IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit 7c339fb4d8577792378136c15fde773cfb863cb8 ]
In ring_buffer_reset_online_cpus, the buffer_size_kb write operation
may permanently fail if the cpu_online_mask changes between two
for_each_online_buffer_cpu loops. The number of increases and decreases
on both cpu_buffer->resize_disabled and cpu_buffer->record_disabled may be
inconsistent, causing some CPUs to have non-zero values for these atomic
variables after the function returns.
This issue can be reproduced by "echo 0 > trace" while hotplugging cpu.
After reproducing success, we can find out buffer_size_kb will not be
functional anymore.
To prevent leaving 'resize_disabled' and 'record_disabled' non-zero after
ring_buffer_reset_online_cpus returns, we ensure that each atomic variable
has been set up before atomic_sub() to it.
Link: https://lore.kernel.org/linux-trace-kernel/20230426062027.17451-1-Tze-nan.Wu@mediatek.com
Cc: stable@vger.kernel.org
Cc: <mhiramat@kernel.org>
Cc: npiggin@gmail.com
Fixes: b23d7a5f4a07 ("ring-buffer: speed up buffer resets by avoiding synchronize_rcu for each CPU")
Reviewed-by: Cheng-Jui Wang <cheng-jui.wang@mediatek.com>
Signed-off-by: Tze-nan Wu <Tze-nan.Wu@mediatek.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 335a42ebb0ca8ee9997a1731aaaae6dcd704c113 ]
The workqueue watchdog prints a warning when there is no progress in
a worker pool. Where the progress means that the pool started processing
a pending work item.
Note that it is perfectly fine to process work items much longer.
The progress should be guaranteed by waking up or creating idle
workers.
show_one_worker_pool() prints state of non-idle worker pool. It shows
a delay since the last pool->watchdog_ts.
The timestamp is updated when a first pending work is queued in
__queue_work(). Also it is updated when a work is dequeued for
processing in worker_thread() and rescuer_thread().
The delay is misleading when there is no pending work item. In this
case it shows how long the last work item is being proceed. Show
zero instead. There is no stall if there is no pending work.
Fixes: 82607adcf9cdf40fb7b ("workqueue: implement lockup detector")
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f97a4a1a3f8769e3452885967955e21c88f3f263 ]
There are two kinds of "delayed" work items in workqueue subsystem.
One is for timer-delayed work items which are visible to workqueue users.
The other kind is for work items delayed by active management which can
not be directly visible to workqueue users. We mixed the word "delayed"
for both kinds and caused somewhat ambiguity.
This patch renames the later one (delayed by active management) to
"inactive", because it is used for workqueue active management and
most of its related symbols are named with "active" or "activate".
All "delayed" and "DELAYED" are carefully checked and renamed one by
one to avoid accidentally changing the name of the other kind for
timer-delayed.
No functional change intended.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Stable-dep-of: 335a42ebb0ca ("workqueue: Fix hung time report of worker pools")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 15def34e2635ab7e0e96f1bc32e1b69609f14942 ]
commit e050e3f0a71bf ("perf: Fix broken interrupt rate throttling")
introduces a change in throttling threshold judgment. Before this,
compare hwc->interrupts and max_samples_per_tick, then increase
hwc->interrupts by 1, but this commit reverses order of these two
behaviors, causing the semantics of max_samples_per_tick to change.
In literal sense of "max_samples_per_tick", if hwc->interrupts ==
max_samples_per_tick, it should not be throttled, therefore, the judgment
condition should be changed to "hwc->interrupts > max_samples_per_tick".
In fact, this may cause the hardlockup to fail, The minimum value of
max_samples_per_tick may be 1, in this case, the return value of
__perf_event_account_interrupt function is 1.
As a result, nmi_watchdog gets throttled, which would stop PMU (Use x86
architecture as an example, see x86_pmu_handle_irq).
Fixes: e050e3f0a71b ("perf: Fix broken interrupt rate throttling")
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230227023508.102230-1-yangjihong1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 00e74ae0863827d944e36e56a4ce1e77e50edb91 ]
Some socket options do getsockopt with optval=NULL to estimate the size
of the final buffer (which is returned via optlen). This breaks BPF
getsockopt assumptions about permitted optval buffer size. Let's enforce
these assumptions only when non-NULL optval is provided.
Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks")
Reported-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/ZD7Js4fj5YyI2oLd@google.com/T/#mb68daf700f87a9244a15d01d00c3f0e5b08f49f7
Link: https://lore.kernel.org/bpf/20230418225343.553806-2-sdf@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 082cdc69a4651dd2a77539d69416a359ed1214f5 ]
For every BPF_ADD/SUB involving a pointer, adjust_ptr_min_max_vals()
ensures that the resulting pointer has a constant offset if
bypass_spec_v1 is false. This is ensured by calling sanitize_check_bounds()
which in turn calls check_stack_access_for_ptr_arithmetic(). There,
-EACCESS is returned if the register's offset is not constant, thereby
rejecting the program.
In summary, an unprivileged user must never be able to create stack
pointers with a variable offset. That is also the case, because a
respective check in check_stack_write() is missing. If they were able
to create a variable-offset pointer, users could still use it in a
stack-write operation to trigger unsafe speculative behavior [1].
Because unprivileged users must already be prevented from creating
variable-offset stack pointers, viable options are to either remove
this check (replacing it with a clarifying comment), or to turn it
into a "verifier BUG"-message, also adding a similar check in
check_stack_write() (for consistency, as a second-level defense).
This patch implements the first option to reduce verifier bloat.
This check was introduced by commit 01f810ace9ed ("bpf: Allow
variable-offset stack access") which correctly notes that
"variable-offset reads and writes are disallowed (they were already
disallowed for the indirect access case) because the speculative
execution checking code doesn't support them". However, it does not
further discuss why the check in check_stack_read() is necessary.
The code which made this check obsolete was also introduced in this
commit.
I have compiled ~650 programs from the Linux selftests, Linux samples,
Cilium, and libbpf/examples projects and confirmed that none of these
trigger the check in check_stack_read() [2]. Instead, all of these
programs are, as expected, already rejected when constructing the
variable-offset pointers. Note that the check in
check_stack_access_for_ptr_arithmetic() also prints "off=%d" while the
code removed by this patch does not (the error removed does not appear
in the "verification_error" values). For reproducibility, the
repository linked includes the raw data and scripts used to create
the plot.
