35416 Commits

Author SHA1 Message Date
Tejun Heo
f1f7f36cf6 memcg: fix possible use-after-free in memcg_write_event_control()
commit 4a7ba45b1a435e7097ca0f79a847d0949d0eb088 upstream.

memcg_write_event_control() accesses the dentry->d_name of the specified
control fd to route the write call.  As a cgroup interface file can't be
renamed, it's safe to access d_name as long as the specified file is a
regular cgroup file.  Also, as these cgroup interface files can't be
removed before the directory, it's safe to access the parent too.

Prior to 347c4a874710 ("memcg: remove cgroup_event->cft"), there was a
call to __file_cft() which verified that the specified file is a regular
cgroupfs file before further accesses.  The cftype pointer returned from
__file_cft() was no longer necessary and the commit inadvertently dropped
the file type check with it allowing any file to slip through.  With the
invarients broken, the d_name and parent accesses can now race against
renames and removals of arbitrary files and cause use-after-free's.

Fix the bug by resurrecting the file type check in __file_cft().  Now that
cgroupfs is implemented through kernfs, checking the file operations needs
to go through a layer of indirection.  Instead, let's check the superblock
and dentry type.

Link: https://lkml.kernel.org/r/Y5FRm/cfcKPGzWwl@slm.duckdns.org
Fixes: 347c4a874710 ("memcg: remove cgroup_event->cft")
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>	[3.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-14 11:31:57 +01:00
Linus Torvalds
9ba389863a proc: proc_skip_spaces() shouldn't think it is working on C strings
commit bce9332220bd677d83b19d21502776ad555a0e73 upstream.

proc_skip_spaces() seems to think it is working on C strings, and ends
up being just a wrapper around skip_spaces() with a really odd calling
convention.

Instead of basing it on skip_spaces(), it should have looked more like
proc_skip_char(), which really is the exact same function (except it
skips a particular character, rather than whitespace).  So use that as
inspiration, odd coding and all.

Now the calling convention actually makes sense and works for the
intended purpose.

Reported-and-tested-by: Kyle Zeng <zengyhkyle@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:24:00 +01:00
Linus Torvalds
4aa32aaef6 proc: avoid integer type confusion in get_proc_long
commit e6cfaf34be9fcd1a8285a294e18986bfc41a409c upstream.

proc_get_long() is passed a size_t, but then assigns it to an 'int'
variable for the length.  Let's not do that, even if our IO paths are
limited to MAX_RW_COUNT (exactly because of these kinds of type errors).

So do the proper test in the rigth type.

Reported-by: Kyle Zeng <zengyhkyle@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:59 +01:00
Steven Rostedt (Google)
be111ebd88 tracing: Free buffers when a used dynamic event is removed
commit 4313e5a613049dfc1819a6dfb5f94cf2caff9452 upstream.

After 65536 dynamic events have been added and removed, the "type" field
of the event then uses the first type number that is available (not
currently used by other events). A type number is the identifier of the
binary blobs in the tracing ring buffer (known as events) to map them to
logic that can parse the binary blob.

The issue is that if a dynamic event (like a kprobe event) is traced and
is in the ring buffer, and then that event is removed (because it is
dynamic, which means it can be created and destroyed), if another dynamic
event is created that has the same number that new event's logic on
parsing the binary blob will be used.

To show how this can be an issue, the following can crash the kernel:

 # cd /sys/kernel/tracing
 # for i in `seq 65536`; do
     echo 'p:kprobes/foo do_sys_openat2 $arg1:u32' > kprobe_events
 # done

For every iteration of the above, the writing to the kprobe_events will
remove the old event and create a new one (with the same format) and
increase the type number to the next available on until the type number
reaches over 65535 which is the max number for the 16 bit type. After it
reaches that number, the logic to allocate a new number simply looks for
the next available number. When an dynamic event is removed, that number
is then available to be reused by the next dynamic event created. That is,
once the above reaches the max number, the number assigned to the event in
that loop will remain the same.

Now that means deleting one dynamic event and created another will reuse
the previous events type number. This is where bad things can happen.
After the above loop finishes, the kprobes/foo event which reads the
do_sys_openat2 function call's first parameter as an integer.

 # echo 1 > kprobes/foo/enable
 # cat /etc/passwd > /dev/null
 # cat trace
             cat-2211    [005] ....  2007.849603: foo: (do_sys_openat2+0x0/0x130) arg1=4294967196
             cat-2211    [005] ....  2007.849620: foo: (do_sys_openat2+0x0/0x130) arg1=4294967196
             cat-2211    [005] ....  2007.849838: foo: (do_sys_openat2+0x0/0x130) arg1=4294967196
             cat-2211    [005] ....  2007.849880: foo: (do_sys_openat2+0x0/0x130) arg1=4294967196
 # echo 0 > kprobes/foo/enable

Now if we delete the kprobe and create a new one that reads a string:

 # echo 'p:kprobes/foo do_sys_openat2 +0($arg2):string' > kprobe_events

And now we can the trace:

 # cat trace
        sendmail-1942    [002] .....   530.136320: foo: (do_sys_openat2+0x0/0x240) arg1=             cat-2046    [004] .....   530.930817: foo: (do_sys_openat2+0x0/0x240) arg1="������������������������������������������������������������������������������������������������"
             cat-2046    [004] .....   530.930961: foo: (do_sys_openat2+0x0/0x240) arg1="������������������������������������������������������������������������������������������������"
             cat-2046    [004] .....   530.934278: foo: (do_sys_openat2+0x0/0x240) arg1="������������������������������������������������������������������������������������������������"
             cat-2046    [004] .....   530.934563: foo: (do_sys_openat2+0x0/0x240) arg1="������������������������������������������������������������������������������������������������"
            bash-1515    [007] .....   534.299093: foo: (do_sys_openat2+0x0/0x240) arg1="kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk���������@��4Z����;Y�����U

And dmesg has:

==================================================================
BUG: KASAN: use-after-free in string+0xd4/0x1c0
Read of size 1 at addr ffff88805fdbbfa0 by task cat/2049

 CPU: 0 PID: 2049 Comm: cat Not tainted 6.1.0-rc6-test+ #641
 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016
 Call Trace:
  <TASK>
  dump_stack_lvl+0x5b/0x77
  print_report+0x17f/0x47b
  kasan_report+0xad/0x130
  string+0xd4/0x1c0
  vsnprintf+0x500/0x840
  seq_buf_vprintf+0x62/0xc0
  trace_seq_printf+0x10e/0x1e0
  print_type_string+0x90/0xa0
  print_kprobe_event+0x16b/0x290
  print_trace_line+0x451/0x8e0
  s_show+0x72/0x1f0
  seq_read_iter+0x58e/0x750
  seq_read+0x115/0x160
  vfs_read+0x11d/0x460
  ksys_read+0xa9/0x130
  do_syscall_64+0x3a/0x90
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
 RIP: 0033:0x7fc2e972ade2
 Code: c0 e9 b2 fe ff ff 50 48 8d 3d b2 3f 0a 00 e8 05 f0 01 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 ec 28 48 89 54 24
 RSP: 002b:00007ffc64e687c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
 RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007fc2e972ade2
 RDX: 0000000000020000 RSI: 00007fc2e980d000 RDI: 0000000000000003
 RBP: 00007fc2e980d000 R08: 00007fc2e980c010 R09: 0000000000000000
 R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000020f00
 R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000
  </TASK>

 The buggy address belongs to the physical page:
 page:ffffea00017f6ec0 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x5fdbb
 flags: 0xfffffc0000000(node=0|zone=1|lastcpupid=0x1fffff)
 raw: 000fffffc0000000 0000000000000000 ffffea00017f6ec8 0000000000000000
 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
 page dumped because: kasan: bad access detected

 Memory state around the buggy address:
  ffff88805fdbbe80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  ffff88805fdbbf00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 >ffff88805fdbbf80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
                                ^
  ffff88805fdbc000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  ffff88805fdbc080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ==================================================================

This was found when Zheng Yejian sent a patch to convert the event type
number assignment to use IDA, which gives the next available number, and
this bug showed up in the fuzz testing by Yujie Liu and the kernel test
robot. But after further analysis, I found that this behavior is the same
as when the event type numbers go past the 16bit max (and the above shows
that).

As modules have a similar issue, but is dealt with by setting a
"WAS_ENABLED" flag when a module event is enabled, and when the module is
freed, if any of its events were enabled, the ring buffer that holds that
event is also cleared, to prevent reading stale events. The same can be
done for dynamic events.

If any dynamic event that is being removed was enabled, then make sure the
buffers they were enabled in are now cleared.

