IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 882213990d32fd224340a4533f6318dd152be4b2 upstream.
Since commit 9e2369c06c8a18 ("xen: add helpers to allocate unpopulated
memory") foreign mappings are using guest physical addresses allocated
via ZONE_DEVICE functionality.
This will result in problems for the case of no balloon memory hotplug
being configured, as the p2m list will only cover the initial memory
size of the domain. Any ZONE_DEVICE allocated address will be outside
the p2m range and thus a mapping can't be established with that memory
address.
Fix that by extending the p2m size for that case. At the same time add
a check for a to be created mapping to be within the p2m limits in
order to detect errors early.
While changing a comment, remove some 32-bit leftovers.
This is XSA-369.
Fixes: 9e2369c06c8a18 ("xen: add helpers to allocate unpopulated memory")
Cc: <stable@vger.kernel.org> # 5.9
Reported-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8310b77b48c5558c140e7a57a702e7819e62f04e upstream.
Bailing immediately from set_foreign_p2m_mapping() upon a p2m updating
error leaves the full batch in an ambiguous state as far as the caller
is concerned. Instead flags respective slots as bad, unmapping what
was mapped there right away.
HYPERVISOR_grant_table_op()'s return value and the individual unmap
slots' status fields get used only for a one-time - there's not much we
can do in case of a failure.
Note that there's no GNTST_enomem or alike, so GNTST_general_error gets
used.
The map ops' handle fields get overwritten just to be on the safe side.
This is part of XSA-367.
Cc: <stable@vger.kernel.org>
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/96cccf5d-e756-5f53-b91a-ea269bfb9be0@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b3c3361fe325074d4144c29d46daae4fc5a268d5 ]
Cascade Lake Xeon parts have the same model number as Skylake Xeon
parts, so they are tagged with the intel_pebs_isolation
quirk. However, as with Skylake Xeon H0 stepping parts, the PEBS
isolation issue is fixed in all microcode versions.
Add the Cascade Lake Xeon steppings (5, 6, and 7) to the
isolation_ucodes[] table so that these parts benefit from Andi's
optimization in commit 9b545c04abd4f ("perf/x86/kvm: Avoid unnecessary
work in guest filtering").
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210205191324.2889006-1-jmattson@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4b2d8ca9208be636b30e924b1cbcb267b0740c93 ]
On this system the M.2 PCIe WiFi card isn't detected after reboot, only
after cold boot. reboot=pci fixes this behavior. In [0] the same issue
is described, although on another system and with another Intel WiFi
card. In case it's relevant, both systems have Celeron CPUs.
Add a PCI reboot quirk on affected systems until a more generic fix is
available.
[0] https://bugzilla.kernel.org/show_bug.cgi?id=202399
[ bp: Massage commit message. ]
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/1524eafd-f89c-cfa4-ed70-0bde9e45eec9@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit bb73d07148c405c293e576b40af37737faf23a6a upstream.
This is similar to commit
b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")
but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.
R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.
R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.
On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).
On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.
clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.
Further info for the more interested:
https://github.com/ClangBuiltLinux/linux/issues/1210https://sourceware.org/bugzilla/show_bug.cgi?id=27169a084c0388e [1]
[ bp: Massage commit message. ]
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a04aead144fd938c2d9869eb187e5b9ea0009bae upstream.
In case of npt=0 on host, nSVM needs the same .inject_page_fault tweak
as VMX has, to make sure that shadow mmu faults are injected as vmexits.
It is not clear why this is needed at all, but for now keep the same
code as VMX and we'll fix it for both.
Based on a patch by Maxim Levitsky <mlevitsk@redhat.com>.
Fixes: 7c86663b68ba ("KVM: nSVM: inject exceptions via svm_check_nested_events")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3d2fc4c082448e9c05792f9b2a11c1d5db408b85 upstream.
The memtype seq_file iterator allocates a buffer in the ->start and ->next
functions and frees it in the ->show function. The preferred handling for
such resources is to free them in the subsequent ->next or ->stop function
call.
Since Commit 1f4aace60b0e ("fs/seq_file.c: simplify seq_file iteration
code and interface") there is no guarantee that ->show will be called
after ->next, so this function can now leak memory.
So move the freeing of the buffer to ->next and ->stop.
Link: https://lkml.kernel.org/r/161248539022.21478.13874455485854739066.stgit@noble1
Fixes: 1f4aace60b0e ("fs/seq_file.c: simplify seq_file iteration code and interface")
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Xin Long <lucien.xin@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vlad Yasevich <vyasevich@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 15f720aabe71a5662c4198b22532d95bbeec80ef upstream.
Embracing a callout into instrumentation_begin() / instrumentation_begin()
does not really make sense. Make the latter instrumentation_end().