[1] https://arxiv.org/pdf/1807.03757.pdf
[2] 53dc19fcf4/data/plots/23-02-26_23-56_bpftool/bpftool/0004-errors.pdf
Fixes: 01f810ace9ed ("bpf: Allow variable-offset stack access")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230315165358.23701-1-gerhorst@cs.fau.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 34f0677e7afd3a292bc1aadda7ce8e35faedb204 ]
Fix wrong order of frame index vs register/slot index in precision
propagation verbose (level 2) output. It's wrong and very confusing as is.
Fixes: 529409ea92d5 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230313184017.4083374-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 52c2b005a3c18c565fc70cfd0ca49375f301e952 ]
When doing state comparison, if old state has register that is not
marked as REG_LIVE_READ, then we just skip comparison, regardless what's
the state of corresponing register in current state. This is because not
REG_LIVE_READ register is irrelevant for further program execution and
correctness. All good here.
But when we get to precision propagation, after two states were declared
equivalent, we don't take into account old register's liveness, and thus
attempt to propagate precision for register in current state even if
that register in old state was not REG_LIVE_READ anymore. This is bad,
because register in current state could be anything at all and this
could cause -EFAULT due to internal logic bugs.
Fix by taking into account REG_LIVE_READ liveness mark to keep the logic
in state comparison in sync with precision propagation.
Fixes: a3ce685dd01a ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230309224131.57449-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e9523a0d81899361214d118ad60ef76f0e92f71d ]
With HIGHRES enabled tick_sched_timer() is programmed every jiffy to
expire the timer_list timers. This timer is programmed accurate in
respect to CLOCK_MONOTONIC so that 0 seconds and nanoseconds is the
first tick and the next one is 1000/CONFIG_HZ ms later. For HZ=250 it is
every 4 ms and so based on the current time the next tick can be
computed.
This accuracy broke since the commit mentioned below because the jiffy
based clocksource is initialized with higher accuracy in
read_persistent_wall_and_boot_offset(). This higher accuracy is
inherited during the setup in tick_setup_device(). The timer still fires
every 4ms with HZ=250 but timer is no longer aligned with
CLOCK_MONOTONIC with 0 as it origin but has an offset in the us/ns part
of the timestamp. The offset differs with every boot and makes it
impossible for user land to align with the tick.
Align the tick period with CLOCK_MONOTONIC ensuring that it is always a
multiple of 1000/CONFIG_HZ ms.
Fixes: 857baa87b6422 ("sched/clock: Enable sched clock early")
Reported-by: Gusenleitner Klaus <gus@keba.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/20230406095735.0_14edn3@linutronix.de
Link: https://lore.kernel.org/r/20230418122639.ikgfvu3f@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b996544916429946bf4934c1c01a306d1690972c ]
The variable tick_period is initialized to NSEC_PER_TICK / HZ during boot
and never updated again.
If NSEC_PER_TICK is not an integer multiple of HZ this computation is less
accurate than TICK_NSEC which has proper rounding in place.
Aside of the inaccuracy there is no reason for having this variable at
all. It's just a pointless indirection and all usage sites can just use the
TICK_NSEC constant.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.766643526@linutronix.de
Stable-dep-of: e9523a0d8189 ("tick/common: Align tick period with the HZ tick.")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7a35bf2a6a871cd0252cd371d741e7d070b53af9 ]
Now that it's clear that there is always one tick to account, simplify the
calculations some more.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.565663056@linutronix.de
Stable-dep-of: e9523a0d8189 ("tick/common: Align tick period with the HZ tick.")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 94ad2e3cedb82af034f6d97c58022f162b669f9b ]
If jiffies are up to date already (caller lost the race against another
CPU) there is no point to change the sequence count. Doing that just forces
other CPUs into the seqcount retry loop in tick_nohz_next_event() for
nothing.
Just bail out early.
[ tglx: Rewrote most of it ]
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.462195901@linutronix.de
Stable-dep-of: e9523a0d8189 ("tick/common: Align tick period with the HZ tick.")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 372acbbaa80940189593f9d69c7c069955f24f7a ]
No point in doing calculations.
tick_next_period = last_jiffies_update + tick_period
Just check whether now is before tick_next_period to figure out whether
jiffies need an update.
Add a comment why the intentional data race in the quick check is safe or
not so safe in a 32bit corner case and why we don't worry about it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.337366695@linutronix.de
Stable-dep-of: e9523a0d8189 ("tick/common: Align tick period with the HZ tick.")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 43ec16f1450f4936025a9bdf1a273affdb9732c1 upstream.
There is a crash in relay_file_read, as the var from
point to the end of last subbuf.
The oops looks something like:
pc : __arch_copy_to_user+0x180/0x310
lr : relay_file_read+0x20c/0x2c8
Call trace:
__arch_copy_to_user+0x180/0x310
full_proxy_read+0x68/0x98
vfs_read+0xb0/0x1d0
ksys_read+0x6c/0xf0
__arm64_sys_read+0x20/0x28
el0_svc_common.constprop.3+0x84/0x108
do_el0_svc+0x74/0x90
el0_svc+0x1c/0x28
el0_sync_handler+0x88/0xb0
el0_sync+0x148/0x180
We get the condition by analyzing the vmcore:
1). The last produced byte and last consumed byte
both at the end of the last subbuf
2). A softirq calls function(e.g __blk_add_trace)
to write relay buffer occurs when an program is calling
relay_file_read_avail().
relay_file_read
relay_file_read_avail
relay_file_read_consume(buf, 0, 0);
//interrupted by softirq who will write subbuf
....
return 1;
//read_start point to the end of the last subbuf
read_start = relay_file_read_start_pos
//avail is equal to subsize
avail = relay_file_read_subbuf_avail
//from points to an invalid memory address
from = buf->start + read_start
//system is crashed
copy_to_user(buffer, from, avail)
Link: https://lkml.kernel.org/r/20230419040203.37676-1-zhang.zhengming@h3c.com
Fixes: 8d62fdebdaf9 ("relay file read: start-pos fix")
Signed-off-by: Zhang Zhengming <zhang.zhengming@h3c.com>
Reviewed-by: Zhao Lei <zhao_lei1@hoperun.com>
Reviewed-by: Zhou Kete <zhou.kete@h3c.com>
Reviewed-by: Pengcheng Yang <yangpc@wangsu.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 675751bb20634f981498c7d66161584080cc061e upstream.