Link: https://lkml.kernel.org/r/20221123171434.545706e3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110020319.1259291-1-zhengyejian1@huawei.com/

Cc: stable@vger.kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Depends-on: e18eb8783ec49 ("tracing: Add tracing_reset_all_online_cpus_unlocked() function")
Depends-on: 5448d44c38557 ("tracing: Add unified dynamic event framework")
Depends-on: 6212dd29683ee ("tracing/kprobes: Use dyn_event framework for kprobe events")
Depends-on: 065e63f951432 ("tracing: Only have rmmod clear buffers that its events were active in")
Depends-on: 575380da8b469 ("tracing: Only clear trace buffer on module unload if event was traced")
Fixes: 77b44d1b7c283 ("tracing/kprobes: Rename Kprobe-tracer to kprobe-event")
Reported-by: Zheng Yejian <zhengyejian1@huawei.com>
Reported-by: Yujie Liu <yujie.liu@intel.com>
Reported-by: kernel test robot <yujie.liu@intel.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:58 +01:00
Xu Kuohai
be006212bd bpf: Do not copy spin lock field from user in bpf_selem_alloc
[ Upstream commit 836e49e103dfeeff670c934b7d563cbd982fce87 ]

bpf_selem_alloc function is used by inode_storage, sk_storage and
task_storage maps to set map value, for these map types, there may
be a spin lock in the map value, so if we use memcpy to copy the whole
map value from user, the spin lock field may be initialized incorrectly.

Since the spin lock field is zeroed by kzalloc, call copy_map_value
instead of memcpy to skip copying the spin lock field to fix it.

Fixes: 6ac99e8f23d4 ("bpf: Introduce bpf sk local storage")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Link: https://lore.kernel.org/r/20221114134720.1057939-2-xukuohai@huawei.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:23:55 +01:00
Hou Tao
353c3aaaf3 bpf, perf: Use subprog name when reporting subprog ksymbol
[ Upstream commit 47df8a2f78bc34ff170d147d05b121f84e252b85 ]

Since commit bfea9a8574f3 ("bpf: Add name to struct bpf_ksym"), when
reporting subprog ksymbol to perf, prog name instead of subprog name is
used. The backtrace of bpf program with subprogs will be incorrect as
shown below:

  ffffffffc02deace bpf_prog_e44a3057dcb151f8_overwrite+0x66
  ffffffffc02de9f7 bpf_prog_e44a3057dcb151f8_overwrite+0x9f
  ffffffffa71d8d4e trace_call_bpf+0xce
  ffffffffa71c2938 perf_call_bpf_enter.isra.0+0x48

overwrite is the entry program and it invokes the overwrite_htab subprog
through bpf_loop, but in above backtrace, overwrite program just jumps
inside itself.

Fixing it by using subprog name when reporting subprog ksymbol. After
the fix, the output of perf script will be correct as shown below:

  ffffffffc031aad2 bpf_prog_37c0bec7d7c764a4_overwrite_htab+0x66
  ffffffffc031a9e7 bpf_prog_c7eb827ef4f23e71_overwrite+0x9f
  ffffffffa3dd8d4e trace_call_bpf+0xce
  ffffffffa3dc2938 perf_call_bpf_enter.isra.0+0x48

Fixes: bfea9a8574f3 ("bpf: Add name to struct bpf_ksym")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20221114095733.158588-1-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:23:54 +01:00
Luiz Capitulino
b56d6e5585 genirq: Take the proposed affinity at face value if force==true
From: Marc Zyngier <maz@kernel.org>

commit c48c8b829d2b966a6649827426bcdba082ccf922 upstream.

Although setting the affinity of an interrupt to a set of CPUs that doesn't
have any online CPU is generally frowned apon, there are a few limited
cases where such affinity is set from a CPUHP notifier, setting the
affinity to a CPU that isn't online yet.

The saving grace is that this is always done using the 'force' attribute,
which gives a hint that the affinity setting can be outside of the online
CPU mask and the callsite set this flag with the knowledge that the
underlying interrupt controller knows to handle it.

This restores the expected behaviour on Marek's system.

Fixes: 33de0aa4bae9 ("genirq: Always limit the affinity to online CPUs")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Link: https://lore.kernel.org/r/4b7fc13c-887b-a664-26e8-45aed13f048a@samsung.com
Link: https://lore.kernel.org/r/20220414140011.541725-1-maz@kernel.org

Signed-off-by: Luiz Capitulino <luizcap@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:40:06 +01:00
Luiz Capitulino
e0d2c59ee9 genirq: Always limit the affinity to online CPUs
From: Marc Zyngier <maz@kernel.org>

commit 33de0aa4bae982ed6f7c777f86b5af3e627ac937 upstream.

[ Fixed small conflicts due to the HK_FLAG_MANAGED_IRQ flag been
  renamed on upstream ]

When booting with maxcpus=<small number> (or even loading a driver
while most CPUs are offline), it is pretty easy to observe managed
affinities containing a mix of online and offline CPUs being passed
to the irqchip driver.

This means that the irqchip cannot trust the affinity passed down
from the core code, which is a bit annoying and requires (at least
in theory) all drivers to implement some sort of affinity narrowing.

In order to address this, always limit the cpumask to the set of
online CPUs.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220405185040.206297-3-maz@kernel.org

Signed-off-by: Luiz Capitulino <luizcap@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:40:06 +01:00
Luiz Capitulino
f8f80d532f genirq/msi: Shutdown managed interrupts with unsatifiable affinities
From: Marc Zyngier <maz@kernel.org>

commit d802057c7c553ad426520a053da9f9fe08e2c35a upstream.

[ This commit is almost a rewrite because it conflicts with Thomas
  Gleixner's refactoring of this code in v5.17-rc1. I wasn't sure if
  I should drop all the s-o-bs (including Mark's), but decided
  to keep as the original commit ]

When booting with maxcpus=<small number>, interrupt controllers
such as the GICv3 ITS may not be able to satisfy the affinity of
some managed interrupts, as some of the HW resources are simply
not available.

The same thing happens when loading a driver using managed interrupts
while CPUs are offline.

In order to deal with this, do not try to activate such interrupt
if there is no online CPU capable of handling it. Instead, place
it in shutdown state. Once a capable CPU shows up, it will be
activated.

Reported-by: John Garry <john.garry@huawei.com>
Reported-by: David Decotigny <ddecotig@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: John Garry <john.garry@huawei.com>
Link: https://lore.kernel.org/r/20220405185040.206297-2-maz@kernel.org

Signed-off-by: Luiz Capitulino <luizcap@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:40:06 +01:00
Mukesh Ojha
a4a62a23fa gcov: clang: fix the buffer overflow issue
commit a6f810efabfd789d3bbafeacb4502958ec56c5ce upstream.

Currently, in clang version of gcov code when module is getting removed
gcov_info_add() incorrectly adds the sfn_ptr->counter to all the
dst->functions and it result in the kernel panic in below crash report.
Fix this by properly handling it.

[    8.899094][  T599] Unable to handle kernel write to read-only memory at virtual address ffffff80461cc000
[    8.899100][  T599] Mem abort info:
[    8.899102][  T599]   ESR = 0x9600004f
[    8.899103][  T599]   EC = 0x25: DABT (current EL), IL = 32 bits
[    8.899105][  T599]   SET = 0, FnV = 0
[    8.899107][  T599]   EA = 0, S1PTW = 0
[    8.899108][  T599]   FSC = 0x0f: level 3 permission fault
[    8.899110][  T599] Data abort info:
[    8.899111][  T599]   ISV = 0, ISS = 0x0000004f
[    8.899113][  T599]   CM = 0, WnR = 1
[    8.899114][  T599] swapper pgtable: 4k pages, 39-bit VAs, pgdp=00000000ab8de000
[    8.899116][  T599] [ffffff80461cc000] pgd=18000009ffcde003, p4d=18000009ffcde003, pud=18000009ffcde003, pmd=18000009ffcad003, pte=00600000c61cc787
[    8.899124][  T599] Internal error: Oops: 9600004f [#1] PREEMPT SMP
[    8.899265][  T599] Skip md ftrace buffer dump for: 0x1609e0
....
..,
[    8.899544][  T599] CPU: 7 PID: 599 Comm: modprobe Tainted: G S         OE     5.15.41-android13-8-g38e9b1af6bce #1
[    8.899547][  T599] Hardware name: XXX (DT)
[    8.899549][  T599] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBS BTYPE=--)
[    8.899551][  T599] pc : gcov_info_add+0x9c/0xb8
[    8.899557][  T599] lr : gcov_event+0x28c/0x6b8
[    8.899559][  T599] sp : ffffffc00e733b00
[    8.899560][  T599] x29: ffffffc00e733b00 x28: ffffffc00e733d30 x27: ffffffe8dc297470
[    8.899563][  T599] x26: ffffffe8dc297000 x25: ffffffe8dc297000 x24: ffffffe8dc297000
[    8.899566][  T599] x23: ffffffe8dc0a6200 x22: ffffff880f68bf20 x21: 0000000000000000
[    8.899569][  T599] x20: ffffff880f68bf00 x19: ffffff8801babc00 x18: ffffffc00d7f9058
[    8.899572][  T599] x17: 0000000000088793 x16: ffffff80461cbe00 x15: 9100052952800785
[    8.899575][  T599] x14: 0000000000000200 x13: 0000000000000041 x12: 9100052952800785
[    8.899577][  T599] x11: ffffffe8dc297000 x10: ffffffe8dc297000 x9 : ffffff80461cbc80
[    8.899580][  T599] x8 : ffffff8801babe80 x7 : ffffffe8dc2ec000 x6 : ffffffe8dc2ed000
[    8.899583][  T599] x5 : 000000008020001f x4 : fffffffe2006eae0 x3 : 000000008020001f
[    8.899586][  T599] x2 : ffffff8027c49200 x1 : ffffff8801babc20 x0 : ffffff80461cb3a0
[    8.899589][  T599] Call trace:
[    8.899590][  T599]  gcov_info_add+0x9c/0xb8
[    8.899592][  T599]  gcov_module_notifier+0xbc/0x120
[    8.899595][  T599]  blocking_notifier_call_chain+0xa0/0x11c
[    8.899598][  T599]  do_init_module+0x2a8/0x33c
[    8.899600][  T599]  load_module+0x23cc/0x261c
[    8.899602][  T599]  __arm64_sys_finit_module+0x158/0x194
[    8.899604][  T599]  invoke_syscall+0x94/0x2bc
[    8.899607][  T599]  el0_svc_common+0x1d8/0x34c
[    8.899609][  T599]  do_el0_svc+0x40/0x54
[    8.899611][  T599]  el0_svc+0x94/0x2f0
[    8.899613][  T599]  el0t_64_sync_handler+0x88/0xec
[    8.899615][  T599]  el0t_64_sync+0x1b4/0x1b8
[    8.899618][  T599] Code: f905f56c f86e69ec f86e6a0f 8b0c01ec (f82e6a0c)
[    8.899620][  T599] ---[ end trace ed5218e9e5b6e2e6 ]---