Fixes: 2f6474e4636b ("x86/entry: Switch XEN/PV hypercall entry to IDTENTRY")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210210002512.106502464@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 35f1c89b0cce247bf0213df243ed902989b1dcda upstream.
The recent rework of probe_kernel_address() and its conversion to
get_kernel_nofault() inadvertently broke is_prefetch(). Before this
change, probe_kernel_address() was used as a sloppy "read user or
kernel memory" helper, but it doesn't do that any more. The new
get_kernel_nofault() reads *kernel* memory only, which completely broke
is_prefetch() for user access.
Adjust the code to the correct accessor based on access mode. The
manual address bounds check is no longer necessary, since the accessor
helpers (get_user() / get_kernel_nofault()) do the right thing all by
themselves. As a bonus, by using the correct accessor, the open-coded
address bounds check is not needed anymore.
[ bp: Massage commit message. ]
Fixes: eab0c6089b68 ("maccess: unify the probe kernel arch hooks")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/b91f7f92f3367d2d3a88eec3b09c6aab1b2dc8ef.1612924255.git.luto@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ed72736183c45a413a8d6974dd04be90f514cb6b upstream.
Force all CPUs to do VMXOFF (via NMI shootdown) during an emergency
reboot if VMX is _supported_, as VMX being off on the current CPU does
not prevent other CPUs from being in VMX root (post-VMXON). This fixes
a bug where a crash/panic reboot could leave other CPUs in VMX root and
prevent them from being woken via INIT-SIPI-SIPI in the new kernel.
Fixes: d176720d34c7 ("x86: disable VMX on all CPUs on reboot")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David P. Reed <dpreed@deepplum.com>
[sean: reworked changelog and further tweaked comment]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201231002702.2223707-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aec511ad153556640fb1de38bfe00c69464f997f upstream.
Silently ignore all faults on VMXOFF in the reboot flows as such faults
are all but guaranteed to be due to the CPU not being in VMX root.
Because (a) VMXOFF may be executed in NMI context, e.g. after VMXOFF but
before CR4.VMXE is cleared, (b) there's no way to query the CPU's VMX
state without faulting, and (c) the whole point is to get out of VMX
root, eating faults is the simplest way to achieve the desired behaior.
Technically, VMXOFF can fault (or fail) for other reasons, but all other
fault and failure scenarios are mode related, i.e. the kernel would have
to magically end up in RM, V86, compat mode, at CPL>0, or running with
the SMI Transfer Monitor active. The kernel is beyond hosed if any of
those scenarios are encountered; trying to do something fancy in the
error path to handle them cleanly is pointless.
Fixes: 1e9931146c74 ("x86: asm/virtext.h: add cpu_vmxoff() inline function")
Reported-by: David P. Reed <dpreed@deepplum.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201231002702.2223707-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a13ed1d15b07a04b1f74b2df61ff7a5e47f45dd8 upstream.
The GCM mode driver uses 16 byte aligned buffers on the stack to pass
the IV to the asm helpers, but unfortunately, the x86 port does not
guarantee that the stack pointer is 16 byte aligned upon entry in the
first place. Since the compiler is not aware of this, it will not emit
the additional stack realignment sequence that is needed, and so the
alignment is not guaranteed to be more than 8 bytes.
So instead, allocate some padding on the stack, and realign the IV
pointer by hand.
Cc: <stable@vger.kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c060c72ffeb448fbb5864faa1f672ebfe14dd25f ]
Zap SPTEs that are backed by ZONE_DEVICE pages when zappings SPTEs to
rebuild them as huge pages in the TDP MMU. ZONE_DEVICE huge pages are
managed differently than "regular" pages and are not compound pages.
Likewise, PageTransCompoundMap() will not detect HugeTLB, so switch
to PageCompound().
This matches the similar check in kvm_mmu_zap_collapsible_spte.
Cc: Ben Gardon <bgardon@google.com>
Fixes: 14881998566d ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0a8ed2eaac102c746d8d114f2787f06cb3e55dfb ]
Intercept INVPCID if it's disabled in the guest, even when using NPT,
as KVM needs to inject #UD in this case.
Fixes: 4407a797e941 ("KVM: SVM: Enable INVPCID feature on AMD")
Cc: Babu Moger <babu.moger@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210212003411.1102677-2-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2644312052d54e2e7543c7d186899a36ed22f0bf ]
Restore the full 64-bit values of DR6 and DR7 when emulating RSM on
x86-64, as defined by both Intel's SDM and AMD's APM.
Note, bits 63:32 of DR6 and DR7 are reserved, so this is a glorified nop
unless the SMM handler is poking into SMRAM, which it most definitely
shouldn't be doing since both Intel and AMD list the DR6 and DR7 fields
as read-only.
