflict.
x-----------------------------x
| Type | System | Late CPU |
------------------------------|
| a | y | n |
------------------------------|
| b | n | y |
x-----------------------------x
Case (a) is not permitted for caps which are system features, which the
system expects all the CPUs to have (e.g VHE). While (a) is ignored for
all errata work arounds. However, there could be exceptions to the plain
filtering approach. e.g, KPTI is an optional feature for a late CPU as
long as the system already enables it.
Case (b) is not permitted for errata work arounds which requires some
work around, which cannot be delayed. And we ignore (b) for features.
Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we
are too late to enable it (because we change the allocation of ASIDs
etc).
So this calls for a lot more fine grained behavior for each capability.
And if we define all the attributes to control their behavior properly,
we may be able to use a single table for the CPU hwcaps (which cover
errata and features, not the ELF HWCAPs). This is a prepartory step
to get there. More bits would be added for the properties listed above.
We are going to use a bit-mask to encode all the properties of a
capabilities. This patch encodes the "SCOPE" of the capability.
As such there is no change in how the capabilities are treated.
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1e89baed5d50d2b8d9fd420830902570270703f1 ]
We have errata work around processing code in cpu_errata.c,
which calls back into helpers defined in cpufeature.c. Now
that we are going to make the handling of capabilities
generic, by adding the information to each capability,
move the errata work around specific processing code.
No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5e91107b06811f0ca147cebbedce53626c9c4443 ]
We trigger CPU errata work around check on the boot CPU from
smp_prepare_boot_cpu() to make sure that we run the checks only
after the CPU feature infrastructure is initialised. While this
is correct, we can also do this from init_cpu_features() which
initilises the infrastructure, and is called only on the
Boot CPU. This helps to consolidate the CPU capability handling
to cpufeature.c. No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c0cda3b8ee6b4b6851b2fd8b6db91fd7b0e2524a ]
We issue the enable() call back for all CPU hwcaps capabilities
available on the system, on all the CPUs. So far we have ignored
the argument passed to the call back, which had a prototype to
accept a "void *" for use with on_each_cpu() and later with
stop_machine(). However, with commit 0a0d111d40fd1
("arm64: cpufeature: Pass capability structure to ->enable callback"),
there are some users of the argument who wants the matching capability
struct pointer where there are multiple matching criteria for a single
capability. Clean up the declaration of the call back to make it clear.
1) Renamed to cpu_enable(), to imply taking necessary actions on the
called CPU for the entry.
2) Pass const pointer to the capability, to allow the call back to
check the entry. (e.,g to check if any action is needed on the CPU)
3) We don't care about the result of the call back, turning this to
a void.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: James Morse <james.morse@arm.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Dave Martin <dave.martin@arm.com>
[suzuki: convert more users, rename call back and drop results]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6e616864f21160d8d503523b60a53a29cecc6f24 upstream.
Update the MIDR encodings for the Cortex-A55 and Cortex-A35
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c8b06e3fddddaae1a87ed479edcb8b3d85caecc7 upstream.
Since its introduction, the UAO enable call was broken, and useless.
commit 2a6dcb2b5f3e ("arm64: cpufeature: Schedule enable() calls instead
of calling them via IPI"), fixed the framework so that these calls
are scheduled, so that they can modify PSTATE.
Now it is just useless. Remove it. UAO is enabled by the code patching
which causes get_user() and friends to use the 'ldtr' family of
instructions. This relies on the PSTATE.UAO bit being set to match
addr_limit, which we do in uao_thread_switch() called via __switch_to().
All that is needed to enable UAO is patch the code, and call schedule().
__apply_alternatives_multi_stop() calls stop_machine() when it modifies
the kernel text to enable the alternatives, (including the UAO code in
uao_thread_switch()). Once stop_machine() has finished __switch_to() is
called to reschedule the original task, this causes PSTATE.UAO to be set
appropriately. An explicit enable() call is not needed.