Link: https://lkml.kernel.org/r/1668020497-13142-1-git-send-email-quic_mojha@quicinc.com
Fixes: e178a5beb369 ("gcov: clang support")
Signed-off-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Tested-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Tom Rix <trix@redhat.com>
Cc: <stable@vger.kernel.org>	[5.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:40:04 +01:00
Li Huafei
7d606ae1ab kprobes: Skip clearing aggrprobe's post_handler in kprobe-on-ftrace case
[ Upstream commit 5dd7caf0bdc5d0bae7cf9776b4d739fb09bd5ebb ]

In __unregister_kprobe_top(), if the currently unregistered probe has
post_handler but other child probes of the aggrprobe do not have
post_handler, the post_handler of the aggrprobe is cleared. If this is
a ftrace-based probe, there is a problem. In later calls to
disarm_kprobe(), we will use kprobe_ftrace_ops because post_handler is
NULL. But we're armed with kprobe_ipmodify_ops. This triggers a WARN in
__disarm_kprobe_ftrace() and may even cause use-after-free:

  Failed to disarm kprobe-ftrace at kernel_clone+0x0/0x3c0 (error -2)
  WARNING: CPU: 5 PID: 137 at kernel/kprobes.c:1135 __disarm_kprobe_ftrace.isra.21+0xcf/0xe0
  Modules linked in: testKprobe_007(-)
  CPU: 5 PID: 137 Comm: rmmod Not tainted 6.1.0-rc4-dirty #18
  [...]
  Call Trace:
   <TASK>
   __disable_kprobe+0xcd/0xe0
   __unregister_kprobe_top+0x12/0x150
   ? mutex_lock+0xe/0x30
   unregister_kprobes.part.23+0x31/0xa0
   unregister_kprobe+0x32/0x40
   __x64_sys_delete_module+0x15e/0x260
   ? do_user_addr_fault+0x2cd/0x6b0
   do_syscall_64+0x3a/0x90
   entry_SYSCALL_64_after_hwframe+0x63/0xcd
   [...]

For the kprobe-on-ftrace case, we keep the post_handler setting to
identify this aggrprobe armed with kprobe_ipmodify_ops. This way we
can disarm it correctly.

Link: https://lore.kernel.org/all/20221112070000.35299-1-lihuafei1@huawei.com/

Fixes: 0bc11ed5ab60 ("kprobes: Allow kprobes coexist with livepatch")
Reported-by: Zhao Gongyi <zhaogongyi@huawei.com>
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-25 17:45:55 +01:00
Steven Rostedt (Google)
8208c266fe ring-buffer: Include dropped pages in counting dirty patches
[ Upstream commit 31029a8b2c7e656a0289194ef16415050ae4c4ac ]

The function ring_buffer_nr_dirty_pages() was created to find out how many
pages are filled in the ring buffer. There's two running counters. One is
incremented whenever a new page is touched (pages_touched) and the other
is whenever a page is read (pages_read). The dirty count is the number
touched minus the number read. This is used to determine if a blocked task
should be woken up if the percentage of the ring buffer it is waiting for
is hit.

The problem is that it does not take into account dropped pages (when the
new writes overwrite pages that were not read). And then the dirty pages
will always be greater than the percentage.

This makes the "buffer_percent" file inaccurate, as the number of dirty
pages end up always being larger than the percentage, event when it's not
and this causes user space to be woken up more than it wants to be.

Add a new counter to keep track of lost pages, and include that in the
accounting of dirty pages so that it is actually accurate.

Link: https://lkml.kernel.org/r/20221021123013.55fb6055@gandalf.local.home

Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-25 17:45:54 +01:00
Shang XiaoJing
28a54854a9 tracing: kprobe: Fix potential null-ptr-deref on trace_array in kprobe_event_gen_test_exit()
commit 22ea4ca9631eb137e64e5ab899e9c89cb6670959 upstream.

When test_gen_kprobe_cmd() failed after kprobe_event_gen_cmd_end(), it
will goto delete, which will call kprobe_event_delete() and release the
corresponding resource. However, the trace_array in gen_kretprobe_test
will point to the invalid resource. Set gen_kretprobe_test to NULL
after called kprobe_event_delete() to prevent null-ptr-deref.

BUG: kernel NULL pointer dereference, address: 0000000000000070
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 0 PID: 246 Comm: modprobe Tainted: G        W
6.1.0-rc1-00174-g9522dc5c87da-dirty #248
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:__ftrace_set_clr_event_nolock+0x53/0x1b0
Code: e8 82 26 fc ff 49 8b 1e c7 44 24 0c ea ff ff ff 49 39 de 0f 84 3c
01 00 00 c7 44 24 18 00 00 00 00 e8 61 26 fc ff 48 8b 6b 10 <44> 8b 65
70 4c 8b 6d 18 41 f7 c4 00 02 00 00 75 2f
RSP: 0018:ffffc9000159fe00 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff88810971d268 RCX: 0000000000000000
RDX: ffff8881080be600 RSI: ffffffff811b48ff RDI: ffff88810971d058
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001
R10: ffffc9000159fe58 R11: 0000000000000001 R12: ffffffffa0001064
R13: ffffffffa000106c R14: ffff88810971d238 R15: 0000000000000000
FS:  00007f89eeff6540(0000) GS:ffff88813b600000(0000)
knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000070 CR3: 000000010599e004 CR4: 0000000000330ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 __ftrace_set_clr_event+0x3e/0x60
 trace_array_set_clr_event+0x35/0x50
 ? 0xffffffffa0000000
 kprobe_event_gen_test_exit+0xcd/0x10b [kprobe_event_gen_test]
 __x64_sys_delete_module+0x206/0x380
 ? lockdep_hardirqs_on_prepare+0xd8/0x190
 ? syscall_enter_from_user_mode+0x1c/0x50
 do_syscall_64+0x3f/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f89eeb061b7

Link: https://lore.kernel.org/all/20221108015130.28326-3-shangxiaojing@huawei.com/

Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module")
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Cc: stable@vger.kernel.org
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:49 +01:00
Shang XiaoJing
bb70fcae41 tracing: kprobe: Fix potential null-ptr-deref on trace_event_file in kprobe_event_gen_test_exit()
commit e0d75267f59d7084e0468bd68beeb1bf9c71d7c0 upstream.

When trace_get_event_file() failed, gen_kretprobe_test will be assigned
as the error code. If module kprobe_event_gen_test is removed now, the
null pointer dereference will happen in kprobe_event_gen_test_exit().
Check if gen_kprobe_test or gen_kretprobe_test is error code or NULL
before dereference them.

BUG: kernel NULL pointer dereference, address: 0000000000000012
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 3 PID: 2210 Comm: modprobe Not tainted
6.1.0-rc1-00171-g2159299a3b74-dirty #217
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:kprobe_event_gen_test_exit+0x1c/0xb5 [kprobe_event_gen_test]
Code: Unable to access opcode bytes at 0xffffffff9ffffff2.
RSP: 0018:ffffc900015bfeb8 EFLAGS: 00010246
RAX: ffffffffffffffea RBX: ffffffffa0002080 RCX: 0000000000000000
RDX: ffffffffa0001054 RSI: ffffffffa0001064 RDI: ffffffffdfc6349c
RBP: ffffffffa0000000 R08: 0000000000000004 R09: 00000000001e95c0
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000800
R13: ffffffffa0002420 R14: 0000000000000000 R15: 0000000000000000
FS:  00007f56b75be540(0000) GS:ffff88813bc00000(0000)
knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffff9ffffff2 CR3: 000000010874a006 CR4: 0000000000330ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 __x64_sys_delete_module+0x206/0x380
 ? lockdep_hardirqs_on_prepare+0xd8/0x190
 ? syscall_enter_from_user_mode+0x1c/0x50
 do_syscall_64+0x3f/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

Link: https://lore.kernel.org/all/20221108015130.28326-2-shangxiaojing@huawei.com/

Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module")
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:49 +01:00
Shang XiaoJing
315b149f08 tracing: Fix wild-memory-access in register_synth_event()
commit 1b5f1c34d3f5a664a57a5a7557a50e4e3cc2505c upstream.