Fixes: 660a5d517aaa ("KVM: x86: save/load state on SMM switch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205012458.3872687-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2732be90235347a3be4babdc9f88a1ea93970b0b ]
Don't clear the SME C-bit when reading a guest PDPTR, as the GPA (CR3) is
in the guest domain.
Barring a bizarre paravirtual use case, this is likely a benign bug. SME
is not emulated by KVM, loading SEV guest PDPTRs is doomed as KVM can't
use the correct key to read guest memory, and setting guest MAXPHYADDR
higher than the host, i.e. overlapping the C-bit, would cause faults in
the guest.
Note, for SEV guests, stripping the C-bit is technically aligned with CPU
behavior, but for KVM it's the greater of two evils. Because KVM doesn't
have access to the guest's encryption key, ignoring the C-bit would at
best result in KVM reading garbage. By keeping the C-bit, KVM will
fail its read (unless userspace creates a memslot with the C-bit set).
The guest will still undoubtedly die, as KVM will use '0' for the PDPTR
value, but that's preferable to interpreting encrypted data as a PDPTR.
Fixes: d0ec49d4de90 ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 02a16aa13574c8526beadfc9ae8cc9b66315fa2d ]
Commit
a7e1f67ed29f ("x86/msr: Filter MSR writes")
introduced a module parameter to disable writing to the MSR device file
and tainted the kernel upon writing. As MSR registers can be written by
the X86_IOC_WRMSR_REGS ioctl too, the same filtering and tainting should
be applied to the ioctl as well.
[ bp: Massage commit message and space out statements. ]
Fixes: a7e1f67ed29f ("x86/msr: Filter MSR writes")
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210127122456.13939-1-misono.tomohiro@jp.fujitsu.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8fc517267fb28576dfca2380cc2497a2454b8fae upstream.
Walk the list of MMU pages in reverse in kvm_mmu_zap_oldest_mmu_pages().
The list is FIFO, meaning new pages are inserted at the head and thus
the oldest pages are at the tail. Using a "forward" iterator causes KVM
to zap MMU pages that were just added, which obliterates guest
performance once the max number of shadow MMU pages is reached.
Fixes: 6b82ef2c9cf1 ("KVM: x86/mmu: Batch zap MMU pages when recycling oldest pages")
Reported-by: Zdenek Kaspar <zkaspar82@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210113205030.3481307-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b512e1b077e5ccdbd6e225b15d934ab12453b70a upstream.
We should not set up further state if either mapping failed; paying
attention to just the user mapping's status isn't enough.
Also use GNTST_okay instead of implying its value (zero).
This is part of XSA-361.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: stable@vger.kernel.org
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a35f2ef3b7376bfd0a57f7844bd7454389aae1fc upstream.
Its sibling (set_foreign_p2m_mapping()) as well as the sibling of its
only caller (gnttab_map_refs()) don't clean up after themselves in case
of error. Higher level callers are expected to do so. However, in order
for that to really clean up any partially set up state, the operation
should not terminate upon encountering an entry in unexpected state. It
is particularly relevant to notice here that set_foreign_p2m_mapping()
would skip setting up a p2m entry if its grant mapping failed, but it
would continue to set up further p2m entries as long as their mappings
succeeded.
Arguably down the road set_foreign_p2m_mapping() may want its page state
related WARN_ON() also converted to an error return.
This is part of XSA-361.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: stable@vger.kernel.org
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d11a1d08a082a7dc0ada423d2b2e26e9b6f2525c upstream.
If the maximum performance level taken for computing the
arch_max_freq_ratio value used in the x86 scale-invariance code is
higher than the one corresponding to the cpuinfo.max_freq value
coming from the acpi_cpufreq driver, the scale-invariant utilization
falls below 100% even if the CPU runs at cpuinfo.max_freq or slightly
faster, which causes the schedutil governor to select a frequency
below cpuinfo.max_freq. That frequency corresponds to a frequency
table entry below the maximum performance level necessary to get to
the "boost" range of CPU frequencies which prevents "boost"
frequencies from being used in some workloads.
While this issue is related to scale-invariance, it may be amplified
by commit db865272d9c4 ("cpufreq: Avoid configuring old governors as
default with intel_pstate") from the 5.10 development cycle which
made it extremely easy to default to schedutil even if the preferred
driver is acpi_cpufreq as long as intel_pstate is built too, because
the mere presence of the latter effectively removes the ondemand
governor from the defaults. Distro kernels are likely to include
both intel_pstate and acpi_cpufreq on x86, so their users who cannot
use intel_pstate or choose to use acpi_cpufreq may easily be
affectecd by this issue.
If CPPC is available, it can be used to address this issue by
extending the frequency tables created by acpi_cpufreq to cover the
entire available frequency range (including "boost" frequencies) for
each CPU, but if CPPC is not there, acpi_cpufreq has no idea what
the maximum "boost" frequency is and the frequency tables created by
it cannot be extended in a meaningful way, so in that case make it
ask the arch scale-invariance code to to use the "nominal" performance
level for CPU utilization scaling in order to avoid the issue at hand.