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fa5ce3d1928c441c3d241c34a00c07c8f5880b1a upstream
Definition of cpu ranges are hard to read if the cpu variant is not
zero. Provide MIDR_CPU_VAR_REV() macro to describe the full hardware
revision of a cpu including variant and (minor) revision.
Signed-off-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[ morse: some parts of this patch were already backported as part of
b8c320884eff003581ee61c5970a2e83f513eff1 ]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4a2d4496e15ea5bb5c8e83b94ca8ca7fb045e7d3 upstream.
While commit 6a01afcf8468 ("mac80211: mesh: Free ie data when leaving
mesh") fixed a memory leak on mesh leave / teardown it introduced a
potential memory corruption caused by a double free when rejoining the
mesh:
ieee80211_leave_mesh()
-> kfree(sdata->u.mesh.ie);
...
ieee80211_join_mesh()
-> copy_mesh_setup()
-> old_ie = ifmsh->ie;
-> kfree(old_ie);
This double free / kernel panics can be reproduced by using wpa_supplicant
with an encrypted mesh (if set up without encryption via "iw" then
ifmsh->ie is always NULL, which avoids this issue). And then calling:
$ iw dev mesh0 mesh leave
$ iw dev mesh0 mesh join my-mesh
Note that typically these commands are not used / working when using
wpa_supplicant. And it seems that wpa_supplicant or wpa_cli are going
through a NETDEV_DOWN/NETDEV_UP cycle between a mesh leave and mesh join
where the NETDEV_UP resets the mesh.ie to NULL via a memcpy of
default_mesh_setup in cfg80211_netdev_notifier_call, which then avoids
the memory corruption, too.
The issue was first observed in an application which was not using
wpa_supplicant but "Senf" instead, which implements its own calls to
nl80211.
Fixing the issue by removing the kfree()'ing of the mesh IE in the mesh
join function and leaving it solely up to the mesh leave to free the
mesh IE.
Cc: stable@vger.kernel.org
Fixes: 6a01afcf8468 ("mac80211: mesh: Free ie data when leaving mesh")
Reported-by: Matthias Kretschmer <mathias.kretschmer@fit.fraunhofer.de>
Signed-off-by: Linus Lüssing <ll@simonwunderlich.de>
Tested-by: Mathias Kretschmer <mathias.kretschmer@fit.fraunhofer.de>
Link: https://lore.kernel.org/r/20220310183513.28589-1-linus.luessing@c0d3.blue
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8893d27ffcaf6ec6267038a177cb87bcde4dd3de upstream.
The implementations of aead and skcipher in the QAT driver do not
support properly requests with the CRYPTO_TFM_REQ_MAY_BACKLOG flag set.
If the HW queue is full, the driver returns -EBUSY but does not enqueue
the request.
This can result in applications like dm-crypt waiting indefinitely for a
completion of a request that was never submitted to the hardware.
To avoid this problem, disable the registration of all crypto algorithms
in the QAT driver by setting the number of crypto instances to 0 at
configuration time.
Cc: stable@vger.kernel.org
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c844d22fe0c0b37dc809adbdde6ceb6462c43acf upstream.
Clevo NL5xRU and NL5xNU/TUXEDO Aura 15 Gen1 and Gen2 have both a working
native and video interface. However the default detection mechanism first
registers the video interface before unregistering it again and switching
to the native interface during boot. This results in a dangling SBIOS
request for backlight change for some reason, causing the backlight to
switch to ~2% once per boot on the first power cord connect or disconnect
event. Setting the native interface explicitly circumvents this buggy
behaviour by avoiding the unregistering process.
Signed-off-by: Werner Sembach <wse@tuxedocomputers.com>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7dacee0b9efc8bd061f097b1a8d4daa6591af0c6 upstream.
For some reason, the Microsoft Surface Go 3 uses the standard ACPI
interface for battery information, but does not use the standard PNP0C0A
HID. Instead it uses MSHW0146 as identifier. Add that ID to the driver
as this seems to work well.
