IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 11745ecfe8fea4b4a4c322967a7605d2ecbd5080 upstream.
Existing code was generating bogus counts for the SNB IMC bandwidth counters:
$ perf stat -a -I 1000 -e uncore_imc/data_reads/,uncore_imc/data_writes/
1.000327813 1,024.03 MiB uncore_imc/data_reads/
1.000327813 20.73 MiB uncore_imc/data_writes/
2.000580153 261,120.00 MiB uncore_imc/data_reads/
2.000580153 23.28 MiB uncore_imc/data_writes/
The problem was introduced by commit:
07ce734dd8ad ("perf/x86/intel/uncore: Clean up client IMC")
Where the read_counter callback was replace to point to the generic
uncore_mmio_read_counter() function.
The SNB IMC counters are freerunnig 32-bit counters laid out contiguously in
MMIO. But uncore_mmio_read_counter() is using a readq() call to read from
MMIO therefore reading 64-bit from MMIO. Although this is okay for the
uncore_perf_event_update() function because it is shifting the value based
on the actual counter width to compute a delta, it is not okay for the
uncore_pmu_event_start() which is simply reading the counter and therefore
priming the event->prev_count with a bogus value which is responsible for
causing bogus deltas in the perf stat command above.
The fix is to reintroduce the custom callback for read_counter for the SNB
IMC PMU and use readl() instead of readq(). With the change the output of
perf stat is back to normal:
$ perf stat -a -I 1000 -e uncore_imc/data_reads/,uncore_imc/data_writes/
1.000120987 296.94 MiB uncore_imc/data_reads/
1.000120987 138.42 MiB uncore_imc/data_writes/
2.000403144 175.91 MiB uncore_imc/data_reads/
2.000403144 68.50 MiB uncore_imc/data_writes/
Fixes: 07ce734dd8ad ("perf/x86/intel/uncore: Clean up client IMC")
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20220803160031.1379788-1-eranian@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7df548840c496b0141fb2404b889c346380c2b22 upstream.
Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which may not be correct. Vulnerability status for these older CPUs is
unknown.
Add known-not-affected CPUs to the whitelist. Report "unknown"
mitigation status for CPUs that are not in blacklist, whitelist and also
don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware
immunity to MMIO Stale Data vulnerabilities.
Mitigation is not deployed when the status is unknown.
[ bp: Massage, fixup. ]
Fixes: 8d50cdf8b834 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data")
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fc2e426b1161761561624ebd43ce8c8d2fa058da upstream.
When meeting ftrace trampolines in ORC unwinding, unwinder uses address
of ftrace_{regs_}call address to find the ORC entry, which gets next frame at
sp+176.
If there is an IRQ hitting at sub $0xa8,%rsp, the next frame should be
sp+8 instead of 176. It makes unwinder skip correct frame and throw
warnings such as "wrong direction" or "can't access registers", etc,
depending on the content of the incorrect frame address.
By adding the base address ftrace_{regs_}caller with the offset
*ip - ops->trampoline*, we can get the correct address to find the ORC entry.
Also change "caller" to "tramp_addr" to make variable name conform to
its content.
[ mingo: Clarified the changelog a bit. ]
Fixes: 6be7fa3c74d1 ("ftrace, orc, x86: Handle ftrace dynamically allocated trampolines")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220819084334.244016-1-chenzhongjin@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 32ba156df1b1c8804a4e5be5339616945eafea22 upstream.
On the platform with Arch LBR, the HW raw branch type encoding may leak
to the perf tool when the SAVE_TYPE option is not set.
In the intel_pmu_store_lbr(), the HW raw branch type is stored in
lbr_entries[].type. If the SAVE_TYPE option is set, the
lbr_entries[].type will be converted into the generic PERF_BR_* type
in the intel_pmu_lbr_filter() and exposed to the user tools.
But if the SAVE_TYPE option is NOT set by the user, the current perf
kernel doesn't clear the field. The HW raw branch type leaks.
There are two solutions to fix the issue for the Arch LBR.
One is to clear the field if the SAVE_TYPE option is NOT set.
The other solution is to unconditionally convert the branch type and
expose the generic type to the user tools.