Fixes: db865272d9c4 ("cpufreq: Avoid configuring old governors as default with intel_pstate")
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 70245f86c109e0eafb92ea9653184c0e44b4b35c upstream.
Invoking x86_init.irqs.create_pci_msi_domain() before
x86_init.pci.arch_init() breaks XEN PV.
The XEN_PV specific pci.arch_init() function overrides the default
create_pci_msi_domain() which is obviously too late.
As a consequence the XEN PV PCI/MSI allocation goes through the native
path which runs out of vectors and causes malfunction.
Invoke it after x86_init.pci.arch_init().
Fixes: 6b15ffa07dc3 ("x86/irq: Initialize PCI/MSI domain at PCI init time")
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87pn18djte.fsf@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 256b92af784d5043eeb7d559b6d5963dcc2ecb10 ]
Commit
20bf2b378729 ("x86/build: Disable CET instrumentation in the kernel")
disabled CET instrumentation which gets added by default by the Ubuntu
gcc9 and 10 by default, but did that only for 64-bit builds. It would
still fail when building a 32-bit target. So disable CET for all x86
builds.
Fixes: 20bf2b378729 ("x86/build: Disable CET instrumentation in the kernel")
Reported-by: AC <achirvasub@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: AC <achirvasub@gmail.com>
Link: https://lkml.kernel.org/r/YCCIgMHkzh/xT4ex@arch-chirva.localdomain
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c1c35cf78bfab31b8cb455259524395c9e4c7cd6 ]
If not in long mode, the low bits of CR3 are reserved but not enforced to
be zero, so remove those checks. If in long mode, however, the MBZ bits
extend down to the highest physical address bit of the guest, excluding
the encryption bit.
Make the checks consistent with the above, and match them between
nested_vmcb_checks and KVM_SET_SREGS.
Cc: stable@vger.kernel.org
Fixes: 761e41693465 ("KVM: nSVM: Check that MBZ bits in CR3 and CR4 are not set on vmrun of nested guests")
Fixes: a780a3ea6282 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 816ef8d7a2c4182e19bc06ab65751cb9e3951e94 ]
With CONFIG_X86_5LEVEL, CONFIG_UBSAN and CONFIG_UBSAN_UNSIGNED_OVERFLOW
enabled, clang fails the build with
x86_64-linux-ld: arch/x86/platform/efi/efi_64.o: in function `efi_sync_low_kernel_mappings':
efi_64.c:(.text+0x22c): undefined reference to `__compiletime_assert_354'
which happens due to -fsanitize=unsigned-integer-overflow being enabled:
-fsanitize=unsigned-integer-overflow: Unsigned integer overflow, where
the result of an unsigned integer computation cannot be represented
in its type. Unlike signed integer overflow, this is not undefined
behavior, but it is often unintentional. This sanitizer does not check
for lossy implicit conversions performed before such a computation
(see -fsanitize=implicit-conversion).
and that fires when the (intentional) EFI_VA_START/END defines overflow
an unsigned long, leading to the assertion expressions not getting
optimized away (on GCC they do)...
However, those checks are superfluous: the runtime services mapping
code already makes sure the ranges don't overshoot EFI_VA_END as the
EFI mapping range is hardcoded. On each runtime services call, it is
switched to the EFI-specific PGD and even if mappings manage to escape
that last PGD, this won't remain unnoticed for long.
So rip them out.
See https://github.com/ClangBuiltLinux/linux/issues/256 for more info.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: http://lkml.kernel.org/r/20210107223424.4135538-1-arnd@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8acf417805a5f5c69e9ff66f14cab022c2755161 ]
Add Alder Lake mobile processor to CPU list to enumerate and enable the
split lock feature.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20210201190007.4031869-1-fenghua.yu@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 25a068b8e9a4eb193d755d58efcb3c98928636e0 upstream.
Jan Kiszka reported that the x2apic_wrmsr_fence() function uses a plain
MFENCE while the Intel SDM (10.12.3 MSR Access in x2APIC Mode) calls for
MFENCE; LFENCE.
Short summary: we have special MSRs that have weaker ordering than all
the rest. Add fencing consistent with current SDM recommendations.
This is not known to cause any issues in practice, only in theory.
Longer story below:
The reason the kernel uses a different semantic is that the SDM changed
(roughly in late 2017). The SDM changed because folks at Intel were
auditing all of the recommended fences in the SDM and realized that the
x2apic fences were insufficient.
Why was the pain MFENCE judged insufficient?
WRMSR itself is normally a serializing instruction. No fences are needed
because the instruction itself serializes everything.