If something was written to the buffer just before destruction,
it may be possible (maybe not in a real system, but it did
happen in ARCH=um with time-travel) to destroy the ringbuffer
before the IRQ work ran, leading this KASAN report (or a crash
without KASAN):
BUG: KASAN: slab-use-after-free in irq_work_run_list+0x11a/0x13a
Read of size 8 at addr 000000006d640a48 by task swapper/0
CPU: 0 PID: 0 Comm: swapper Tainted: G W O 6.3.0-rc1 #7
Stack:
60c4f20f 0c203d48 41b58ab3 60f224fc
600477fa 60f35687 60c4f20f 601273dd
00000008 6101eb00 6101eab0 615be548
Call Trace:
[<60047a58>] show_stack+0x25e/0x282
[<60c609e0>] dump_stack_lvl+0x96/0xfd
[<60c50d4c>] print_report+0x1a7/0x5a8
[<603078d3>] kasan_report+0xc1/0xe9
[<60308950>] __asan_report_load8_noabort+0x1b/0x1d
[<60232844>] irq_work_run_list+0x11a/0x13a
[<602328b4>] irq_work_tick+0x24/0x34
[<6017f9dc>] update_process_times+0x162/0x196
[<6019f335>] tick_sched_handle+0x1a4/0x1c3
[<6019fd9e>] tick_sched_timer+0x79/0x10c
[<601812b9>] __hrtimer_run_queues.constprop.0+0x425/0x695
[<60182913>] hrtimer_interrupt+0x16c/0x2c4
[<600486a3>] um_timer+0x164/0x183
[...]
Allocated by task 411:
save_stack_trace+0x99/0xb5
stack_trace_save+0x81/0x9b
kasan_save_stack+0x2d/0x54
kasan_set_track+0x34/0x3e
kasan_save_alloc_info+0x25/0x28
____kasan_kmalloc+0x8b/0x97
__kasan_kmalloc+0x10/0x12
__kmalloc+0xb2/0xe8
load_elf_phdrs+0xee/0x182
[...]
The buggy address belongs to the object at 000000006d640800
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 584 bytes inside of
freed 1024-byte region [000000006d640800, 000000006d640c00)
Add the appropriate irq_work_sync() so the work finishes before
the buffers are destroyed.
Prior to the commit in the Fixes tag below, there was only a
single global IRQ work, so this issue didn't exist.
Link: https://lore.kernel.org/linux-trace-kernel/20230427175920.a76159263122.I8295e405c44362a86c995e9c2c37e3e03810aa56@changeid
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 15693458c4bc ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b69edab47f1da8edd8e7bfdf8c70f51a2a5d89fb upstream.
Under CONFIG_FORTIFY_SOURCE, memcpy() will check the size of destination
and source buffers. Defining kernel_headers_data as "char" would trip
this check. Since these addresses are treated as byte arrays, define
them as arrays (as done everywhere else).
This was seen with:
$ cat /sys/kernel/kheaders.tar.xz >> /dev/null
detected buffer overflow in memcpy
kernel BUG at lib/string_helpers.c:1027!
...
RIP: 0010:fortify_panic+0xf/0x20
[...]
Call Trace:
<TASK>
ikheaders_read+0x45/0x50 [kheaders]
kernfs_fop_read_iter+0x1a4/0x2f0
...
Reported-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20230302112130.6e402a98@kernel.org/
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Tested-by: Jakub Kicinski <kuba@kernel.org>
Fixes: 43d8ce9d65a5 ("Provide in-kernel headers to make extending kernel easier")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230302224946.never.243-kees@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 58d7668242647e661a20efe065519abd6454287e upstream.
For CONFIG_NO_HZ_FULL systems, the tick_do_timer_cpu cannot be offlined.
However, cpu_is_hotpluggable() still returns true for those CPUs. This causes
torture tests that do offlining to end up trying to offline this CPU causing
test failures. Such failure happens on all architectures.
Fix the repeated error messages thrown by this (even if the hotplug errors are
harmless) by asking the opinion of the nohz subsystem on whether the CPU can be
hotplugged.
[ Apply Frederic Weisbecker feedback on refactoring tick_nohz_cpu_down(). ]
For drivers/base/ portion:
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Zhouyi Zhou <zhouzhouyi@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: rcu <rcu@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 2987557f52b9 ("driver-core/cpu: Expose hotpluggability to the rest of the kernel")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f7abf14f0001a5a47539d9f60bbdca649e43536b upstream.
For some unknown reason the introduction of the timer_wait_running callback
missed to fixup posix CPU timers, which went unnoticed for almost four years.
Marco reported recently that the WARN_ON() in timer_wait_running()
triggers with a posix CPU timer test case.
Posix CPU timers have two execution models for expiring timers depending on
CONFIG_POSIX_CPU_TIMERS_TASK_WORK:
1) If not enabled, the expiry happens in hard interrupt context so
spin waiting on the remote CPU is reasonably time bound.
Implement an empty stub function for that case.
2) If enabled, the expiry happens in task work before returning to user
space or guest mode. The expired timers are marked as firing and moved
from the timer queue to a local list head with sighand lock held. Once
the timers are moved, sighand lock is dropped and the expiry happens in
fully preemptible context. That means the expiring task can be scheduled
out, migrated, interrupted etc. So spin waiting on it is more than
suboptimal.
The timer wheel has a timer_wait_running() mechanism for RT, which uses
a per CPU timer-base expiry lock which is held by the expiry code and the
task waiting for the timer function to complete blocks on that lock.
This does not work in the same way for posix CPU timers as there is no
timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry lock
can be used too in a slightly different way:
- Add a mutex to struct posix_cputimers_work. This struct is per task
and used to schedule the expiry task work from the timer interrupt.
- Add a task_struct pointer to struct cpu_timer which is used to store
a the task which runs the expiry. That's filled in when the task
moves the expired timers to the local expiry list. That's not
affecting the size of the k_itimer union as there are bigger union
members already
- Let the task take the expiry mutex around the expiry function
- Let the waiter acquire a task reference with rcu_read_lock() held and
block on the expiry mutex
This avoids spin-waiting on a task which might not even be on a CPU and
works nicely for RT too.
Fixes: ec8f954a40da ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marco Elver <elver@google.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87zg764ojw.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit da07d2f9c153e457e845d4dcfdd13568d71d18a4 upstream.
Traversing the Perf Domains requires rcu_read_lock() to be held and is
conditional on sched_energy_enabled(). Ensure right protections applied.