The latter is implemented here, because
- The branch type is valuable information. I don't see a case where
you would not benefit from the branch type. (Stephane Eranian)
- Not having the branch type DOES NOT save any space in the
branch record (Stephane Eranian)
- The Arch LBR HW can retrieve the common branch types from the
LBR_INFO. It doesn't require the high overhead SW disassemble.
Fixes: 47125db27e47 ("perf/x86/intel/lbr: Support Architectural LBR")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220816125612.2042397-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 88e0a74902f894fbbc55ad3ad2cb23b4bfba555c upstream.
Commit c164fbb40c43f("x86/mm: thread pgprot_t through
init_memory_mapping()") mistakenly used __pgprot() which doesn't respect
__default_kernel_pte_mask when setting PUD mapping.
Fix it by only setting the one bit we actually need (PSE) and leaving
the other bits (that have been properly masked) alone.
Fixes: c164fbb40c43 ("x86/mm: thread pgprot_t through init_memory_mapping()")
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4ac19ead0dfbabd8e0bfc731f507cfb0b95d6c99 upstream.
When returning from the compare function the u64 is truncated to an
int. This results in a loss of the high nybble[1] in the event select
and its sign if that nybble is in use. Switch from using a result that
can end up being truncated to a result that can only be: 1, 0, -1.
[1] bits 35:32 in the event select register and bits 11:8 in the event
select.
Fixes: 7ff775aca48ad ("KVM: x86/pmu: Use binary search to check filtered events")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220517051238.2566934-1-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 00b5f37189d24ac3ed46cb7f11742094778c46ce upstream
When kvm_irq_delivery_to_apic_fast() is called with APIC_DEST_SELF
shorthand, 'src' must not be NULL. Crash the VM with KVM_BUG_ON()
instead of crashing the host.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325132140.25650-3-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Stefan Ghinea <stefan.ghinea@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7ec37d1cbe17d8189d9562178d8b29167fe1c31a upstream
When KVM_CAP_HYPERV_SYNIC{,2} is activated, KVM already checks for
irqchip_in_kernel() so normally SynIC irqs should never be set. It is,
however, possible for a misbehaving VMM to write to SYNIC/STIMER MSRs
causing erroneous behavior.
The immediate issue being fixed is that kvm_irq_delivery_to_apic()
(kvm_irq_delivery_to_apic_fast()) crashes when called with
'irq.shorthand = APIC_DEST_SELF' and 'src == NULL'.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325132140.25650-2-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Stefan Ghinea <stefan.ghinea@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 98defd2e17803263f49548fea930cfc974d505aa ]
MSR_CORE_PERF_GLOBAL_CTRL is introduced as part of Architecture PMU V2,
as indicated by Intel SDM 19.2.2 and the intel_is_valid_msr() function.
So in the absence of global_ctrl support, all PMCs are enabled as AMD does.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220509102204.62389-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 93255bf92939d948bc86d81c6bb70bb0fecc5db1 ]
Mark all MSR_CORE_PERF_GLOBAL_CTRL and MSR_CORE_PERF_GLOBAL_OVF_CTRL bits
as reserved if there is no guest vPMU. The nVMX VM-Entry consistency
checks do not check for a valid vPMU prior to consuming the masks via
kvm_valid_perf_global_ctrl(), i.e. may incorrectly allow a non-zero mask
to be loaded via VM-Enter or VM-Exit (well, attempted to be loaded, the
actual MSR load will be rejected by intel_is_valid_msr()).
Fixes: f5132b01386b ("KVM: Expose a version 2 architectural PMU to a guests")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220722224409.1336532-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2c985527dd8d283e786ad7a67e532ef7f6f00fac ]
The mask value of fixed counter control register should be dynamic
adjusted with the number of fixed counters. This patch introduces a
variable that includes the reserved bits of fixed counter control
registers. This is a generic code refactoring.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 95b065bf5c431c06c68056a03a5853b660640ecc ]
The third nybble of AMD's event select overlaps with Intel's IN_TX and
IN_TXCP bits. Therefore, we can't use AMD64_RAW_EVENT_MASK on Intel
platforms that support TSX.