But, there are explicit exceptions for this serializing behavior written
into the WRMSR instruction documentation for two classes of MSRs:
IA32_TSC_DEADLINE and the X2APIC MSRs.
Back to x2apic: WRMSR is *not* serializing in this specific case.
But why is MFENCE insufficient? MFENCE makes writes visible, but
only affects load/store instructions. WRMSR is unfortunately not a
load/store instruction and is unaffected by MFENCE. This means that a
non-serializing WRMSR could be reordered by the CPU to execute before
the writes made visible by the MFENCE have even occurred in the first
place.
This means that an x2apic IPI could theoretically be triggered before
there is any (visible) data to process.
Does this affect anything in practice? I honestly don't know. It seems
quite possible that by the time an interrupt gets to consume the (not
yet) MFENCE'd data, it has become visible, mostly by accident.
To be safe, add the SDM-recommended fences for all x2apic WRMSRs.
This also leaves open the question of the _other_ weakly-ordered WRMSR:
MSR_IA32_TSC_DEADLINE. While it has the same ordering architecture as
the x2APIC MSRs, it seems substantially less likely to be a problem in
practice. While writes to the in-memory Local Vector Table (LVT) might
theoretically be reordered with respect to a weakly-ordered WRMSR like
TSC_DEADLINE, the SDM has this to say:
In x2APIC mode, the WRMSR instruction is used to write to the LVT
entry. The processor ensures the ordering of this write and any
subsequent WRMSR to the deadline; no fencing is required.
But, that might still leave xAPIC exposed. The safest thing to do for
now is to add the extra, recommended LFENCE.
[ bp: Massage commit message, fix typos, drop accidentally added
newline to tools/arch/x86/include/asm/barrier.h. ]
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200305174708.F77040DD@viggo.jf.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3943abf2dbfae9ea4d2da05c1db569a0603f76da upstream.
local_db_save() is called at the start of exc_debug_kernel(), reads DR7 and
disables breakpoints to prevent recursion.
When running in a guest (X86_FEATURE_HYPERVISOR), local_db_save() reads the
per-cpu variable cpu_dr7 to check whether a breakpoint is active or not
before it accesses DR7.
A data breakpoint on cpu_dr7 therefore results in infinite #DB recursion.
Disallow data breakpoints on cpu_dr7 to prevent that.
Fixes: 84b6a3491567a("x86/entry: Optimize local_db_save() for virt")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210204152708.21308-2-jiangshanlai@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c4bed4b96918ff1d062ee81fdae4d207da4fa9b0 upstream.
When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU GSBASE value
via __per_cpu_offset or pcpu_unit_offsets.
When a data breakpoint is set on __per_cpu_offset[cpu] (read-write
operation), the specific CPU will be stuck in an infinite #DB loop.
RCU will try to send an NMI to the specific CPU, but it is not working
either since NMI also relies on paranoid_entry(). Which means it's
undebuggable.
Fixes: eaad981291ee3("x86/entry/64: Introduce the FIND_PERCPU_BASE macro")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210204152708.21308-1-jiangshanlai@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9ad22e165994ccb64d85b68499eaef97342c175b upstream.
Tom reported that one of the GDB test-cases failed, and Boris bisected
it to commit:
d53d9bc0cf78 ("x86/debug: Change thread.debugreg6 to thread.virtual_dr6")
The debugging session led us to commit:
6c0aca288e72 ("x86: Ignore trap bits on single step exceptions")
It turns out that TF and data breakpoints are both traps and will be
merged, while instruction breakpoints are faults and will not be merged.
This means 6c0aca288e72 is wrong, only TF and instruction breakpoints
need to be excluded while TF and data breakpoints can be merged.
[ bp: Massage commit message. ]
Fixes: d53d9bc0cf78 ("x86/debug: Change thread.debugreg6 to thread.virtual_dr6")
Fixes: 6c0aca288e72 ("x86: Ignore trap bits on single step exceptions")
Reported-by: Tom de Vries <tdevries@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/YBMAbQGACujjfz%2Bi@hirez.programming.kicks-ass.net
Link: https://lkml.kernel.org/r/20210128211627.GB4348@worktop.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 20bf2b378729c4a0366a53e2018a0b70ace94bcd upstream.
With retpolines disabled, some configurations of GCC, and specifically
the GCC versions 9 and 10 in Ubuntu will add Intel CET instrumentation
to the kernel by default. That breaks certain tracing scenarios by
adding a superfluous ENDBR64 instruction before the fentry call, for
functions which can be called indirectly.
CET instrumentation isn't currently necessary in the kernel, as CET is
only supported in user space. Disable it unconditionally and move it
into the x86's Makefile as CET/CFI... enablement should be a per-arch
decision anyway.