Also skip capacity inversion detection for our own pd; which was an
error.
Fixes: 44c7b80bffc3 ("sched/fair: Detect capacity inversion")
Reported-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230112122708.330667-3-qyousef@layalina.io
(cherry picked from commit da07d2f9c153e457e845d4dcfdd13568d71d18a4)
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e26fd28db82899be71b4b949527373d0a6be1e65 upstream.
Addresses the following warnings:
> config: riscv-randconfig-m031-20221111
> compiler: riscv64-linux-gcc (GCC) 12.1.0
>
> smatch warnings:
> kernel/sched/fair.c:7263 find_energy_efficient_cpu() error: uninitialized symbol 'util_min'.
> kernel/sched/fair.c:7263 find_energy_efficient_cpu() error: uninitialized symbol 'util_max'.
Fixes: 244226035a1f ("sched/uclamp: Fix fits_capacity() check in feec()")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230112122708.330667-2-qyousef@layalina.io
(cherry picked from commit e26fd28db82899be71b4b949527373d0a6be1e65)
[Conflict in kernel/sched/fair.c due to new automatic variable in
master vs 5.10 and new code around for loop]
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit: aa69c36f31aadc1669bfa8a3de6a47b5e6c98ee8 upstream.
We do consider thermal pressure in util_fits_cpu() for uclamp_min only.
With the exception of the biggest cores which by definition are the max
performance point of the system and all tasks by definition should fit.
Even under thermal pressure, the capacity of the biggest CPU is the
highest in the system and should still fit every task. Except when it
reaches capacity inversion point, then this is no longer true.
We can handle this by using the inverted capacity as capacity_orig in
util_fits_cpu(). Which not only addresses the problem above, but also
ensure uclamp_max now considers the inverted capacity. Force fitting
a task when a CPU is in this adverse state will contribute to making the
thermal throttling last longer.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-10-qais.yousef@arm.com
(cherry picked from commit aa69c36f31aadc1669bfa8a3de6a47b5e6c98ee8)
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit: 44c7b80bffc3a657a36857098d5d9c49d94e652b upstream.
Check each performance domain to see if thermal pressure is causing its
capacity to be lower than another performance domain.
We assume that each performance domain has CPUs with the same
capacities, which is similar to an assumption made in energy_model.c
We also assume that thermal pressure impacts all CPUs in a performance
domain equally.
If there're multiple performance domains with the same capacity_orig, we
will trigger a capacity inversion if the domain is under thermal
pressure.
The new cpu_in_capacity_inversion() should help users to know when
information about capacity_orig are not reliable and can opt in to use
the inverted capacity as the 'actual' capacity_orig.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-9-qais.yousef@arm.com
(cherry picked from commit 44c7b80bffc3a657a36857098d5d9c49d94e652b)
[Trivial conflict in kernel/sched/fair.c and sched.h due to code shuffling]
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d81304bc6193554014d4372a01debdf65e1e9a4d upstream.
If the utilization of the woken up task is 0, we skip the energy
calculation because it has no impact.
But if the task is boosted (uclamp_min != 0) will have an impact on task
placement and frequency selection. Only skip if the util is truly
0 after applying uclamp values.
Change uclamp_task_cpu() signature to avoid unnecessary additional calls
to uclamp_eff_get(). feec() is the only user now.
Fixes: 732cd75b8c920 ("sched/fair: Select an energy-efficient CPU on task wake-up")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-8-qais.yousef@arm.com
(cherry picked from commit d81304bc6193554014d4372a01debdf65e1e9a4d)
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c56ab1b3506ba0e7a872509964b100912bde165d upstream.
So that it is now uclamp aware.
This fixes a major problem of busy tasks capped with UCLAMP_MAX keeping
the system in overutilized state which disables EAS and leads to wasting
energy in the long run.
Without this patch running a busy background activity like JIT
compilation on Pixel 6 causes the system to be in overutilized state
74.5% of the time.
With this patch this goes down to 9.79%.
It also fixes another problem when long running tasks that have their
UCLAMP_MIN changed while running such that they need to upmigrate to
honour the new UCLAMP_MIN value. The upmigration doesn't get triggered
because overutilized state never gets set in this state, hence misfit
migration never happens at tick in this case until the task wakes up
again.
Fixes: af24bde8df202 ("sched/uclamp: Add uclamp support to energy_compute()")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-7-qais.yousef@arm.com
(cherry picked from commit c56ab1b3506ba0e7a872509964b100912bde165d)
[Conflict in kernel/sched/fair.c: use cpu_util() instead of
cpu_util_cfs()]
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a2e7f03ed28fce26c78b985f87913b6ce3accf9d upstream.
Use the new util_fits_cpu() to ensure migration margin and capacity
pressure are taken into account correctly when uclamp is being used
otherwise we will fail to consider CPUs as fitting in scenarios where
they should.
s/asym_fits_capacity/asym_fits_cpu/ to better reflect what it does now.
Fixes: b4c9c9f15649 ("sched/fair: Prefer prev cpu in asymmetric wakeup path")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-6-qais.yousef@arm.com
(cherry picked from commit a2e7f03ed28fce26c78b985f87913b6ce3accf9d)
[Conflict in kernel/sched/fair.c due different name of static key
wrapper function and slightly different if condition block in one of the
asym_fits_cpu() call sites]
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b759caa1d9f667b94727b2ad12589cbc4ce13a82 upstream.
Use the new util_fits_cpu() to ensure migration margin and capacity
pressure are taken into account correctly when uclamp is being used
otherwise we will fail to consider CPUs as fitting in scenarios where
they should.
Fixes: b4c9c9f15649 ("sched/fair: Prefer prev cpu in asymmetric wakeup path")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-5-qais.yousef@arm.com
(cherry picked from commit b759caa1d9f667b94727b2ad12589cbc4ce13a82)
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 244226035a1f9b2b6c326e55ae5188fab4f428cb upstream.
As reported by Yun Hsiang [1], if a task has its uclamp_min >= 0.8 * 1024,
it'll always pick the previous CPU because fits_capacity() will always
return false in this case.
The new util_fits_cpu() logic should handle this correctly for us beside
more corner cases where similar failures could occur, like when using
UCLAMP_MAX.
We open code uclamp_rq_util_with() except for the clamp() part,
util_fits_cpu() needs the 'raw' values to be passed to it.