Declare a raw_event_mask in the kvm_pmu structure, initialize it in
the vendor-specific pmu_refresh() functions, and use that mask for
PERF_TYPE_RAW configurations in reprogram_gp_counter().
Fixes: 710c47651431 ("KVM: x86/pmu: Use AMD64_RAW_EVENT_MASK for PERF_TYPE_RAW")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220308012452.3468611-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7ff775aca48adc854436b92c060e5eebfffb6a4a ]
The PMU event filter may contain up to 300 events. Replace the linear
search in reprogram_gp_counter() with a binary search.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220115052431.447232-2-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a755753903a40d982f6dd23d65eb96b248a2577a ]
Once MSR_IA32_PERF_CAPABILITIES is changed via vmx_set_msr(), the
value should not be changed by cpuid(). To ensure that the new value
is kept, the default initialization path is moved to intel_pmu_init().
The effective value of the MSR will be 0 if PDCM is clear, however.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c7d855c2aff2d511fd60ee2e356134c4fb394799 ]
Inject a #UD if L1 attempts VMXON with a CR0 or CR4 that is disallowed
per the associated nested VMX MSRs' fixed0/1 settings. KVM cannot rely
on hardware to perform the checks, even for the few checks that have
higher priority than VM-Exit, as (a) KVM may have forced CR0/CR4 bits in
hardware while running the guest, (b) there may incompatible CR0/CR4 bits
that have lower priority than VM-Exit, e.g. CR0.NE, and (c) userspace may
have further restricted the allowed CR0/CR4 values by manipulating the
guest's nested VMX MSRs.
Note, despite a very strong desire to throw shade at Jim, commit
70f3aac964ae ("kvm: nVMX: Remove superfluous VMX instruction fault checks")
is not to blame for the buggy behavior (though the comment...). That
commit only removed the CR0.PE, EFLAGS.VM, and COMPATIBILITY mode checks
(though it did erroneously drop the CPL check, but that has already been
remedied). KVM may force CR0.PE=1, but will do so only when also
forcing EFLAGS.VM=1 to emulate Real Mode, i.e. hardware will still #UD.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216033
Fixes: ec378aeef9df ("KVM: nVMX: Implement VMXON and VMXOFF")
Reported-by: Eric Li <ercli@ucdavis.edu>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c2fe3cd4604ac87c587db05d41843d667dc43815 ]
Split out VMX's checks on CR4.VMXE to a dedicated hook, .is_valid_cr4(),
and invoke the new hook from kvm_valid_cr4(). This fixes an issue where
KVM_SET_SREGS would return success while failing to actually set CR4.
Fixing the issue by explicitly checking kvm_x86_ops.set_cr4()'s return
in __set_sregs() is not a viable option as KVM has already stuffed a
variety of vCPU state.
Note, kvm_valid_cr4() and is_valid_cr4() have different return types and
inverted semantics. This will be remedied in a future patch.
Fixes: 5e1746d6205d ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 311a06593b9a3944a63ed176b95cb8d857f7c83b ]
Drop svm_set_cr4()'s explicit check CR4.VMXE now that common x86 handles
the check by incorporating VMXE into the CR4 reserved bits, via
kvm_cpu_caps. SVM obviously does not set X86_FEATURE_VMX.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a447e38a7fadb2e554c3942dda183e55cccd5df0 ]
Drop vmx_set_cr4()'s explicit check on the 'nested' module param now
that common x86 handles the check by incorporating VMXE into the CR4
reserved bits, via kvm_cpu_caps. X86_FEATURE_VMX is set in kvm_cpu_caps
(by vmx_set_cpu_caps()), if and only if 'nested' is true.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d3a9e4146a6f79f19430bca3f2a4d6ebaaffe36b ]
Drop vmx_set_cr4()'s somewhat hidden guest_cpuid_has() check on VMXE now
that common x86 handles the check by incorporating VMXE into the CR4
reserved bits, i.e. in cr4_guest_rsvd_bits. This fixes a bug where KVM
incorrectly rejects KVM_SET_SREGS with CR4.VMXE=1 if it's executed
before KVM_SET_CPUID{,2}.