In register_synth_event(), if set_synth_event_print_fmt() failed, then
both trace_remove_event_call() and unregister_trace_event() will be
called, which means the trace_event_call will call
__unregister_trace_event() twice. As the result, the second unregister
will causes the wild-memory-access.

register_synth_event
    set_synth_event_print_fmt failed
    trace_remove_event_call
        event_remove
            if call->event.funcs then
            __unregister_trace_event (first call)
    unregister_trace_event
        __unregister_trace_event (second call)

Fix the bug by avoiding to call the second __unregister_trace_event() by
checking if the first one is called.

general protection fault, probably for non-canonical address
	0xfbd59c0000000024: 0000 [#1] SMP KASAN PTI
KASAN: maybe wild-memory-access in range
[0xdead000000000120-0xdead000000000127]
CPU: 0 PID: 3807 Comm: modprobe Not tainted
6.1.0-rc1-00186-g76f33a7eedb4 #299
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:unregister_trace_event+0x6e/0x280
Code: 00 fc ff df 4c 89 ea 48 c1 ea 03 80 3c 02 00 0f 85 0e 02 00 00 48
b8 00 00 00 00 00 fc ff df 4c 8b 63 08 4c 89 e2 48 c1 ea 03 <80> 3c 02
00 0f 85 e2 01 00 00 49 89 2c 24 48 85 ed 74 28 e8 7a 9b
RSP: 0018:ffff88810413f370 EFLAGS: 00010a06
RAX: dffffc0000000000 RBX: ffff888105d050b0 RCX: 0000000000000000
RDX: 1bd5a00000000024 RSI: ffff888119e276e0 RDI: ffffffff835a8b20
RBP: dead000000000100 R08: 0000000000000000 R09: fffffbfff0913481
R10: ffffffff8489a407 R11: fffffbfff0913480 R12: dead000000000122
R13: ffff888105d050b8 R14: 0000000000000000 R15: ffff888105d05028
FS:  00007f7823e8d540(0000) GS:ffff888119e00000(0000)
knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7823e7ebec CR3: 000000010a058002 CR4: 0000000000330ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 __create_synth_event+0x1e37/0x1eb0
 create_or_delete_synth_event+0x110/0x250
 synth_event_run_command+0x2f/0x110
 test_gen_synth_cmd+0x170/0x2eb [synth_event_gen_test]
 synth_event_gen_test_init+0x76/0x9bc [synth_event_gen_test]
 do_one_initcall+0xdb/0x480
 do_init_module+0x1cf/0x680
 load_module+0x6a50/0x70a0
 __do_sys_finit_module+0x12f/0x1c0
 do_syscall_64+0x3f/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

Link: https://lkml.kernel.org/r/20221117012346.22647-3-shangxiaojing@huawei.com

Fixes: 4b147936fa50 ("tracing: Add support for 'synthetic' events")
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Cc: stable@vger.kernel.org
Cc: <mhiramat@kernel.org>
Cc: <zanussi@kernel.org>
Cc: <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:49 +01:00
Shang XiaoJing
65ba7e7c24 tracing: Fix memory leak in test_gen_synth_cmd() and test_empty_synth_event()
commit a4527fef9afe5c903c718d0cd24609fe9c754250 upstream.

test_gen_synth_cmd() only free buf in fail path, hence buf will leak
when there is no failure. Add kfree(buf) to prevent the memleak. The
same reason and solution in test_empty_synth_event().

unreferenced object 0xffff8881127de000 (size 2048):
  comm "modprobe", pid 247, jiffies 4294972316 (age 78.756s)
  hex dump (first 32 bytes):
    20 67 65 6e 5f 73 79 6e 74 68 5f 74 65 73 74 20   gen_synth_test
    20 70 69 64 5f 74 20 6e 65 78 74 5f 70 69 64 5f   pid_t next_pid_
  backtrace:
    [<000000004254801a>] kmalloc_trace+0x26/0x100
    [<0000000039eb1cf5>] 0xffffffffa00083cd
    [<000000000e8c3bc8>] 0xffffffffa00086ba
    [<00000000c293d1ea>] do_one_initcall+0xdb/0x480
    [<00000000aa189e6d>] do_init_module+0x1cf/0x680
    [<00000000d513222b>] load_module+0x6a50/0x70a0
    [<000000001fd4d529>] __do_sys_finit_module+0x12f/0x1c0
    [<00000000b36c4c0f>] do_syscall_64+0x3f/0x90
    [<00000000bbf20cf3>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
unreferenced object 0xffff8881127df000 (size 2048):
  comm "modprobe", pid 247, jiffies 4294972324 (age 78.728s)
  hex dump (first 32 bytes):
    20 65 6d 70 74 79 5f 73 79 6e 74 68 5f 74 65 73   empty_synth_tes
    74 20 20 70 69 64 5f 74 20 6e 65 78 74 5f 70 69  t  pid_t next_pi
  backtrace:
    [<000000004254801a>] kmalloc_trace+0x26/0x100
    [<00000000d4db9a3d>] 0xffffffffa0008071
    [<00000000c31354a5>] 0xffffffffa00086ce
    [<00000000c293d1ea>] do_one_initcall+0xdb/0x480
    [<00000000aa189e6d>] do_init_module+0x1cf/0x680
    [<00000000d513222b>] load_module+0x6a50/0x70a0
    [<000000001fd4d529>] __do_sys_finit_module+0x12f/0x1c0
    [<00000000b36c4c0f>] do_syscall_64+0x3f/0x90
    [<00000000bbf20cf3>] entry_SYSCALL_64_after_hwframe+0x63/0xcd

Link: https://lkml.kernel.org/r/20221117012346.22647-2-shangxiaojing@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <zanussi@kernel.org>
Cc: <fengguang.wu@intel.com>
Cc: stable@vger.kernel.org
Fixes: 9fe41efaca08 ("tracing: Add synth event generation test module")
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:49 +01:00
Steven Rostedt (Google)
5d4cc7bc1a tracing/ring-buffer: Have polling block on watermark
commit 42fb0a1e84ff525ebe560e2baf9451ab69127e2b upstream.

Currently the way polling works on the ring buffer is broken. It will
return immediately if there's any data in the ring buffer whereas a read
will block until the watermark (defined by the tracefs buffer_percent file)
is hit.

That is, a select() or poll() will return as if there's data available,
but then the following read will block. This is broken for the way
select()s and poll()s are supposed to work.

Have the polling on the ring buffer also block the same way reads and
splice does on the ring buffer.

Link: https://lkml.kernel.org/r/20221020231427.41be3f26@gandalf.local.home

Cc: Linux Trace Kernel <linux-trace-kernel@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Primiano Tucci <primiano@google.com>
Cc: stable@vger.kernel.org
Fixes: 1e0d6714aceb7 ("ring-buffer: Do not wake up a splice waiter when page is not full")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:49 +01:00
Daniil Tatianin
5fdebbeca5 ring_buffer: Do not deactivate non-existant pages
commit 56f4ca0a79a9f1af98f26c54b9b89ba1f9bcc6bd upstream.

rb_head_page_deactivate() expects cpu_buffer to contain a valid list of
->pages, so verify that the list is actually present before calling it.

Found by Linux Verification Center (linuxtesting.org) with the SVACE
static analysis tool.

Link: https://lkml.kernel.org/r/20221114143129.3534443-1-d-tatianin@yandex-team.ru

Cc: stable@vger.kernel.org
Fixes: 77ae365eca895 ("ring-buffer: make lockless")
Signed-off-by: Daniil Tatianin <d-tatianin@yandex-team.ru>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:48 +01:00
Xiu Jianfeng
6a14828cad ftrace: Fix null pointer dereference in ftrace_add_mod()
commit 19ba6c8af9382c4c05dc6a0a79af3013b9a35cd0 upstream.

The @ftrace_mod is allocated by kzalloc(), so both the members {prev,next}
of @ftrace_mode->list are NULL, it's not a valid state to call list_del().
If kstrdup() for @ftrace_mod->{func|module} fails, it goes to @out_free
tag and calls free_ftrace_mod() to destroy @ftrace_mod, then list_del()
will write prev->next and next->prev, where null pointer dereference
happens.

BUG: kernel NULL pointer dereference, address: 0000000000000008
Oops: 0002 [#1] PREEMPT SMP NOPTI
Call Trace:
 <TASK>
 ftrace_mod_callback+0x20d/0x220
 ? do_filp_open+0xd9/0x140
 ftrace_process_regex.isra.51+0xbf/0x130
 ftrace_regex_write.isra.52.part.53+0x6e/0x90
 vfs_write+0xee/0x3a0
 ? __audit_filter_op+0xb1/0x100
 ? auditd_test_task+0x38/0x50
 ksys_write+0xa5/0xe0
 do_syscall_64+0x3a/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
Kernel panic - not syncing: Fatal exception

So call INIT_LIST_HEAD() to initialize the list member to fix this issue.