Also introduce uclamp_rq_{set, get}() shorthand accessors to get uclamp
value for the rq. Makes the code more readable and ensures the right
rules (use READ_ONCE/WRITE_ONCE) are respected transparently.
[1] https://lists.linaro.org/pipermail/eas-dev/2020-July/001488.html
Fixes: 1d42509e475c ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Reported-by: Yun Hsiang <hsiang023167@gmail.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-4-qais.yousef@arm.com
(cherry picked from commit 244226035a1f9b2b6c326e55ae5188fab4f428cb)
[Fix trivial conflict in kernel/sched/fair.c due to new automatic
variables in master vs 5.10]
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b48e16a69792b5dc4a09d6807369d11b2970cc36 upstream.
So that the new uclamp rules in regard to migration margin and capacity
pressure are taken into account correctly.
Fixes: a7008c07a568 ("sched/fair: Make task_fits_capacity() consider uclamp restrictions")
Co-developed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-3-qais.yousef@arm.com
(cherry picked from commit b48e16a69792b5dc4a09d6807369d11b2970cc36)
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 659c0ce1cb9efc7f58d380ca4bb2a51ae9e30553 upstream.
Linux Security Modules (LSMs) that implement the "capable" hook will
usually emit an access denial message to the audit log whenever they
"block" the current task from using the given capability based on their
security policy.
The occurrence of a denial is used as an indication that the given task
has attempted an operation that requires the given access permission, so
the callers of functions that perform LSM permission checks must take care
to avoid calling them too early (before it is decided if the permission is
actually needed to perform the requested operation).
The __sys_setres[ug]id() functions violate this convention by first
calling ns_capable_setid() and only then checking if the operation
requires the capability or not. It means that any caller that has the
capability granted by DAC (task's capability set) but not by MAC (LSMs)
will generate a "denied" audit record, even if is doing an operation for
which the capability is not required.
Fix this by reordering the checks such that ns_capable_setid() is checked
last and -EPERM is returned immediately if it returns false.
While there, also do two small optimizations:
* move the capability check before prepare_creds() and
* bail out early in case of a no-op.
Link: https://lkml.kernel.org/r/20230217162154.837549-1-omosnace@redhat.com
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 71b547f561247897a0a14f3082730156c0533fed ]
Juan Jose et al reported an issue found via fuzzing where the verifier's
pruning logic prematurely marks a program path as safe.
Consider the following program:
0: (b7) r6 = 1024
1: (b7) r7 = 0
2: (b7) r8 = 0
3: (b7) r9 = -2147483648
4: (97) r6 %= 1025
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2
7: (97) r6 %= 1
8: (b7) r9 = 0
9: (bd) if r6 <= r9 goto pc+1
10: (b7) r6 = 0
11: (b7) r0 = 0
12: (63) *(u32 *)(r10 -4) = r0
13: (18) r4 = 0xffff888103693400 // map_ptr(ks=4,vs=48)
15: (bf) r1 = r4
16: (bf) r2 = r10
17: (07) r2 += -4
18: (85) call bpf_map_lookup_elem#1
19: (55) if r0 != 0x0 goto pc+1
20: (95) exit
21: (77) r6 >>= 10
22: (27) r6 *= 8192
23: (bf) r1 = r0
24: (0f) r0 += r6
25: (79) r3 = *(u64 *)(r0 +0)
26: (7b) *(u64 *)(r1 +0) = r3
27: (95) exit
The verifier treats this as safe, leading to oob read/write access due
to an incorrect verifier conclusion:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r6 = 1024 ; R6_w=1024
1: (b7) r7 = 0 ; R7_w=0
2: (b7) r8 = 0 ; R8_w=0
3: (b7) r9 = -2147483648 ; R9_w=-2147483648
4: (97) r6 %= 1025 ; R6_w=scalar()
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff00000000; 0xffffffff)) R9_w=-2147483648
7: (97) r6 %= 1 ; R6_w=scalar()
8: (b7) r9 = 0 ; R9=0
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
10: (b7) r6 = 0 ; R6_w=0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 9
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=0
22: (27) r6 *= 8192 ; R6_w=0
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 19
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
last_idx 18 first_idx 9
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
regs=40 stack=0 before 10: (b7) r6 = 0
25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
27: (95) exit
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1
frame 0: propagating r6
last_idx 19 first_idx 11
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
last_idx 9 first_idx 9
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=0 R10=fp0
last_idx 8 first_idx 0
regs=40 stack=0 before 8: (b7) r9 = 0
regs=40 stack=0 before 7: (97) r6 %= 1
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=40 stack=0 before 5: (05) goto pc+0
regs=40 stack=0 before 4: (97) r6 %= 1025
regs=40 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
19: safe
frame 0: propagating r6
last_idx 9 first_idx 0
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=40 stack=0 before 5: (05) goto pc+0
regs=40 stack=0 before 4: (97) r6 %= 1025
regs=40 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
from 6 to 9: safe
verification time 110 usec
stack depth 4
processed 36 insns (limit 1000000) max_states_per_insn 0 total_states 3 peak_states 3 mark_read 2
The verifier considers this program as safe by mistakenly pruning unsafe
code paths. In the above func#0, code lines 0-10 are of interest. In line
0-3 registers r6 to r9 are initialized with known scalar values. In line 4
the register r6 is reset to an unknown scalar given the verifier does not
track modulo operations. Due to this, the verifier can also not determine
precisely which branches in line 6 and 9 are taken, therefore it needs to
explore them both.
As can be seen, the verifier starts with exploring the false/fall-through
paths first. The 'from 19 to 21' path has both r6=0 and r9=0 and the pointer
arithmetic on r0 += r6 is therefore considered safe. Given the arithmetic,
r6 is correctly marked for precision tracking where backtracking kicks in
where it walks back the current path all the way where r6 was set to 0 in
the fall-through branch.
Next, the pruning logics pops the path 'from 9 to 11' from the stack. Also
here, the state of the registers is the same, that is, r6=0 and r9=0, so
that at line 19 the path can be pruned as it is considered safe. It is
interesting to note that the conditional in line 9 turned r6 into a more
precise state, that is, in the fall-through path at the beginning of line
10, it is R6=scalar(umin=1), and in the branch-taken path (which is analyzed
here) at the beginning of line 11, r6 turned into a known const r6=0 as
r9=0 prior to that and therefore (unsigned) r6 <= 0 concludes that r6 must
be 0 (**):
[...] ; R6_w=scalar()
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
[...]