[ bp: Massage and extend commit message. ]
Fixes: 29be86d7f9cb ("kbuild: add -fcf-protection=none when using retpoline flags")
Reported-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Cc: <stable@vger.kernel.org>
Cc: Seth Forshee <seth.forshee@canonical.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Link: https://lkml.kernel.org/r/20210128215219.6kct3h2eiustncws@treble
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 031b91a5fe6f1ce61b7617614ddde9ed61e252be upstream.
Set cr3_lm_rsvd_bits, which is effectively an invalid GPA mask, at vCPU
reset. The reserved bits check needs to be done even if userspace never
configures the guest's CPUID model.
Cc: stable@vger.kernel.org
Fixes: 0107973a80ad ("KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 943dea8af21bd896e0d6c30ea221203fb3cd3265 upstream.
Set the emulator context to PROT64 if SYSENTER transitions from 32-bit
userspace (compat mode) to a 64-bit kernel, otherwise the RIP update at
the end of x86_emulate_insn() will incorrectly truncate the new RIP.
Note, this bug is mostly limited to running an Intel virtual CPU model on
an AMD physical CPU, as other combinations of virtual and physical CPUs
do not trigger full emulation. On Intel CPUs, SYSENTER in compatibility
mode is legal, and unconditionally transitions to 64-bit mode. On AMD
CPUs, SYSENTER is illegal in compatibility mode and #UDs. If the vCPU is
AMD, KVM injects a #UD on SYSENTER in compat mode. If the pCPU is Intel,
SYSENTER will execute natively and not trigger #UD->VM-Exit (ignoring
guest TLB shenanigans).
Fixes: fede8076aab4 ("KVM: x86: handle wrap around 32-bit address space")
Cc: stable@vger.kernel.org
Signed-off-by: Jonny Barker <jonny@jonnybarker.com>
[sean: wrote changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210202165546.2390296-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 181f494888d5b178ffda41bed965f187d5e5c432 upstream.
Recent commit 255cbecfe0 modified struct kvm_vcpu_arch to make
'cpuid_entries' a pointer to an array of kvm_cpuid_entry2 entries
rather than embedding the array in the struct. KVM_SET_CPUID and
KVM_SET_CPUID2 were updated accordingly, but KVM_GET_CPUID2 was missed.
As a result, KVM_GET_CPUID2 currently returns random fields from struct
kvm_vcpu_arch to userspace rather than the expected CPUID values. Fix
this by treating 'cpuid_entries' as a pointer when copying its
contents to userspace buffer.
Fixes: 255cbecfe0c9 ("KVM: x86: allocate vcpu->arch.cpuid_entries dynamically")
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Michael Roth <michael.roth@amd.com.com>
Message-Id: <20210128024451.1816770-1-michael.roth@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7131636e7ea5b50ca910f8953f6365ef2d1f741c upstream.
Userspace that does not know about KVM_GET_MSR_FEATURE_INDEX_LIST
will generally use the default value for MSR_IA32_ARCH_CAPABILITIES.
When this happens and the host has tsx=on, it is possible to end up with
virtual machines that have HLE and RTM disabled, but TSX_CTRL available.
If the fleet is then switched to tsx=off, kvm_get_arch_capabilities()
will clear the ARCH_CAP_TSX_CTRL_MSR bit and it will not be possible to
use the tsx=off hosts as migration destinations, even though the guests
do not have TSX enabled.
To allow this migration, allow guests to write to their TSX_CTRL MSR,
while keeping the host MSR unchanged for the entire life of the guests.
This ensures that TSX remains disabled and also saves MSR reads and
writes, and it's okay to do because with tsx=off we know that guests will
not have the HLE and RTM features in their CPUID. (If userspace sets
bogus CPUID data, we do not expect HLE and RTM to work in guests anyway).
Cc: stable@vger.kernel.org
Fixes: cbbaa2727aa3 ("KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 87aa9ec939ec7277b730786e19c161c9194cc8ca upstream.
There is a bug in the TDP MMU function to zap SPTEs which could be
replaced with a larger mapping which prevents the function from doing
anything. Fix this by correctly zapping the last level SPTEs.
Cc: stable@vger.kernel.org
Fixes: 14881998566d ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ccd85d90ce092bdb047a7f6580f3955393833b22 upstream.
Don't let KVM load when running as an SEV guest, regardless of what
CPUID says. Memory is encrypted with a key that is not accessible to
the host (L0), thus it's impossible for L0 to emulate SVM, e.g. it'll
see garbage when reading the VMCB.
Technically, KVM could decrypt all memory that needs to be accessible to
the L0 and use shadow paging so that L0 does not need to shadow NPT, but
exposing such information to L0 largely defeats the purpose of running as
an SEV guest. This can always be revisited if someone comes up with a
use case for running VMs inside SEV guests.