Fixes: 5e1746d6205d ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Reported-by: Stas Sergeev <stsp@users.sourceforge.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2368048bf5c2ec4b604ac3431564071e89a0bc71 ]
Return '1', not '-1', when handling an illegal WRMSR to a MCi_CTL or
MCi_STATUS MSR. The behavior of "all zeros' or "all ones" for CTL MSRs
is architectural, as is the "only zeros" behavior for STATUS MSRs. I.e.
the intent is to inject a #GP, not exit to userspace due to an unhandled
emulation case. Returning '-1' gets interpreted as -EPERM up the stack
and effecitvely kills the guest.
Fixes: 890ca9aefa78 ("KVM: Add MCE support")
Fixes: 9ffd986c6e4e ("KVM: X86: #GP when guest attempts to write MCi_STATUS register w/o 0")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220512222716.4112548-2-seanjc@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3a2ba42cbd0b669ce3837ba400905f93dd06c79f upstream.
The bitops compile-time optimization series revealed one more
problem in olpc-xo1-sci.c:send_ebook_state(), resulted in GCC
warnings:
arch/x86/platform/olpc/olpc-xo1-sci.c: In function 'send_ebook_state':
arch/x86/platform/olpc/olpc-xo1-sci.c:83:63: warning: logical not is only applied to the left hand side of comparison [-Wlogical-not-parentheses]
83 | if (!!test_bit(SW_TABLET_MODE, ebook_switch_idev->sw) == state)
| ^~
arch/x86/platform/olpc/olpc-xo1-sci.c:83:13: note: add parentheses around left hand side expression to silence this warning
Despite this code working as intended, this redundant double
negation of boolean value, together with comparing to `char`
with no explicit conversion to bool, makes compilers think
the author made some unintentional logical mistakes here.
Make it the other way around and negate the char instead
to silence the warnings.
Fixes: d2aa37411b8e ("x86/olpc/xo1/sci: Produce wakeup events for buttons and switches")
Cc: stable@vger.kernel.org # 3.5+
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-and-tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com>
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ac6c1b2ca77e722a1e5d651f12f437f2f237e658 upstream.
When a ftrace_bug happens (where ftrace fails to modify a location) it is
helpful to have what was at that location as well as what was expected to
be there.
But with the conversion to text_poke() the variable that assigns the
expected for debugging was dropped. Unfortunately, I noticed this when I
needed it. Add it back.
Link: https://lkml.kernel.org/r/20220726101851.069d2e70@gandalf.local.home
Cc: "x86@kernel.org" <x86@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: 768ae4406a5c ("x86/ftrace: Use text_poke()")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e6cfcdda8cbe81eaf821c897369a65fec987b404 upstream.
AMD's "Technical Guidance for Mitigating Branch Type Confusion,
Rev. 1.0 2022-07-12" whitepaper, under section 6.1.2 "IBPB On
Privileged Mode Entry / SMT Safety" says:
Similar to the Jmp2Ret mitigation, if the code on the sibling thread
cannot be trusted, software should set STIBP to 1 or disable SMT to
ensure SMT safety when using this mitigation.
So, like already being done for retbleed=unret, and now also for
retbleed=ibpb, force STIBP on machines that have it, and report its SMT
vulnerability status accordingly.
[ bp: Remove the "we" and remove "[AMD]" applicability parameter which
doesn't work here. ]
Fixes: 3ebc17006888 ("x86/bugs: Add retbleed=ibpb")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # 5.10, 5.15, 5.19
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/20220804192201.439596-1-kim.phillips@amd.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit de979c83574abf6e78f3fa65b716515c91b2613d ]
With CONFIG_PREEMPTION disabled, arch/x86/entry/thunk_$(BITS).o becomes
an empty object file.
With some old versions of binutils (i.e., 2.35.90.20210113-1ubuntu1) the
GNU assembler doesn't generate a symbol table for empty object files and
objtool fails with the following error when a valid symbol table cannot
be found:
arch/x86/entry/thunk_64.o: warning: objtool: missing symbol table
To prevent this from happening, build thunk_$(BITS).o only if
CONFIG_PREEMPTION is enabled.