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
[...]
The next path is 'from 6 to 9'. The verifier considers the old and current
state equivalent, and therefore prunes the search incorrectly. Looking into
the two states which are being compared by the pruning logic at line 9, the
old state consists of R6_rwD=Pscalar() R9_rwD=0 R10=fp0 and the new state
consists of R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968)
R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0. While r6 had the reg->precise flag
correctly set in the old state, r9 did not. Both r6'es are considered as
equivalent given the old one is a superset of the current, more precise one,
however, r9's actual values (0 vs 0x80000000) mismatch. Given the old r9
did not have reg->precise flag set, the verifier does not consider the
register as contributing to the precision state of r6, and therefore it
considered both r9 states as equivalent. However, for this specific pruned
path (which is also the actual path taken at runtime), register r6 will be
0x400 and r9 0x80000000 when reaching line 21, thus oob-accessing the map.
The purpose of precision tracking is to initially mark registers (including
spilled ones) as imprecise to help verifier's pruning logic finding equivalent
states it can then prune if they don't contribute to the program's safety
aspects. For example, if registers are used for pointer arithmetic or to pass
constant length to a helper, then the verifier sets reg->precise flag and
backtracks the BPF program instruction sequence and chain of verifier states
to ensure that the given register or stack slot including their dependencies
are marked as precisely tracked scalar. This also includes any other registers
and slots that contribute to a tracked state of given registers/stack slot.
This backtracking relies on recorded jmp_history and is able to traverse
entire chain of parent states. This process ends only when all the necessary
registers/slots and their transitive dependencies are marked as precise.
The backtrack_insn() is called from the current instruction up to the first
instruction, and its purpose is to compute a bitmask of registers and stack
slots that need precision tracking in the parent's verifier state. For example,
if a current instruction is r6 = r7, then r6 needs precision after this
instruction and r7 needs precision before this instruction, that is, in the
parent state. Hence for the latter r7 is marked and r6 unmarked.
For the class of jmp/jmp32 instructions, backtrack_insn() today only looks
at call and exit instructions and for all other conditionals the masks
remain as-is. However, in the given situation register r6 has a dependency
on r9 (as described above in **), so also that one needs to be marked for
precision tracking. In other words, if an imprecise register influences a
precise one, then the imprecise register should also be marked precise.
Meaning, in the parent state both dest and src register need to be tracked
for precision and therefore the marking must be more conservative by setting
reg->precise flag for both. The precision propagation needs to cover both
for the conditional: if the src reg was marked but not the dst reg and vice
versa.
After the fix the program is correctly rejected:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r6 = 1024 ; R6_w=1024
1: (b7) r7 = 0 ; R7_w=0
2: (b7) r8 = 0 ; R8_w=0
3: (b7) r9 = -2147483648 ; R9_w=-2147483648
4: (97) r6 %= 1025 ; R6_w=scalar()
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff80000000; 0x7fffffff),u32_min=-2147483648) R9_w=-2147483648
7: (97) r6 %= 1 ; R6_w=scalar()
8: (b7) r9 = 0 ; R9=0
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
10: (b7) r6 = 0 ; R6_w=0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 9
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=0
22: (27) r6 *= 8192 ; R6_w=0
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 19
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
last_idx 18 first_idx 9
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
regs=40 stack=0 before 10: (b7) r6 = 0
25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
27: (95) exit
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1
frame 0: propagating r6
last_idx 19 first_idx 11
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
last_idx 9 first_idx 9
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
parent didn't have regs=240 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=P0 R10=fp0
last_idx 8 first_idx 0
regs=240 stack=0 before 8: (b7) r9 = 0
regs=40 stack=0 before 7: (97) r6 %= 1
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
19: safe
from 6 to 9: R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
9: (bd) if r6 <= r9 goto pc+1
last_idx 9 first_idx 0
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
last_idx 9 first_idx 0
regs=200 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
11: R6=scalar(umax=18446744071562067968) R9=-2147483648
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null(id=3,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0_w=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=scalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=scalar(umax=18014398507384832,var_off=(0x0; 0x3fffffffffffff))
22: (27) r6 *= 8192 ; R6_w=scalar(smax=9223372036854767616,umax=18446744073709543424,var_off=(0x0; 0xffffffffffffe000),s32_max=2147475456,u32_max=-8192)
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 21
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
parent didn't have regs=40 stack=0 marks: R0_rw=map_value(off=0,ks=4,vs=48,imm=0) R6_r=Pscalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
last_idx 19 first_idx 11
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
last_idx 9 first_idx 0
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
regs=240 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
math between map_value pointer and register with unbounded min value is not allowed
verification time 886 usec
stack depth 4
processed 49 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 2
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Reported-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reported-by: Meador Inge <meadori@google.com>
Reported-by: Simon Scannell <simonscannell@google.com>
Reported-by: Nenad Stojanovski <thenenadx@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reviewed-by: Meador Inge <meadori@google.com>
Reviewed-by: Simon Scannell <simonscannell@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7dee5d7747a69aa2be41f04c6a7ecfe3ac8cdf18 upstream.
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_dou8vec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side. For now,
proc_dou8vec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.
Fixes: cb9444130662 ("sysctl: add proc_dou8vec_minmax()")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 05c6257433b7212f07a7e53479a8ab038fc1666a upstream.
Attempting to get a crash dump out of a debug PREEMPT_RT kernel via an NMI
panic() doesn't work. The cause of that lies in the PREEMPT_RT definition
of mutex_trylock():
if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
return 0;
This prevents an nmi_panic() from executing the main body of
__crash_kexec() which does the actual kexec into the kdump kernel. The
warning and return are explained by:
6ce47fd961fa ("rtmutex: Warn if trylock is called from hard/softirq context")
[...]
The reasons for this are:
1) There is a potential deadlock in the slowpath
2) Another cpu which blocks on the rtmutex will boost the task
which allegedly locked the rtmutex, but that cannot work
because the hard/softirq context borrows the task context.
Furthermore, grabbing the lock isn't NMI safe, so do away with kexec_mutex
and replace it with an atomic variable. This is somewhat overzealous as
*some* callsites could keep using a mutex (e.g. the sysfs-facing ones
like crash_shrink_memory()), but this has the benefit of involving a
single unified lock and preventing any future NMI-related surprises.