Note, VMLOAD, VMRUN, etc... will also #GP on GPAs with C-bit set, i.e. KVM
is doomed even if the SEV guest is debuggable and the hypervisor is willing
to decrypt the VMCB. This may or may not be fixed on CPUs that have the
SVME_ADDR_CHK fix.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210202212017.2486595-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 19a23da53932bc8011220bd8c410cb76012de004 upstream.
Grab kvm->lock before pinning memory when registering an encrypted
region; sev_pin_memory() relies on kvm->lock being held to ensure
correctness when checking and updating the number of pinned pages.
Add a lockdep assertion to help prevent future regressions.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Fixes: 1e80fdc09d12 ("KVM: SVM: Pin guest memory when SEV is active")
Signed-off-by: Peter Gonda <pgonda@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
V2
- Fix up patch description
- Correct file paths svm.c -> sev.c
- Add unlock of kvm->lock on sev_pin_memory error
V1
- https://lore.kernel.org/kvm/20210126185431.1824530-1-pgonda@google.com/
Message-Id: <20210127161524.2832400-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[ Upstream commit 6e1239c13953f3c2a76e70031f74ddca9ae57cd3 ]
Add Alder Lake mobile CPU model number to Intel family.
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210121215004.11618-1-tony.luck@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5c279c4cf206e03995e04fd3404fa95ffd243a97 upstream.
This reverts commit bde9cfa3afe4324ec251e4af80ebf9b7afaf7afe.
Changing the first memory page type from E820_TYPE_RESERVED to
E820_TYPE_RAM makes it a part of "System RAM" resource rather than a
reserved resource and this in turn causes devmem_is_allowed() to treat
is as area that can be accessed but it is filled with zeroes instead of
the actual data as previously.
The change in /dev/mem output causes lilo to fail as was reported at
slakware users forum, and probably other legacy applications will
experience similar problems.
Link: https://www.linuxquestions.org/questions/slackware-14/slackware-current-lilo-vesa-warnings-after-recent-updates-4175689617/#post6214439
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1f7becf1b7e21794fc9d460765fe09679bc9b9e0 upstream.
The injection process of smi has two steps:
Qemu KVM
Step1:
cpu->interrupt_request &= \
~CPU_INTERRUPT_SMI;
kvm_vcpu_ioctl(cpu, KVM_SMI)
call kvm_vcpu_ioctl_smi() and
kvm_make_request(KVM_REQ_SMI, vcpu);
Step2:
kvm_vcpu_ioctl(cpu, KVM_RUN, 0)
call process_smi() if
kvm_check_request(KVM_REQ_SMI, vcpu) is
true, mark vcpu->arch.smi_pending = true;
The vcpu->arch.smi_pending will be set true in step2, unfortunately if
vcpu paused between step1 and step2, the kvm_run->immediate_exit will be
set and vcpu has to exit to Qemu immediately during step2 before mark
vcpu->arch.smi_pending true.
During VM migration, Qemu will get the smi pending status from KVM using
KVM_GET_VCPU_EVENTS ioctl at the downtime, then the smi pending status
will be lost.
Signed-off-by: Jay Zhou <jianjay.zhou@huawei.com>
Signed-off-by: Shengen Zhuang <zhuangshengen@huawei.com>
Message-Id: <20210118084720.1585-1-jianjay.zhou@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d51e1d3f6b4236e0352407d8a63f5c5f71ce193d upstream.
Even when we are outside the nested guest, some vmcs02 fields
may not be in sync vs vmcs12. This is intentional, even across
nested VM-exit, because the sync can be delayed until the nested
hypervisor performs a VMCLEAR or a VMREAD/VMWRITE that affects those
rarely accessed fields.
However, during KVM_GET_NESTED_STATE, the vmcs12 has to be up to date to
be able to restore it. To fix that, call copy_vmcs02_to_vmcs12_rare()
before the vmcs12 contents are copied to userspace.
Fixes: 7952d769c29ca ("KVM: nVMX: Sync rarely accessed guest fields only when needed")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210114205449.8715-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9a78e15802a87de2b08dfd1bd88e855201d2c8fa upstream.
VMX also uses KVM_REQ_GET_NESTED_STATE_PAGES for the Hyper-V eVMCS,
which may need to be loaded outside guest mode. Therefore we cannot
WARN in that case.
However, that part of nested_get_vmcs12_pages is _not_ needed at
vmentry time. Split it out of KVM_REQ_GET_NESTED_STATE_PAGES handling,
so that both vmentry and migration (and in the latter case, independent
of is_guest_mode) do the parts that are needed.
Cc: <stable@vger.kernel.org> # 5.10.x: f2c7ef3ba: KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES
Cc: <stable@vger.kernel.org> # 5.10.x
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f2c7ef3ba9556d62a7e2bb23b563c6510007d55c upstream.