Additionally, the power state is not updated immediately after the AC
has been (un-)plugged, so add the respective quirk for that.
Signed-off-by: Maximilian Luz <luzmaximilian@gmail.com>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e702196bf85778f2c5527ca47f33ef2e2fca8297 upstream.
On this board the ACPI RSDP structure points to both a RSDT and an XSDT,
but the XSDT points to a truncated FADT. This causes all sorts of trouble
and usually a complete failure to boot after the following error occurs:
ACPI Error: Unsupported address space: 0x20 (*/hwregs-*)
ACPI Error: AE_SUPPORT, Unable to initialize fixed events (*/evevent-*)
ACPI: Unable to start ACPI Interpreter
This leaves the ACPI implementation in such a broken state that subsequent
kernel subsystem initialisations go wrong, resulting in among others
mismapped PCI memory, SATA and USB enumeration failures, and freezes.
As this is an older embedded platform that will likely never see any BIOS
updates to address this issue and its default shipping OS only complies to
ACPI 1.0, work around this by forcing `acpi=rsdt`. This patch, applied on
top of Linux 5.10.102, was confirmed on real hardware to fix the issue.
Signed-off-by: Mark Cilissen <mark@yotsuba.nl>
Cc: All applicable <stable@vger.kernel.org>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 17aaf0193392cb3451bf0ac75ba396ec4cbded6e upstream.
Tests 72 and 78 for ALSA in kselftest fail due to reading
inconsistent values from some devices on a VirtualBox
Virtual Machine using the snd_intel8x0 driver for the AC'97
Audio Controller device.
Taking for example test number 72, this is what the test reports:
"Surround Playback Volume.0 expected 1 but read 0, is_volatile 0"
"Surround Playback Volume.1 expected 0 but read 1, is_volatile 0"
These errors repeat for each value from 0 to 31.
Taking a look at these error messages it is possible to notice
that the written values are read back swapped.
When the write is performed, these values are initially stored in
an array used to sanity-check them and write them in the pcmreg
array. To write them, the two one-byte values are packed together
in a two-byte variable through bitwise operations: the first
value is shifted left by one byte and the second value is stored in the
right byte through a bitwise OR. When reading the values back,
right shifts are performed to retrieve the previously stored
bytes. These shifts are executed in the wrong order, thus
reporting the values swapped as shown above.
This patch fixes this mistake by reversing the read
operations' order.
Signed-off-by: Giacomo Guiduzzi <guiduzzi.giacomo@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220322200653.15862-1-guiduzzi.giacomo@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0f306cca42fe879694fb5e2382748c43dc9e0196 upstream.
For the RODE NT-USB the lowest Playback mixer volume setting mutes the
audio output. But it is not reported as such causing e.g. PulseAudio to
accidentally mute the device when selecting a low volume.
Fix this by applying the existing quirk for this kind of issue when the
device is detected.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220311201400.235892-1-lars@metafoo.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1f68915b2efd0d6bfd6e124aa63c94b3c69f127c upstream.
snd_pcm_reset() is a non-atomic operation, and it's allowed to run
during the PCM stream running. It implies that the manipulation of
hw_ptr and other parameters might be racy.
This patch adds the PCM stream lock at appropriate places in
snd_pcm_*_reset() actions for covering that.
Cc: <stable@vger.kernel.org>
Reviewed-by: Jaroslav Kysela <perex@perex.cz>
Link: https://lore.kernel.org/r/20220322171325.4355-1-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 764f4eb6846f5475f1244767d24d25dd86528a4a upstream.
Whenever llc_ui_bind() and/or llc_ui_autobind()
took a reference on a netdevice but subsequently fail,
they must properly release their reference
or risk the infamous message from unregister_netdevice()
at device dismantle.
unregister_netdevice: waiting for eth0 to become free. Usage count = 3
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: 赵子轩 <beraphin@gmail.com>
Reported-by: Stoyan Manolov <smanolov@suse.de>
Link: https://lore.kernel.org/r/20220323004147.1990845-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>