Tested by triggering NMI panics via:
$ echo 1 > /proc/sys/kernel/panic_on_unrecovered_nmi
$ echo 1 > /proc/sys/kernel/unknown_nmi_panic
$ echo 1 > /proc/sys/kernel/panic
$ ipmitool power diag
Link: https://lkml.kernel.org/r/20220630223258.4144112-3-vschneid@redhat.com
Fixes: 6ce47fd961fa ("rtmutex: Warn if trylock is called from hard/softirq context")
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Juri Lelli <jlelli@redhat.com>
Cc: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Wen Yang <wenyang.linux@foxmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7bb5da0d490b2d836c5218f5186ee588d2145310 upstream.
Patch series "kexec, panic: Making crash_kexec() NMI safe", v4.
This patch (of 2):
Most acquistions of kexec_mutex are done via mutex_trylock() - those were
a direct "translation" from:
8c5a1cf0ad3a ("kexec: use a mutex for locking rather than xchg()")
there have however been two additions since then that use mutex_lock():
crash_get_memory_size() and crash_shrink_memory().
A later commit will replace said mutex with an atomic variable, and
locking operations will become atomic_cmpxchg(). Rather than having those
mutex_lock() become while (atomic_cmpxchg(&lock, 0, 1)), turn them into
trylocks that can return -EBUSY on acquisition failure.
This does halve the printable size of the crash kernel, but that's still
neighbouring 2G for 32bit kernels which should be ample enough.
Link: https://lkml.kernel.org/r/20220630223258.4144112-1-vschneid@redhat.com
Link: https://lkml.kernel.org/r/20220630223258.4144112-2-vschneid@redhat.com
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Juri Lelli <jlelli@redhat.com>
Cc: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Wen Yang <wenyang.linux@foxmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4b692e861619353ce069e547a67c8d0e32d9ef3d upstream.
Patch series "compat: remove compat_alloc_user_space", v5.
Going through compat_alloc_user_space() to convert indirect system call
arguments tends to add complexity compared to handling the native and
compat logic in the same code.
This patch (of 6):
The locking is the same between the native and compat version of
sys_kexec_load(), so it can be done in the common implementation to reduce
duplication.
Link: https://lkml.kernel.org/r/20210727144859.4150043-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20210727144859.4150043-2-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Co-developed-by: Eric Biederman <ebiederm@xmission.com>
Co-developed-by: Christoph Hellwig <hch@infradead.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Wen Yang <wenyang.linux@foxmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 91dcf1e8068e9a8823e419a7a34ff4341275fb70 ]
When local group is fully busy but its average load is above system load,
computing the imbalance will overflow and local group is not the best
target for pulling this load.
Fixes: 0b0695f2b34a ("sched/fair: Rework load_balance()")
Reported-by: Tingjia Cao <tjcao980311@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tingjia Cao <tjcao980311@gmail.com>
Link: https://lore.kernel.org/lkml/CABcWv9_DAhVBOq2=W=2ypKE9dKM5s2DvoV8-U0+GDwwuKZ89jQ@mail.gmail.com/T/
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 06354900787f25bf5be3c07a68e3cdbc5bf0fa69 ]
In calculate_imbalance function, when the value of local->avg_load is
greater than or equal to busiest->avg_load, the calculated sds->avg_load is
not used. So this calculation can be placed in a more appropriate position.
Signed-off-by: zgpeng <zgpeng@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Samuel Liao <samuelliao@tencent.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/1649239025-10010-1-git-send-email-zgpeng@tencent.com
Stable-dep-of: 91dcf1e8068e ("sched/fair: Fix imbalance overflow")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ba9182a89626d5f83c2ee4594f55cb9c1e60f0e2 upstream.
After a successful cpuset_can_attach() call which increments the
attach_in_progress flag, either cpuset_cancel_attach() or cpuset_attach()
will be called later. In cpuset_attach(), tasks in cpuset_attach_wq,
if present, will be woken up at the end. That is not the case in
cpuset_cancel_attach(). So missed wakeup is possible if the attach
operation is somehow cancelled. Fix that by doing the wakeup in
cpuset_cancel_attach() as well.
Fixes: e44193d39e8d ("cpuset: let hotplug propagation work wait for task attaching")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: stable@vger.kernel.org # v3.11+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cb9444130662c6c13022579c861098f212db2562 ]
Networking has many sysctls that could fit in one u8.
This patch adds proc_dou8vec_minmax() for this purpose.
Note that the .extra1 and .extra2 fields are pointing
to integers, because it makes conversions easier.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Stable-dep-of: dc5110c2d959 ("tcp: restrict net.ipv4.tcp_app_win")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6455b6163d8c680366663cdb8c679514d55fc30c upstream.
When user reads file 'trace_pipe', kernel keeps printing following logs
that warn at "cpu_buffer->reader_page->read > rb_page_size(reader)" in
rb_get_reader_page(). It just looks like there's an infinite loop in
tracing_read_pipe(). This problem occurs several times on arm64 platform
when testing v5.10 and below.
Call trace:
rb_get_reader_page+0x248/0x1300
rb_buffer_peek+0x34/0x160
ring_buffer_peek+0xbc/0x224
peek_next_entry+0x98/0xbc
__find_next_entry+0xc4/0x1c0
trace_find_next_entry_inc+0x30/0x94
tracing_read_pipe+0x198/0x304
vfs_read+0xb4/0x1e0
ksys_read+0x74/0x100
__arm64_sys_read+0x24/0x30
el0_svc_common.constprop.0+0x7c/0x1bc
do_el0_svc+0x2c/0x94
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb4
el0_sync+0x160/0x180
Then I dump the vmcore and look into the problematic per_cpu ring_buffer,
I found that tail_page/commit_page/reader_page are on the same page while
reader_page->read is obviously abnormal:
tail_page == commit_page == reader_page == {
.write = 0x100d20,
.read = 0x8f9f4805, // Far greater than 0xd20, obviously abnormal!!!
.entries = 0x10004c,
.real_end = 0x0,
.page = {
.time_stamp = 0x857257416af0,
.commit = 0xd20, // This page hasn't been full filled.
// .data[0...0xd20] seems normal.
}
}
The root cause is most likely the race that reader and writer are on the
same page while reader saw an event that not fully committed by writer.
To fix this, add memory barriers to make sure the reader can see the
content of what is committed. Since commit a0fcaaed0c46 ("ring-buffer: Fix
race between reset page and reading page") has added the read barrier in
rb_get_reader_page(), here we just need to add the write barrier.