Link: https://lkml.kernel.org/r/20221116015207.30858-1-xiujianfeng@huawei.com

Cc: stable@vger.kernel.org
Fixes: 673feb9d76ab ("ftrace: Add :mod: caching infrastructure to trace_array")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:48 +01:00
Wang Wensheng
6ed60c60ec ftrace: Optimize the allocation for mcount entries
commit bcea02b096333dc74af987cb9685a4dbdd820840 upstream.

If we can't allocate this size, try something smaller with half of the
size. Its order should be decreased by one instead of divided by two.

Link: https://lkml.kernel.org/r/20221109094434.84046-3-wangwensheng4@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Fixes: a79008755497d ("ftrace: Allocate the mcount record pages as groups")
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:48 +01:00
Wang Wensheng
9569eed79b ftrace: Fix the possible incorrect kernel message
commit 08948caebe93482db1adfd2154eba124f66d161d upstream.

If the number of mcount entries is an integer multiple of
ENTRIES_PER_PAGE, the page count showing on the console would be wrong.

Link: https://lkml.kernel.org/r/20221109094434.84046-2-wangwensheng4@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Fixes: 5821e1b74f0d0 ("function tracing: fix wrong pos computing when read buffer has been fulfilled")
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:45:48 +01:00
Xu Kuohai
1f6a73b25d bpf: Initialize same number of free nodes for each pcpu_freelist
[ Upstream commit 4b45cd81f737d79d0fbfc0d320a1e518e7f0bbf0 ]

pcpu_freelist_populate() initializes nr_elems / num_possible_cpus() + 1
free nodes for some CPUs, and then possibly one CPU with fewer nodes,
followed by remaining cpus with 0 nodes. For example, when nr_elems == 256
and num_possible_cpus() == 32, CPU 0~27 each gets 9 free nodes, CPU 28 gets
4 free nodes, CPU 29~31 get 0 free nodes, while in fact each CPU should get
8 nodes equally.

This patch initializes nr_elems / num_possible_cpus() free nodes for each
CPU firstly, then allocates the remaining free nodes by one for each CPU
until no free nodes left.

Fixes: e19494edab82 ("bpf: introduce percpu_freelist")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221110122128.105214-1-xukuohai@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-25 17:45:45 +01:00
Youlin Li
cedd4f01f6 bpf: Fix wrong reg type conversion in release_reference()
[ Upstream commit f1db20814af532f85e091231223e5e4818e8464b ]

Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.

When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply  __mark_reg_unknown() to each relevant register.

It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.

Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.

Fixes: fd978bf7fd31 ("bpf: Add reference tracking to verifier")
Signed-off-by: Youlin Li <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221103093440.3161-1-liulin063@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-16 09:57:09 +01:00
Kumar Kartikeya Dwivedi
9069db2579 bpf: Add helper macro bpf_for_each_reg_in_vstate
[ Upstream commit b239da34203f49c40b5d656220c39647c3ff0b3c ]

For a lot of use cases in future patches, we will want to modify the
state of registers part of some same 'group' (e.g. same ref_obj_id). It
won't just be limited to releasing reference state, but setting a type
flag dynamically based on certain actions, etc.

Hence, we need a way to easily pass a callback to the function that
iterates over all registers in current bpf_verifier_state in all frames
upto (and including) the curframe.

While in C++ we would be able to easily use a lambda to pass state and
the callback together, sadly we aren't using C++ in the kernel. The next
best thing to avoid defining a function for each case seems like
statement expressions in GNU C. The kernel already uses them heavily,
hence they can passed to the macro in the style of a lambda. The
statement expression will then be substituted in the for loop bodies.

Variables __state and __reg are set to current bpf_func_state and reg
for each invocation of the expression inside the passed in verifier
state.

Then, convert mark_ptr_or_null_regs, clear_all_pkt_pointers,
release_reference, find_good_pkt_pointers, find_equal_scalars to
use bpf_for_each_reg_in_vstate.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220904204145.3089-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: f1db20814af5 ("bpf: Fix wrong reg type conversion in release_reference()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-16 09:57:09 +01:00
Alexei Starovoitov
95b6ec7337 bpf: Support for pointers beyond pkt_end.
[ Upstream commit 6d94e741a8ff818e5518da8257f5ca0aaed1f269 ]

This patch adds the verifier support to recognize inlined branch conditions.
The LLVM knows that the branch evaluates to the same value, but the verifier
couldn't track it. Hence causing valid programs to be rejected.
The potential LLVM workaround: https://reviews.llvm.org/D87428
can have undesired side effects, since LLVM doesn't know that
skb->data/data_end are being compared. LLVM has to introduce extra boolean
variable and use inline_asm trick to force easier for the verifier assembly.

Instead teach the verifier to recognize that
r1 = skb->data;
r1 += 10;
r2 = skb->data_end;
if (r1 > r2) {
  here r1 points beyond packet_end and
  subsequent
  if (r1 > r2) // always evaluates to "true".
}

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20201111031213.25109-2-alexei.starovoitov@gmail.com
Stable-dep-of: f1db20814af5 ("bpf: Fix wrong reg type conversion in release_reference()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-16 09:57:08 +01:00
Li Qiang
f100a02748 kprobe: reverse kp->flags when arm_kprobe failed
commit 4a6f316d6855a434f56dbbeba05e14c01acde8f8 upstream.

In aggregate kprobe case, when arm_kprobe failed,
we need set the kp->flags with KPROBE_FLAG_DISABLED again.
If not, the 'kp' kprobe will been considered as enabled
but it actually not enabled.

Link: https://lore.kernel.org/all/20220902155820.34755-1-liq3ea@163.com/

Fixes: 12310e343755 ("kprobes: Propagate error from arm_kprobe_ftrace()")
Cc: stable@vger.kernel.org
Signed-off-by: Li Qiang <liq3ea@163.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 18:14:26 +01:00
Shang XiaoJing
bef08acbe5 tracing: kprobe: Fix memory leak in test_gen_kprobe/kretprobe_cmd()
commit 66f0919c953ef7b55e5ab94389a013da2ce80a2c upstream.

test_gen_kprobe_cmd() only free buf in fail path, hence buf will leak
when there is no failure. Move kfree(buf) from fail path to common path
to prevent the memleak. The same reason and solution in
test_gen_kretprobe_cmd().

unreferenced object 0xffff888143b14000 (size 2048):
  comm "insmod", pid 52490, jiffies 4301890980 (age 40.553s)
  hex dump (first 32 bytes):
    70 3a 6b 70 72 6f 62 65 73 2f 67 65 6e 5f 6b 70  p:kprobes/gen_kp
    72 6f 62 65 5f 74 65 73 74 20 64 6f 5f 73 79 73  robe_test do_sys
  backtrace:
    [<000000006d7b836b>] kmalloc_trace+0x27/0xa0
    [<0000000009528b5b>] 0xffffffffa059006f
    [<000000008408b580>] do_one_initcall+0x87/0x2a0
    [<00000000c4980a7e>] do_init_module+0xdf/0x320
    [<00000000d775aad0>] load_module+0x3006/0x3390
    [<00000000e9a74b80>] __do_sys_finit_module+0x113/0x1b0
    [<000000003726480d>] do_syscall_64+0x35/0x80
    [<000000003441e93b>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

Link: https://lore.kernel.org/all/20221102072954.26555-1-shangxiaojing@huawei.com/

Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module")
Cc: stable@vger.kernel.org
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 18:14:26 +01:00
Li Huafei
ea5f2fd464 ftrace: Fix use-after-free for dynamic ftrace_ops
commit 0e792b89e6800cd9cb4757a76a96f7ef3e8b6294 upstream.

KASAN reported a use-after-free with ftrace ops [1]. It was found from
vmcore that perf had registered two ops with the same content
successively, both dynamic. After unregistering the second ops, a
use-after-free occurred.

In ftrace_shutdown(), when the second ops is unregistered, the
FTRACE_UPDATE_CALLS command is not set because there is another enabled
ops with the same content.  Also, both ops are dynamic and the ftrace
callback function is ftrace_ops_list_func, so the
FTRACE_UPDATE_TRACE_FUNC command will not be set. Eventually the value
of 'command' will be 0 and ftrace_shutdown() will skip the rcu
synchronization.

However, ftrace may be activated. When the ops is released, another CPU
may be accessing the ops.  Add the missing synchronization to fix this
problem.