It is possible to exit the nested guest mode, entered by
svm_set_nested_state prior to first vm entry to it (e.g due to pending event)
if the nested run was not pending during the migration.
In this case we must not switch to the nested msr permission bitmap.
Also add a warning to catch similar cases in the future.
Fixes: a7d5c7ce41ac1 ("KVM: nSVM: delay MSR permission processing to first nested VM run")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210107093854.882483-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e61ab2a320c3dfd6209efe18a575979e07470597 upstream.
Since we know vPMU will not work properly when (1) the guest bit_width(s)
of the [gp|fixed] counters are greater than the host ones, or (2) guest
requested architectural events exceeds the range supported by the host, so
we can setup a smaller left shift value and refresh the guest cpuid entry,
thus fixing the following UBSAN shift-out-of-bounds warning:
shift exponent 197 is too large for 64-bit type 'long long unsigned int'
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x107/0x163 lib/dump_stack.c:120
ubsan_epilogue+0xb/0x5a lib/ubsan.c:148
__ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:395
intel_pmu_refresh.cold+0x75/0x99 arch/x86/kvm/vmx/pmu_intel.c:348
kvm_vcpu_after_set_cpuid+0x65a/0xf80 arch/x86/kvm/cpuid.c:177
kvm_vcpu_ioctl_set_cpuid2+0x160/0x440 arch/x86/kvm/cpuid.c:308
kvm_arch_vcpu_ioctl+0x11b6/0x2d70 arch/x86/kvm/x86.c:4709
kvm_vcpu_ioctl+0x7b9/0xdb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3386
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:739
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported-by: syzbot+ae488dc136a4cc6ba32b@syzkaller.appspotmail.com
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20210118025800.34620-1-like.xu@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 98dd2f108e448988d91e296173e773b06fb978b8 upstream.
The HW_REF_CPU_CYCLES event on the fixed counter 2 is pseudo-encoded as
0x0300 in the intel_perfmon_event_map[]. Correct its usage.
Fixes: 62079d8a4312 ("KVM: PMU: add proper support for fixed counter 2")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20201230081916.63417-1-like.xu@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5e6dca82bcaa49348f9e5fcb48df4881f6d6c4ae upstream.
Arnd found a randconfig that produces the warning:
arch/x86/entry/thunk_64.o: warning: objtool: missing symbol for insn at
offset 0x3e
when building with LLVM_IAS=1 (Clang's integrated assembler). Josh
notes:
With the LLVM assembler not generating section symbols, objtool has no
way to reference this code when it generates ORC unwinder entries,
because this code is outside of any ELF function.
The limitation now being imposed by objtool is that all code must be
contained in an ELF symbol. And .L symbols don't create such symbols.
So basically, you can use an .L symbol *inside* a function or a code
segment, you just can't use the .L symbol to contain the code using a
SYM_*_START/END annotation pair.
Fangrui notes that this optimization is helpful for reducing image size
when compiling with -ffunction-sections and -fdata-sections. I have
observed on the order of tens of thousands of symbols for the kernel
images built with those flags.
A patch has been authored against GNU binutils to match this behavior
of not generating unused section symbols ([1]), so this will
also become a problem for users of GNU binutils once they upgrade to 2.36.
Omit the .L prefix on a label so that the assembler will emit an entry
into the symbol table for the label, with STB_LOCAL binding. This
enables objtool to generate proper unwind info here with LLVM_IAS=1 or
GNU binutils 2.36+.
[ bp: Massage commit message. ]
Reported-by: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Suggested-by: Borislav Petkov <bp@alien8.de>
Suggested-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20210112194625.4181814-1-ndesaulniers@google.com
Link: https://github.com/ClangBuiltLinux/linux/issues/1209
Link: https://reviews.llvm.org/D93783
Link: https://sourceware.org/binutils/docs/as/Symbol-Names.html
Link: https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=d1bcae833b32f1408485ce69f844dcd7ded093a8 [1]
Cc: Chris Clayton <chris2553@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7024f60d655272bd2ca1d3a4c9e0a63319b1eea1 upstream.
Don't assume dest/source buffers are userspace addresses when manually
copying data for string I/O or MOVS MMIO, as {get,put}_user() will fail
if handed a kernel address and ultimately lead to a kernel panic.
When invoking INSB/OUTSB instructions in kernel space in a
SEV-ES-enabled VM, the kernel crashes with the following message:
"SEV-ES: Unsupported exception in #VC instruction emulation - can't continue"
Handle that case properly.
[ bp: Massage commit message. ]
Fixes: f980f9c31a92 ("x86/sev-es: Compile early handler code into kernel image")
Signed-off-by: Hyunwook (Wooky) Baek <baekhw@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Link: https://lkml.kernel.org/r/20210110071102.2576186-1-baekhw@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>