Link: https://lore.kernel.org/linux-trace-kernel/20230325021247.2923907-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Fixes: 77ae365eca89 ("ring-buffer: make lockless")
Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2a2d8c51defb446e8d89a83f42f8e5cd529111e9 upstream.
Syzkaller report a WARNING: "WARN_ON(!direct)" in modify_ftrace_direct().
Root cause is 'direct->addr' was changed from 'old_addr' to 'new_addr' but
not restored if error happened on calling ftrace_modify_direct_caller().
Then it can no longer find 'direct' by that 'old_addr'.
To fix it, restore 'direct->addr' to 'old_addr' explicitly in error path.
Link: https://lore.kernel.org/linux-trace-kernel/20230330025223.1046087-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: <ast@kernel.org>
Cc: <daniel@iogearbox.net>
Fixes: 8a141dd7f706 ("ftrace: Fix modify_ftrace_direct.")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 24d3ae2f37d8bc3c14b31d353c5d27baf582b6a6 ]
The same task check in perf_event_set_output has some potential issues
for some usages.
For the current perf code, there is a problem if using of
perf_event_open() to have multiple samples getting into the same mmap’d
memory when they are both attached to the same process.
https://lore.kernel.org/all/92645262-D319-4068-9C44-2409EF44888E@gmail.com/
Because the event->ctx is not ready when the perf_event_set_output() is
invoked in the perf_event_open().
Besides the above issue, before the commit bd2756811766 ("perf: Rewrite
core context handling"), perf record can errors out when sampling with
a hardware event and a software event as below.
$ perf record -e cycles,dummy --per-thread ls
failed to mmap with 22 (Invalid argument)
That's because that prior to the commit a hardware event and a software
event are from different task context.
The problem should be a long time issue since commit c3f00c70276d
("perk: Separate find_get_context() from event initialization").
The task struct is stored in the event->hw.target for each per-thread
event. It is a more reliable way to determine whether two events are
attached to the same task.
The event->hw.target was also introduced several years ago by the
commit 50f16a8bf9d7 ("perf: Remove type specific target pointers"). It
can not only be used to fix the issue with the current code, but also
back port to fix the issues with an older kernel.
Note: The event->hw.target was introduced later than commit
c3f00c70276d. The patch may cannot be applied between the commit
c3f00c70276d and commit 50f16a8bf9d7. Anybody that wants to back-port
this at that period may have to find other solutions.
Fixes: c3f00c70276d ("perf: Separate find_get_context() from event initialization")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Zhengjun Xing <zhengjun.xing@linux.intel.com>
Link: https://lkml.kernel.org/r/20230322202449.512091-1-kan.liang@linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bc4f359b3b607daac0290d0038561237a86b38cb ]
Overwriting the error code with the deletion result may cause the
function to return 0 despite encountering an error. Commit b111545d26c0
("tracing: Remove the useless value assignment in
test_create_synth_event()") solves a similar issue by
returning the original error code, so this patch does the same.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Link: https://lore.kernel.org/linux-trace-kernel/20230131075818.5322-1-aagusev@ispras.ru
Signed-off-by: Anton Gusev <aagusev@ispras.ru>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6015b1aca1a233379625385feb01dd014aca60b5 ]
The getaffinity() system call uses 'cpumask_size()' to decide how big
the CPU mask is - so far so good. It is indeed the allocation size of a
cpumask.
But the code also assumes that the whole allocation is initialized
without actually doing so itself. That's wrong, because we might have
fixed-size allocations (making copying and clearing more efficient), but
not all of it is then necessarily used if 'nr_cpu_ids' is smaller.
Having checked other users of 'cpumask_size()', they all seem to be ok,
either using it purely for the allocation size, or explicitly zeroing
the cpumask before using the size in bytes to copy it.
See for example the ublk_ctrl_get_queue_affinity() function that uses
the proper 'zalloc_cpumask_var()' to make sure that the whole mask is
cleared, whether the storage is on the stack or if it was an external
allocation.
Fix this by just zeroing the allocation before using it. Do the same
for the compat version of sched_getaffinity(), which had the same logic.
Also, for consistency, make sched_getaffinity() use 'cpumask_bits()' to
access the bits. For a cpumask_var_t, it ends up being a pointer to the
same data either way, but it's just a good idea to treat it like you
would a 'cpumask_t'. The compat case already did that.
Reported-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/lkml/7d026744-6bd6-6827-0471-b5e8eae0be3f@arm.com/
Cc: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5eb39cde1e2487ba5ec1802dc5e58a77e700d99e ]
Nathan reported that when building with GNU as and a version of clang that
defaults to DWARF5, the assembler will complain with:
Error: non-constant .uleb128 is not supported
This is because `-g` defaults to the compiler debug info default. If the
assembler does not support some of the directives used, the above errors
occur. To fix, remove the explicit passing of `-g`.
All the test wants is that stack traces print valid function names, and
debug info is not required for that. (I currently cannot recall why I
added the explicit `-g`.)
Link: https://lkml.kernel.org/r/20230316224705.709984-2-elver@google.com
Fixes: 1fe84fd4a402 ("kcsan: Add test suite")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6fcd4267a840d0536b8e5334ad5f31e4105fce85 ]
Building kcsan_test with structleak plugin enabled makes the stack frame
size to grow.
kernel/kcsan/kcsan_test.c:704:1: error: the frame size of 3296 bytes is larger than 2048 bytes [-Werror=frame-larger-than=]
Turn off the structleak plugin checks for kcsan_test.
Link: https://lkml.kernel.org/r/20221128104358.2660634-1-anders.roxell@linaro.org
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Marco Elver <elver@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: David Gow <davidgow@google.com>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 5eb39cde1e24 ("kcsan: avoid passing -g for test")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a53ce18cacb477dd0513c607f187d16f0fa96f71 upstream.
Commit 829c1651e9c4 ("sched/fair: sanitize vruntime of entity being placed")
fixes an overflowing bug, but ignore a case that se->exec_start is reset
after a migration.
For fixing this case, we delay the reset of se->exec_start after
placing the entity which se->exec_start to detect long sleeping task.
In order to take into account a possible divergence between the clock_task
of 2 rqs, we increase the threshold to around 104 days.
Fixes: 829c1651e9c4 ("sched/fair: sanitize vruntime of entity being placed")
Originally-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Link: https://lore.kernel.org/r/20230317160810.107988-1-vincent.guittot@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>