BugLink: https://bugs.launchpad.net/bugs/1911359
Fixes: 320100a5ffe5 ("x86/entry: Remove the TRACE_IRQS cruft")
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/Ys/Ke7EWjcX+ZlXO@arighi-desktop
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 625395c4a0f4775e0fe00f616888d2e6c1ba49db ]
GCC-12 started triggering a new warning:
arch/x86/mm/numa.c: In function ‘cpumask_of_node’:
arch/x86/mm/numa.c:916:39: warning: the comparison will always evaluate as ‘false’ for the address of ‘node_to_cpumask_map’ will never be NULL [-Waddress]
916 | if (node_to_cpumask_map[node] == NULL) {
| ^~
node_to_cpumask_map is of type cpumask_var_t[].
When CONFIG_CPUMASK_OFFSTACK is set, cpumask_var_t is typedef'd to a
pointer for dynamic allocation, else to an array of one element. The
"wicked game" can be checked on line 700 of include/linux/cpumask.h.
The original code in debug_cpumask_set_cpu() and cpumask_of_node() were
probably written by the original authors with CONFIG_CPUMASK_OFFSTACK=y
(i.e. dynamic allocation) in mind, checking if the cpumask was available
via a direct NULL check.
When CONFIG_CPUMASK_OFFSTACK is not set, GCC gives the above warning
while compiling the kernel.
Fix that by using cpumask_available(), which does the NULL check when
CONFIG_CPUMASK_OFFSTACK is set, otherwise returns true. Use it wherever
such checks are made.
Conditional definitions of cpumask_available() can be found along with
the definition of cpumask_var_t. Check the cpumask.h reference mentioned
above.
Fixes: c032ef60d1aa ("cpumask: convert node_to_cpumask_map[] to cpumask_var_t")
Fixes: de2d9445f162 ("x86: Unify node_to_cpumask_map handling between 32 and 64bit")
Signed-off-by: Siddh Raman Pant <code@siddh.me>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220731160913.632092-1-code@siddh.me
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 229e73d46994f15314f58b2d39bf952111d89193 ]
Make sure to free the platform device in the unlikely event that
registration fails.
Fixes: 7a67832c7e44 ("libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option")
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220620140723.9810-1-johan@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8bcedb4ce04750e1ccc9a6b6433387f6a9166a56 ]
When kernel is booted with idle=nomwait do not use MWAIT as the
default idle state.
If the user boots the kernel with idle=nomwait, it is a clear
direction to not use mwait as the default idle state.
However, the current code does not take this into consideration
while selecting the default idle state on x86.
Fix it by checking for the idle=nomwait boot option in
prefer_mwait_c1_over_halt().
Also update the documentation around idle=nomwait appropriately.
[ dhansen: tweak commit message ]
Signed-off-by: Wyes Karny <wyes.karny@amd.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lkml.kernel.org/r/fdc2dc2d0a1bc21c2f53d989ea2d2ee3ccbc0dbe.1654538381.git-series.wyes.karny@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 982bae43f11c37b51d2f1961bb25ef7cac3746fa upstream.
Mark kvm_mmu_x86_module_init() with __init, the entire reason it exists
is to initialize variables when kvm.ko is loaded, i.e. it must never be
called after module initialization.
Fixes: 1d0e84806047 ("KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded")
Cc: stable@vger.kernel.org
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2626206963ace9e8bf92b6eea5ff78dd674c555c upstream.
When injecting a #GP on LLDT/LTR due to a non-canonical LDT/TSS base, set
the error code to the selector. Intel SDM's says nothing about the #GP,
but AMD's APM explicitly states that both LLDT and LTR set the error code
to the selector, not zero.
Note, a non-canonical memory operand on LLDT/LTR does generate a #GP(0),
but the KVM code in question is specific to the base from the descriptor.
Fixes: e37a75a13cda ("KVM: x86: Emulator ignores LDTR/TR extended base on LLDT/LTR")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220711232750.1092012-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ec6e4d863258d4bfb36d48d5e3ef68140234d688 upstream.
Wait to mark the TSS as busy during LTR emulation until after all fault
checks for the LTR have passed. Specifically, don't mark the TSS busy if
the new TSS base is non-canonical.
Opportunistically drop the one-off !seg_desc.PRESENT check for TR as the
only reason for the early check was to avoid marking a !PRESENT TSS as
busy, i.e. the common !PRESENT is now done before setting the busy bit.