[1]
BUG: KASAN: use-after-free in __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline]
BUG: KASAN: use-after-free in ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049
Read of size 8 at addr ffff56551965bbc8 by task syz-executor.2/14468

CPU: 1 PID: 14468 Comm: syz-executor.2 Not tainted 5.10.0 #7
Hardware name: linux,dummy-virt (DT)
Call trace:
 dump_backtrace+0x0/0x40c arch/arm64/kernel/stacktrace.c:132
 show_stack+0x30/0x40 arch/arm64/kernel/stacktrace.c:196
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x1b4/0x248 lib/dump_stack.c:118
 print_address_description.constprop.0+0x28/0x48c mm/kasan/report.c:387
 __kasan_report mm/kasan/report.c:547 [inline]
 kasan_report+0x118/0x210 mm/kasan/report.c:564
 check_memory_region_inline mm/kasan/generic.c:187 [inline]
 __asan_load8+0x98/0xc0 mm/kasan/generic.c:253
 __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline]
 ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049
 ftrace_graph_call+0x0/0x4
 __might_sleep+0x8/0x100 include/linux/perf_event.h:1170
 __might_fault mm/memory.c:5183 [inline]
 __might_fault+0x58/0x70 mm/memory.c:5171
 do_strncpy_from_user lib/strncpy_from_user.c:41 [inline]
 strncpy_from_user+0x1f4/0x4b0 lib/strncpy_from_user.c:139
 getname_flags+0xb0/0x31c fs/namei.c:149
 getname+0x2c/0x40 fs/namei.c:209
 [...]

Allocated by task 14445:
 kasan_save_stack+0x24/0x50 mm/kasan/common.c:48
 kasan_set_track mm/kasan/common.c:56 [inline]
 __kasan_kmalloc mm/kasan/common.c:479 [inline]
 __kasan_kmalloc.constprop.0+0x110/0x13c mm/kasan/common.c:449
 kasan_kmalloc+0xc/0x14 mm/kasan/common.c:493
 kmem_cache_alloc_trace+0x440/0x924 mm/slub.c:2950
 kmalloc include/linux/slab.h:563 [inline]
 kzalloc include/linux/slab.h:675 [inline]
 perf_event_alloc.part.0+0xb4/0x1350 kernel/events/core.c:11230
 perf_event_alloc kernel/events/core.c:11733 [inline]
 __do_sys_perf_event_open kernel/events/core.c:11831 [inline]
 __se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723
 __arm64_sys_perf_event_open+0x6c/0x80 kernel/events/core.c:11723
 [...]

Freed by task 14445:
 kasan_save_stack+0x24/0x50 mm/kasan/common.c:48
 kasan_set_track+0x24/0x34 mm/kasan/common.c:56
 kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:358
 __kasan_slab_free.part.0+0x11c/0x1b0 mm/kasan/common.c:437
 __kasan_slab_free mm/kasan/common.c:445 [inline]
 kasan_slab_free+0x2c/0x40 mm/kasan/common.c:446
 slab_free_hook mm/slub.c:1569 [inline]
 slab_free_freelist_hook mm/slub.c:1608 [inline]
 slab_free mm/slub.c:3179 [inline]
 kfree+0x12c/0xc10 mm/slub.c:4176
 perf_event_alloc.part.0+0xa0c/0x1350 kernel/events/core.c:11434
 perf_event_alloc kernel/events/core.c:11733 [inline]
 __do_sys_perf_event_open kernel/events/core.c:11831 [inline]
 __se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723
 [...]

Link: https://lore.kernel.org/linux-trace-kernel/20221103031010.166498-1-lihuafei1@huawei.com

Fixes: edb096e00724f ("ftrace: Fix memleak when unregistering dynamic ops when tracing disabled")
Cc: stable@vger.kernel.org
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 18:14:25 +01:00
Mario Limonciello
3221c2701d PM: hibernate: Allow hybrid sleep to work with s2idle
[ Upstream commit 85850af4fc47132f3f2f0dd698b90f67906600b4 ]

Hybrid sleep is currently hardcoded to only operate with S3 even
on systems that might not support it.

Instead of assuming this mode is what the user wants to use, for
hybrid sleep follow the setting of `mem_sleep_current` which
will respect mem_sleep_default kernel command line and policy
decisions made by the presence of the FADT low power idle bit.

Fixes: 81d45bdf8913 ("PM / hibernate: Untangle power_down()")
Reported-and-tested-by: kolAflash <kolAflash@kolahilft.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216574
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-03 23:57:52 +09:00
Steven Rostedt (Google)
ea82edad0a tracing: Do not free snapshot if tracer is on cmdline
[ Upstream commit a541a9559bb0a8ecc434de01d3e4826c32e8bb53 ]

The ftrace_boot_snapshot and alloc_snapshot cmdline options allocate the
snapshot buffer at boot up for use later. The ftrace_boot_snapshot in
particular requires the snapshot to be allocated because it will take a
snapshot at the end of boot up allowing to see the traces that happened
during boot so that it's not lost when user space takes over.

When a tracer is registered (started) there's a path that checks if it
requires the snapshot buffer or not, and if it does not and it was
allocated it will do a synchronization and free the snapshot buffer.

This is only required if the previous tracer was using it for "max
latency" snapshots, as it needs to make sure all max snapshots are
complete before freeing. But this is only needed if the previous tracer
was using the snapshot buffer for latency (like irqoff tracer and
friends). But it does not make sense to free it, if the previous tracer
was not using it, and the snapshot was allocated by the cmdline
parameters. This basically takes away the point of allocating it in the
first place!

Note, the allocated snapshot worked fine for just trace events, but fails
when a tracer is enabled on the cmdline.

Further investigation, this goes back even further and it does not require
a tracer on the cmdline to fail. Simply enable snapshots and then enable a
tracer, and it will remove the snapshot.

Link: https://lkml.kernel.org/r/20221005113757.041df7fe@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: 45ad21ca5530 ("tracing: Have trace_array keep track if snapshot buffer is allocated")
Reported-by: Ross Zwisler <zwisler@kernel.org>
Tested-by: Ross Zwisler <zwisler@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-30 09:41:18 +01:00
sunliming
bd6af07e79 tracing: Simplify conditional compilation code in tracing_set_tracer()
[ Upstream commit f4b0d318097e45cbac5e14976f8bb56aa2cef504 ]

Two conditional compilation directives "#ifdef CONFIG_TRACER_MAX_TRACE"
are used consecutively, and no other code in between. Simplify conditional
the compilation code and only use one "#ifdef CONFIG_TRACER_MAX_TRACE".

Link: https://lkml.kernel.org/r/20220602140613.545069-1-sunliming@kylinos.cn

Signed-off-by: sunliming <sunliming@kylinos.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: a541a9559bb0 ("tracing: Do not free snapshot if tracer is on cmdline")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-30 09:41:18 +01:00
Martin Liska
8026d58b49 gcov: support GCC 12.1 and newer compilers
commit 977ef30a7d888eeb52fb6908f99080f33e5309a8 upstream.

Starting with GCC 12.1, the created .gcda format can't be read by gcov
tool.  There are 2 significant changes to the .gcda file format that
need to be supported:

a) [gcov: Use system IO buffering]
   (23eb66d1d46a34cb28c4acbdf8a1deb80a7c5a05) changed that all sizes in
   the format are in bytes and not in words (4B)

b) [gcov: make profile merging smarter]
   (72e0c742bd01f8e7e6dcca64042b9ad7e75979de) add a new checksum to the
   file header.

Tested with GCC 7.5, 10.4, 12.2 and the current master.

Link: https://lkml.kernel.org/r/624bda92-f307-30e9-9aaa-8cc678b2dfb2@suse.cz
Signed-off-by: Martin Liska <mliska@suse.cz>
Tested-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:56 +02:00
Zqiang
0dd025483f rcu-tasks: Convert RCU_LOCKDEP_WARN() to WARN_ONCE()
[ Upstream commit fcd53c8a4dfa38bafb89efdd0b0f718f3a03f884 ]

Kernels built with CONFIG_PROVE_RCU=y and CONFIG_DEBUG_LOCK_ALLOC=y
attempt to emit a warning when the synchronize_rcu_tasks_generic()
function is called during early boot while the rcu_scheduler_active
variable is RCU_SCHEDULER_INACTIVE.  However the warnings is not
actually be printed because the debug_lockdep_rcu_enabled() returns
false, exactly because the rcu_scheduler_active variable is still equal
to RCU_SCHEDULER_INACTIVE.

This commit therefore replaces RCU_LOCKDEP_WARN() with WARN_ONCE()
to force these warnings to actually be printed.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:25:44 +02:00
Michal Hocko
36d4ffbedf rcu: Back off upon fill_page_cache_func() allocation failure
[ Upstream commit 093590c16b447f53e66771c8579ae66c96f6ef61 ]

The fill_page_cache_func() function allocates couple of pages to store
kvfree_rcu_bulk_data structures. This is a lightweight (GFP_NORETRY)
allocation which can fail under memory pressure. The function will,
however keep retrying even when the previous attempt has failed.

This retrying is in theory correct, but in practice the allocation is
invoked from workqueue context, which means that if the memory reclaim
gets stuck, these retries can hog the worker for quite some time.
Although the workqueues subsystem automatically adjusts concurrency, such
adjustment is not guaranteed to happen until the worker context sleeps.
And the fill_page_cache_func() function's retry loop is not guaranteed
to sleep (see the should_reclaim_retry() function).