Fixes: e37a75a13cda ("KVM: x86: Emulator ignores LDTR/TR extended base on LLDT/LTR")
Reported-by: syzbot+760a73552f47a8cd0fd9@syzkaller.appspotmail.com
Cc: stable@vger.kernel.org
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Hou Wenlong <houwenlong.hwl@antgroup.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220711232750.1092012-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f8ae08f9789ad59d318ea75b570caa454aceda81 upstream.
Restrict the nVMX MSRs based on KVM's config, not based on the guest's
current config. Using the guest's config to audit the new config
prevents userspace from restoring the original config (KVM's config) if
at any point in the past the guest's config was restricted in any way.
Fixes: 62cc6b9dc61e ("KVM: nVMX: support restore of VMX capability MSRs")
Cc: stable@vger.kernel.org
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 764643a6be07445308e492a528197044c801b3ba upstream.
If a nested run isn't pending, snapshot vmcs01.GUEST_IA32_DEBUGCTL
irrespective of whether or not VM_ENTRY_LOAD_DEBUG_CONTROLS is set in
vmcs12. When restoring nested state, e.g. after migration, without a
nested run pending, prepare_vmcs02() will propagate
nested.vmcs01_debugctl to vmcs02, i.e. will load garbage/zeros into
vmcs02.GUEST_IA32_DEBUGCTL.
If userspace restores nested state before MSRs, then loading garbage is a
non-issue as loading DEBUGCTL will also update vmcs02. But if usersepace
restores MSRs first, then KVM is responsible for propagating L2's value,
which is actually thrown into vmcs01, into vmcs02.
Restoring L2 MSRs into vmcs01, i.e. loading all MSRs before nested state
is all kinds of bizarre and ideally would not be supported. Sadly, some
VMMs do exactly that and rely on KVM to make things work.
Note, there's still a lurking SMM bug, as propagating vmcs01's DEBUGCTL
to vmcs02 across RSM may corrupt L2's DEBUGCTL. But KVM's entire VMX+SMM
emulation is flawed as SMI+RSM should not toouch _any_ VMCS when use the
"default treatment of SMIs", i.e. when not using an SMI Transfer Monitor.
Link: https://lore.kernel.org/all/Yobt1XwOfb5M6Dfa@google.com
Fixes: 8fcc4b5923af ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614215831.3762138-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fa578398a0ba2c079fa1170da21fa5baae0cedb2 upstream.
If a nested run isn't pending, snapshot vmcs01.GUEST_BNDCFGS irrespective
of whether or not VM_ENTRY_LOAD_BNDCFGS is set in vmcs12. When restoring
nested state, e.g. after migration, without a nested run pending,
prepare_vmcs02() will propagate nested.vmcs01_guest_bndcfgs to vmcs02,
i.e. will load garbage/zeros into vmcs02.GUEST_BNDCFGS.
If userspace restores nested state before MSRs, then loading garbage is a
non-issue as loading BNDCFGS will also update vmcs02. But if usersepace
restores MSRs first, then KVM is responsible for propagating L2's value,
which is actually thrown into vmcs01, into vmcs02.
Restoring L2 MSRs into vmcs01, i.e. loading all MSRs before nested state
is all kinds of bizarre and ideally would not be supported. Sadly, some
VMMs do exactly that and rely on KVM to make things work.
Note, there's still a lurking SMM bug, as propagating vmcs01.GUEST_BNDFGS
to vmcs02 across RSM may corrupt L2's BNDCFGS. But KVM's entire VMX+SMM
emulation is flawed as SMI+RSM should not toouch _any_ VMCS when use the
"default treatment of SMIs", i.e. when not using an SMI Transfer Monitor.
Link: https://lore.kernel.org/all/Yobt1XwOfb5M6Dfa@google.com
Fixes: 62cf9bd8118c ("KVM: nVMX: Fix emulation of VM_ENTRY_LOAD_BNDCFGS")
Cc: stable@vger.kernel.org
Cc: Lei Wang <lei4.wang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614215831.3762138-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ffcf9c5700e49c0aee42dcba9a12ba21338e8136 upstream.