And we have seen this function cause workqueue lockups:

kernel: BUG: workqueue lockup - pool cpus=93 node=1 flags=0x1 nice=0 stuck for 32s!
[...]
kernel: pool 74: cpus=37 node=0 flags=0x1 nice=0 hung=32s workers=2 manager: 2146
kernel:   pwq 498: cpus=249 node=1 flags=0x1 nice=0 active=4/256 refcnt=5
kernel:     in-flight: 1917:fill_page_cache_func
kernel:     pending: dbs_work_handler, free_work, kfree_rcu_monitor

Originally, we thought that the root cause of this lockup was several
retries with direct reclaim, but this is not yet confirmed.  Furthermore,
we have seen similar lockups without any heavy memory pressure.  This
suggests that there are other factors contributing to these lockups.
However, it is not really clear that endless retries are desireable.

So let's make the fill_page_cache_func() function back off after
allocation failure.

Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:25:44 +02:00
Yipeng Zou
8d76dd5080 tracing: kprobe: Make gen test module work in arm and riscv
[ Upstream commit d8ef45d66c01425ff748e13ef7dd1da7a91cc93c ]

For now, this selftest module can only work in x86 because of the
kprobe cmd was fixed use of x86 registers.
This patch adapted to register names under arm and riscv, So that
this module can be worked on those platform.

Link: https://lkml.kernel.org/r/20220919125629.238242-3-zouyipeng@huawei.com

Cc: <linux-riscv@lists.infradead.org>
Cc: <mingo@redhat.com>
Cc: <paul.walmsley@sifive.com>
Cc: <palmer@dabbelt.com>
Cc: <aou@eecs.berkeley.edu>
Cc: <zanussi@kernel.org>
Cc: <liaochang1@huawei.com>
Cc: <chris.zjh@huawei.com>
Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:25:43 +02:00
Yipeng Zou
c6512a6f0c tracing: kprobe: Fix kprobe event gen test module on exit
[ Upstream commit ac48e189527fae87253ef2bf58892e782fb36874 ]

Correct gen_kretprobe_test clr event para on module exit.
This will make it can't to delete.

Link: https://lkml.kernel.org/r/20220919125629.238242-2-zouyipeng@huawei.com

Cc: <linux-riscv@lists.infradead.org>
Cc: <mingo@redhat.com>
Cc: <paul.walmsley@sifive.com>
Cc: <palmer@dabbelt.com>
Cc: <aou@eecs.berkeley.edu>
Cc: <zanussi@kernel.org>
Cc: <liaochang1@huawei.com>
Cc: <chris.zjh@huawei.com>
Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:25:42 +02:00
Waiman Long
cfde58a8e4 cgroup/cpuset: Enable update_tasks_cpumask() on top_cpuset
[ Upstream commit ec5fbdfb99d18482619ac42605cb80fbb56068ee ]

Previously, update_tasks_cpumask() is not supposed to be called with
top cpuset. With cpuset partition that takes CPUs away from the top
cpuset, adjusting the cpus_mask of the tasks in the top cpuset is
necessary. Percpu kthreads, however, are ignored.

Fixes: ee8dde0cd2ce ("cpuset: Add new v2 cpuset.sched.partition flag")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:25:41 +02:00
Lee Jones
ed403bcd97 bpf: Ensure correct locking around vulnerable function find_vpid()
[ Upstream commit 83c10cc362d91c0d8d25e60779ee52fdbbf3894d ]

The documentation for find_vpid() clearly states:

  "Must be called with the tasklist_lock or rcu_read_lock() held."

Presently we do neither for find_vpid() instance in bpf_task_fd_query().
Add proper rcu_read_lock/unlock() to fix the issue.

Fixes: 41bdc4b40ed6f ("bpf: introduce bpf subcommand BPF_TASK_FD_QUERY")
Signed-off-by: Lee Jones <lee@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220912133855.1218900-1-lee@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:25:21 +02:00
Lorenz Bauer
0a60ac7a0d bpf: btf: fix truncated last_member_type_id in btf_struct_resolve
[ Upstream commit a37a32583e282d8d815e22add29bc1e91e19951a ]

When trying to finish resolving a struct member, btf_struct_resolve
saves the member type id in a u16 temporary variable. This truncates
the 32 bit type id value if it exceeds UINT16_MAX.

As a result, structs that have members with type ids > UINT16_MAX and
which need resolution will fail with a message like this:

    [67414] STRUCT ff_device size=120 vlen=12
        effect_owners type_id=67434 bits_offset=960 Member exceeds struct_size

Fix this by changing the type of last_member_type_id to u32.

Fixes: a0791f0df7d2 ("bpf: fix BTF limits")
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/r/20220910110120.339242-1-oss@lmb.io
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:25:20 +02:00
Waiman Long
fc08f84381 tracing: Disable interrupt or preemption before acquiring arch_spinlock_t
commit c0a581d7126c0bbc96163276f585fd7b4e4d8d0e upstream.

It was found that some tracing functions in kernel/trace/trace.c acquire
an arch_spinlock_t with preemption and irqs enabled. An example is the
tracing_saved_cmdlines_size_read() function which intermittently causes
a "BUG: using smp_processor_id() in preemptible" warning when the LTP
read_all_proc test is run.

That can be problematic in case preemption happens after acquiring the
lock. Add the necessary preemption or interrupt disabling code in the
appropriate places before acquiring an arch_spinlock_t.

The convention here is to disable preemption for trace_cmdline_lock and
interupt for max_lock.

Link: https://lkml.kernel.org/r/20220922145622.1744826-1-longman@redhat.com

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: stable@vger.kernel.org
Fixes: a35873a0993b ("tracing: Add conditional snapshot")
Fixes: 939c7a4f04fc ("tracing: Introduce saved_cmdlines_size file")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:15 +02:00
Steven Rostedt (Google)
0cf6c09daf ring-buffer: Fix race between reset page and reading page
commit a0fcaaed0c46cf9399d3a2d6e0c87ddb3df0e044 upstream.

The ring buffer is broken up into sub buffers (currently of page size).
Each sub buffer has a pointer to its "tail" (the last event written to the
sub buffer). When a new event is requested, the tail is locally
incremented to cover the size of the new event. This is done in a way that
there is no need for locking.

If the tail goes past the end of the sub buffer, the process of moving to
the next sub buffer takes place. After setting the current sub buffer to
the next one, the previous one that had the tail go passed the end of the
sub buffer needs to be reset back to the original tail location (before
the new event was requested) and the rest of the sub buffer needs to be
"padded".

The race happens when a reader takes control of the sub buffer. As readers
do a "swap" of sub buffers from the ring buffer to get exclusive access to
the sub buffer, it replaces the "head" sub buffer with an empty sub buffer
that goes back into the writable portion of the ring buffer. This swap can
happen as soon as the writer moves to the next sub buffer and before it
updates the last sub buffer with padding.

Because the sub buffer can be released to the reader while the writer is
still updating the padding, it is possible for the reader to see the event
that goes past the end of the sub buffer. This can cause obvious issues.

To fix this, add a few memory barriers so that the reader definitely sees
the updates to the sub buffer, and also waits until the writer has put
back the "tail" of the sub buffer back to the last event that was written
on it.

To be paranoid, it will only spin for 1 second, otherwise it will
warn and shutdown the ring buffer code. 1 second should be enough as
the writer does have preemption disabled. If the writer doesn't move
within 1 second (with preemption disabled) something is horribly
wrong. No interrupt should last 1 second!

Link: https://lore.kernel.org/all/20220830120854.7545-1-jiazi.li@transsion.com/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216369
Link: https://lkml.kernel.org/r/20220929104909.0650a36c@gandalf.local.home

Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: c7b0930857e22 ("ring-buffer: prevent adding write in discarded area")
Reported-by: Jiazi.Li <jiazi.li@transsion.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:15 +02:00
Steven Rostedt (Google)
588f02f8b9 ring-buffer: Add ring_buffer_wake_waiters()
commit 7e9fbbb1b776d8d7969551565bc246f74ec53b27 upstream.

On closing of a file that represents a ring buffer or flushing the file,
there may be waiters on the ring buffer that needs to be woken up and exit
the ring_buffer_wait() function.

Add ring_buffer_wake_waiters() to wake up the waiters on the ring buffer
and allow them to exit the wait loop.

Link: https://lkml.kernel.org/r/20220928133938.28dc2c27@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 15693458c4bc0 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:15 +02:00
Steven Rostedt (Google)
586f02c500 ring-buffer: Check pending waiters when doing wake ups as well
commit ec0bbc5ec5664dcee344f79373852117dc672c86 upstream.

The wake up waiters only checks the "wakeup_full" variable and not the
"full_waiters_pending". The full_waiters_pending is set when a waiter is
added to the wait queue. The wakeup_full is only set when an event is
triggered, and it clears the full_waiters_pending to avoid multiple calls
to irq_work_queue().

The irq_work callback really needs to check both wakeup_full as well as
full_waiters_pending such that this code can be used to wake up waiters
when a file is closed that represents the ring buffer and the waiters need
to be woken up.