Users of GNU ld (BFD) from binutils 2.39+ will observe multiple
instances of a new warning when linking kernels in the form:
ld: warning: arch/x86/boot/pmjump.o: missing .note.GNU-stack section implies executable stack
ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
ld: warning: arch/x86/boot/compressed/vmlinux has a LOAD segment with RWX permissions
Generally, we would like to avoid the stack being executable. Because
there could be a need for the stack to be executable, assembler sources
have to opt-in to this security feature via explicit creation of the
.note.GNU-stack feature (which compilers create by default) or command
line flag --noexecstack. Or we can simply tell the linker the
production of such sections is irrelevant and to link the stack as
--noexecstack.
LLVM's LLD linker defaults to -z noexecstack, so this flag isn't
strictly necessary when linking with LLD, only BFD, but it doesn't hurt
to be explicit here for all linkers IMO. --no-warn-rwx-segments is
currently BFD specific and only available in the current latest release,
so it's wrapped in an ld-option check.
While the kernel makes extensive usage of ELF sections, it doesn't use
permissions from ELF segments.
Link: https://lore.kernel.org/linux-block/3af4127a-f453-4cf7-f133-a181cce06f73@kernel.dk/
Link: https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=ba951afb99912da01a6e8434126b8fac7aa75107
Link: https://github.com/llvm/llvm-project/issues/57009
Reported-and-tested-by: Jens Axboe <axboe@kernel.dk>
Suggested-by: Fangrui Song <maskray@google.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ba6e31af2be96c4d0536f2152ed6f7b6c11bca47 upstream.
RSB fill sequence does not have any protection for miss-prediction of
conditional branch at the end of the sequence. CPU can speculatively
execute code immediately after the sequence, while RSB filling hasn't
completed yet.
#define __FILL_RETURN_BUFFER(reg, nr, sp) \
mov $(nr/2), reg; \
771: \
ANNOTATE_INTRA_FUNCTION_CALL; \
call 772f; \
773: /* speculation trap */ \
UNWIND_HINT_EMPTY; \
pause; \
lfence; \
jmp 773b; \
772: \
ANNOTATE_INTRA_FUNCTION_CALL; \
call 774f; \
775: /* speculation trap */ \
UNWIND_HINT_EMPTY; \
pause; \
lfence; \
jmp 775b; \
774: \
add $(BITS_PER_LONG/8) * 2, sp; \
dec reg; \
jnz 771b; <----- CPU can miss-predict here.
Before RSB is filled, RETs that come in program order after this macro
can be executed speculatively, making them vulnerable to RSB-based
attacks.
Mitigate it by adding an LFENCE after the conditional branch to prevent
speculation while RSB is being filled.
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream.
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b648ab487f31bc4c38941bc770ea97fe394304bb upstream.
The mitigations for RETBleed are currently ineffective on x86_32 since
entry_32.S does not use the required macros. However, for an x86_32
target, the kconfig symbols for them are still enabled by default and
/sys/devices/system/cpu/vulnerabilities/retbleed will wrongly report
that mitigations are in place.
Make all of these symbols depend on X86_64, and only enable RETHUNK by
default on X86_64.
Fixes: f43b9876e857 ("x86/retbleed: Add fine grained Kconfig knobs")
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/YtwSR3NNsWp1ohfV@decadent.org.uk
[bwh: Backported to 5.10/5.15/5.18: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 65cdf0d623bedf0e069bb64ed52e8bb20105e2ba upstream.
Debugging missing return thunks is easier if we can see where they're
happening.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/lkml/Ys66hwtFcGbYmoiZ@hirez.programming.kicks-ass.net/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 28a99e95f55c61855983d36a88c05c178d966bb7 upstream.
On AMD IBRS does not prevent Retbleed; as such use IBPB before a
firmware call to flush the branch history state.
And because in order to do an EFI call, the kernel maps a whole lot of
the kernel page table into the EFI page table, do an IBPB just in case
in order to prevent the scenario of poisoning the BTB and causing an EFI
call using the unprotected RET there.
[ bp: Massage. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220715194550.793957-1-cascardo@canonical.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eb23b5ef9131e6d65011de349a4d25ef1b3d4314 upstream.