Link: https://lkml.kernel.org/r/20220927231824.209460321@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 15693458c4bc0 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:15 +02:00
Steven Rostedt (Google)
6617e5132c ring-buffer: Have the shortest_full queue be the shortest not longest
commit 3b19d614b61b93a131f463817e08219c9ce1fee3 upstream.

The logic to know when the shortest waiters on the ring buffer should be
woken up or not has uses a less than instead of a greater than compare,
which causes the shortest_full to actually be the longest.

Link: https://lkml.kernel.org/r/20220927231823.718039222@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:15 +02:00
Steven Rostedt (Google)
4a3bbd40e4 ring-buffer: Allow splice to read previous partially read pages
commit fa8f4a89736b654125fb254b0db753ac68a5fced upstream.

If a page is partially read, and then the splice system call is run
against the ring buffer, it will always fail to read, no matter how much
is in the ring buffer. That's because the code path for a partial read of
the page does will fail if the "full" flag is set.

The splice system call wants full pages, so if the read of the ring buffer
is not yet full, it should return zero, and the splice will block. But if
a previous read was done, where the beginning has been consumed, it should
still be given to the splice caller if the rest of the page has been
written to.

This caused the splice command to never consume data in this scenario, and
let the ring buffer just fill up and lose events.

Link: https://lkml.kernel.org/r/20220927144317.46be6b80@gandalf.local.home

Cc: stable@vger.kernel.org
Fixes: 8789a9e7df6bf ("ring-buffer: read page interface")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:14 +02:00
Zheng Yejian
f2ca4609d0 ftrace: Properly unset FTRACE_HASH_FL_MOD
commit 0ce0638edf5ec83343302b884fa208179580700a upstream.

When executing following commands like what document said, but the log
"#### all functions enabled ####" was not shown as expect:
  1. Set a 'mod' filter:
    $ echo 'write*:mod:ext3' > /sys/kernel/tracing/set_ftrace_filter
  2. Invert above filter:
    $ echo '!write*:mod:ext3' >> /sys/kernel/tracing/set_ftrace_filter
  3. Read the file:
    $ cat /sys/kernel/tracing/set_ftrace_filter

By some debugging, I found that flag FTRACE_HASH_FL_MOD was not unset
after inversion like above step 2 and then result of ftrace_hash_empty()
is incorrect.

Link: https://lkml.kernel.org/r/20220926152008.2239274-1-zhengyejian1@huawei.com

Cc: <mingo@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 8c08f0d5c6fb ("ftrace: Have cached module filters be an active filter")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:14 +02:00
Rik van Riel
846f041203 livepatch: fix race between fork and KLP transition
commit 747f7a2901174c9afa805dddfb7b24db6f65e985 upstream.

The KLP transition code depends on the TIF_PATCH_PENDING and
the task->patch_state to stay in sync. On a normal (forward)
transition, TIF_PATCH_PENDING will be set on every task in
the system, while on a reverse transition (after a failed
forward one) first TIF_PATCH_PENDING will be cleared from
every task, followed by it being set on tasks that need to
be transitioned back to the original code.

However, the fork code copies over the TIF_PATCH_PENDING flag
from the parent to the child early on, in dup_task_struct and
setup_thread_stack. Much later, klp_copy_process will set
child->patch_state to match that of the parent.

However, the parent's patch_state may have been changed by KLP loading
or unloading since it was initially copied over into the child.

This results in the KLP code occasionally hitting this warning in
klp_complete_transition:

        for_each_process_thread(g, task) {
                WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
                task->patch_state = KLP_UNDEFINED;
        }

Set, or clear, the TIF_PATCH_PENDING flag in the child task
depending on whether or not it is needed at the time
klp_copy_process is called, at a point in copy_process where the
tasklist_lock is held exclusively, preventing races with the KLP
code.

The KLP code does have a few places where the state is changed
without the tasklist_lock held, but those should not cause
problems because klp_update_patch_state(current) cannot be
called while the current task is in the middle of fork,
klp_check_and_switch_task() which is called under the pi_lock,
which prevents rescheduling, and manipulation of the patch
state of idle tasks, which do not fork.

This should prevent this warning from triggering again in the
future, and close the race for both normal and reverse transitions.

Signed-off-by: Rik van Riel <riel@surriel.com>
Reported-by: Breno Leitao <leitao@debian.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Fixes: d83a7cb375ee ("livepatch: change to a per-task consistency model")
Cc: stable@kernel.org
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220808150019.03d6a67b@imladris.surriel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:25:14 +02:00
Tianyu Lan
625899cd06 swiotlb: max mapping size takes min align mask into account
commit 82806744fd7dde603b64c151eeddaa4ee62193fd upstream.

swiotlb_find_slots() skips slots according to io tlb aligned mask
calculated from min aligned mask and original physical address
offset. This affects max mapping size. The mapping size can't
achieve the IO_TLB_SEGSIZE * IO_TLB_SIZE when original offset is
non-zero. This will cause system boot up failure in Hyper-V
Isolation VM where swiotlb force is enabled. Scsi layer use return
value of dma_max_mapping_size() to set max segment size and it
finally calls swiotlb_max_mapping_size(). Hyper-V storage driver
sets min align mask to 4k - 1. Scsi layer may pass 256k length of
request buffer with 0~4k offset and Hyper-V storage driver can't
get swiotlb bounce buffer via DMA API. Swiotlb_find_slots() can't
find 256k length bounce buffer with offset. Make swiotlb_max_mapping
_size() take min align mask into account.

Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Rishabh Bhatnagar <risbhat@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-05 10:38:40 +02:00
Tetsuo Handa
90f1c0025b workqueue: don't skip lockdep work dependency in cancel_work_sync()
[ Upstream commit c0feea594e058223973db94c1c32a830c9807c86 ]

Like Hillf Danton mentioned

  syzbot should have been able to catch cancel_work_sync() in work context
  by checking lockdep_map in __flush_work() for both flush and cancel.

in [1], being unable to report an obvious deadlock scenario shown below is
broken. From locking dependency perspective, sync version of cancel request
should behave as if flush request, for it waits for completion of work if
that work has already started execution.

  ----------
  #include <linux/module.h>
  #include <linux/sched.h>
  static DEFINE_MUTEX(mutex);
  static void work_fn(struct work_struct *work)
  {
    schedule_timeout_uninterruptible(HZ / 5);
    mutex_lock(&mutex);
    mutex_unlock(&mutex);
  }
  static DECLARE_WORK(work, work_fn);
  static int __init test_init(void)
  {
    schedule_work(&work);
    schedule_timeout_uninterruptible(HZ / 10);
    mutex_lock(&mutex);
    cancel_work_sync(&work);
    mutex_unlock(&mutex);
    return -EINVAL;
  }
  module_init(test_init);
  MODULE_LICENSE("GPL");
  ----------

The check this patch restores was added by commit 0976dfc1d0cd80a4
("workqueue: Catch more locking problems with flush_work()").

Then, lockdep's crossrelease feature was added by commit b09be676e0ff25bd
("locking/lockdep: Implement the 'crossrelease' feature"). As a result,
this check was once removed by commit fd1a5b04dfb899f8 ("workqueue: Remove
now redundant lock acquisitions wrt. workqueue flushes").

But lockdep's crossrelease feature was removed by commit e966eaeeb623f099
("locking/lockdep: Remove the cross-release locking checks"). At this
point, this check should have been restored.

Then, commit d6e89786bed977f3 ("workqueue: skip lockdep wq dependency in
cancel_work_sync()") introduced a boolean flag in order to distinguish
flush_work() and cancel_work_sync(), for checking "struct workqueue_struct"
dependency when called from cancel_work_sync() was causing false positives.

Then, commit 87915adc3f0acdf0 ("workqueue: re-add lockdep dependencies for
flushing") tried to restore "struct work_struct" dependency check, but by
error checked this boolean flag. Like an example shown above indicates,
"struct work_struct" dependency needs to be checked for both flush_work()
and cancel_work_sync().

Link: https://lkml.kernel.org/r/20220504044800.4966-1-hdanton@sina.com [1]
Reported-by: Hillf Danton <hdanton@sina.com>
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Fixes: 87915adc3f0acdf0 ("workqueue: re-add lockdep dependencies for flushing")
Cc: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-28 11:10:40 +02:00
Tetsuo Handa
9f267393b0 cgroup: Add missing cpus_read_lock() to cgroup_attach_task_all()
commit 43626dade36fa74d3329046f4ae2d7fdefe401c6 upstream.

syzbot is hitting percpu_rwsem_assert_held(&cpu_hotplug_lock) warning at
cpuset_attach() [1], for commit 4f7e7236435ca0ab ("cgroup: Fix
threadgroup_rwsem <-> cpus_read_lock() deadlock") missed that
cpuset_attach() is also called from cgroup_attach_task_all().
Add cpus_read_lock() like what cgroup_procs_write_start() does.

Link: https://syzkaller.appspot.com/bug?extid=29d3a3b4d86c8136ad9e [1]
Reported-by: syzbot <syzbot+29d3a3b4d86c8136ad9e@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: 4f7e7236435ca0ab ("cgroup: Fix threadgroup_rwsem <-> cpus_read_lock() deadlock")
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-23 14:17:00 +02:00