IBRS mitigation for spectre_v2 forces write to MSR_IA32_SPEC_CTRL at
every kernel entry/exit. On Enhanced IBRS parts setting
MSR_IA32_SPEC_CTRL[IBRS] only once at boot is sufficient. MSR writes at
every kernel entry/exit incur unnecessary performance loss.
When Enhanced IBRS feature is present, print a warning about this
unnecessary performance loss.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/2a5eaf54583c2bfe0edc4fea64006656256cca17.1657814857.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 455880dfe292a2bdd3b4ad6a107299fce610e64b upstream.
In the multi-MSI case, hv_arch_irq_unmask() will only operate on the first
MSI of the N allocated. This is because only the first msi_desc is cached
and it is shared by all the MSIs of the multi-MSI block. This means that
hv_arch_irq_unmask() gets the correct address, but the wrong data (always
0).
This can break MSIs.
Lets assume MSI0 is vector 34 on CPU0, and MSI1 is vector 33 on CPU0.
hv_arch_irq_unmask() is called on MSI0. It uses a hypercall to configure
the MSI address and data (0) to vector 34 of CPU0. This is correct. Then
hv_arch_irq_unmask is called on MSI1. It uses another hypercall to
configure the MSI address and data (0) to vector 33 of CPU0. This is
wrong, and results in both MSI0 and MSI1 being routed to vector 33. Linux
will observe extra instances of MSI1 and no instances of MSI0 despite the
endpoint device behaving correctly.
For the multi-MSI case, we need unique address and data info for each MSI,
but the cached msi_desc does not provide that. However, that information
can be gotten from the int_desc cached in the chip_data by
compose_msi_msg(). Fix the multi-MSI case to use that cached information
instead. Since hv_set_msi_entry_from_desc() is no longer applicable,
remove it.
5.10 backport - removed unused hv_set_msi_entry_from_desc function from
mshyperv.h instead of pci-hyperv.c. msi_entry.address/data.as_uint32
changed to direct reference (as they are u32's, just sans union).
Signed-off-by: Jeffrey Hugo <quic_jhugo@quicinc.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1651068453-29588-1-git-send-email-quic_jhugo@quicinc.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Carl Vanderlip <quic_carlv@quicinc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 291073a566b2094c7192872cc0f17ce73d83cb76 upstream.
The recent change to make objtool aware of more symbol relocation types
(commit 24ff65257375: "objtool: Teach get_alt_entry() about more
relocation types") also added another check, and resulted in this
objtool warning when building kvm on x86:
arch/x86/kvm/emulate.o: warning: objtool: __ex_table+0x4: don't know how to handle reloc symbol type: kvm_fastop_exception
The reason seems to be that kvm_fastop_exception() is marked as a global
symbol, which causes the relocation to ke kept around for objtool. And
at the same time, the kvm_fastop_exception definition (which is done as
an inline asm statement) doesn't actually set the type of the global,
which then makes objtool unhappy.
The minimal fix is to just not mark kvm_fastop_exception as being a
global symbol. It's only used in that one compilation unit anyway, so
it was always pointless. That's how all the other local exception table
labels are done.
I'm not entirely happy about the kinds of games that the kvm code plays
with doing its own exception handling, and the fact that it confused
objtool is most definitely a symptom of the code being a bit too subtle
and ad-hoc. But at least this trivial one-liner makes objtool no longer
upset about what is going on.
Fixes: 24ff65257375 ("objtool: Teach get_alt_entry() about more relocation types")
Link: https://lore.kernel.org/lkml/CAHk-=wiZwq-0LknKhXN4M+T8jbxn_2i9mcKpO+OaBSSq_Eh7tg@mail.gmail.com/
Cc: Borislav Petkov <bp@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 79629181607e801c0b41b8790ac4ee2eb5d7bc3e upstream.
Instead of doing complicated calculations to find the size of the subroutines
(which are even more complicated because they need to be stringified into
an asm statement), just hardcode to 16.
It is less dense for a few combinations of IBT/SLS/retbleed, but it has
the advantage of being really simple.
Cc: stable@vger.kernel.org # 5.15.x: 84e7051c0bc1: x86/kvm: fix FASTOP_SIZE when return thunks are enabled
Cc: stable@vger.kernel.org
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>