IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit f2d3155e2a6bac44d16f04415a321e8707d895c6 upstream.
Migration mode is a VM attribute which enables tracking of changes in
storage attributes (PGSTE). It assumes dirty tracking is enabled on all
memslots to keep a dirty bitmap of pages with changed storage attributes.
When enabling migration mode, we currently check that dirty tracking is
enabled for all memslots. However, userspace can disable dirty tracking
without disabling migration mode.
Since migration mode is pointless with dirty tracking disabled, disable
migration mode whenever userspace disables dirty tracking on any slot.
Also update the documentation to clarify that dirty tracking must be
enabled when enabling migration mode, which is already enforced by the
code in kvm_s390_vm_start_migration().
Also highlight in the documentation for KVM_S390_GET_CMMA_BITS that it
can now fail with -EINVAL when dirty tracking is disabled while
migration mode is on. Move all the error codes to a table so this stays
readable.
To disable migration mode, slots_lock should be held, which is taken
in kvm_set_memory_region() and thus held in
kvm_arch_prepare_memory_region().
Restructure the prepare code a bit so all the sanity checking is done
before disabling migration mode. This ensures migration mode isn't
disabled when some sanity check fails.
Cc: stable@vger.kernel.org
Fixes: 190df4a212a7 ("KVM: s390: CMMA tracking, ESSA emulation, migration mode")
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20230127140532.230651-2-nrb@linux.ibm.com
Message-Id: <20230127140532.230651-2-nrb@linux.ibm.com>
[frankja@linux.ibm.com: fixed commit message typo, moved api.rst error table upwards]
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cd57953936f2213dfaccce10d20f396956222c7d upstream.
Recent test_kprobe_missed kprobes kunit test uncovers the following
problem. Once kprobe is triggered from another kprobe (kprobe reenter),
all future kprobes on this cpu are considered as kprobe reenter, thus
pre_handler and post_handler are not being called and kprobes are counted
as "missed".
Commit b9599798f953 ("[S390] kprobes: activation and deactivation")
introduced a simpler scheme for kprobes (de)activation and status
tracking by using push_kprobe/pop_kprobe, which supposed to work for
both initial kprobe entry as well as kprobe reentry and helps to avoid
handling those two cases differently. The problem is that a sequence of
calls in case of kprobes reenter:
push_kprobe() <- NULL (current_kprobe)
push_kprobe() <- kprobe1 (current_kprobe)
pop_kprobe() -> kprobe1 (current_kprobe)
pop_kprobe() -> kprobe1 (current_kprobe)
leaves "kprobe1" as "current_kprobe" on this cpu, instead of setting it
to NULL. In fact push_kprobe/pop_kprobe can only store a single state
(there is just one prev_kprobe in kprobe_ctlblk). Which is a hack but
sufficient, there is no need to have another prev_kprobe just to store
NULL. To make a simple and backportable fix simply reset "prev_kprobe"
when kprobe is poped from this "stack". No need to worry about
"kprobe_status" in this case, because its value is only checked when
current_kprobe != NULL.
Cc: stable@vger.kernel.org
Fixes: b9599798f953 ("[S390] kprobes: activation and deactivation")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 42e19e6f04984088b6f9f0507c4c89a8152d9730 upstream.
Recent test_kprobe_missed kprobes kunit test uncovers the following error
(reported when CONFIG_DEBUG_ATOMIC_SLEEP is enabled):
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580
in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 662, name: kunit_try_catch
preempt_count: 0, expected: 0
RCU nest depth: 0, expected: 0
no locks held by kunit_try_catch/662.
irq event stamp: 280
hardirqs last enabled at (279): [<00000003e60a3d42>] __do_pgm_check+0x17a/0x1c0
hardirqs last disabled at (280): [<00000003e3bd774a>] kprobe_exceptions_notify+0x27a/0x318
softirqs last enabled at (0): [<00000003e3c5c890>] copy_process+0x14a8/0x4c80
softirqs last disabled at (0): [<0000000000000000>] 0x0
CPU: 46 PID: 662 Comm: kunit_try_catch Tainted: G N 6.2.0-173644-g44c18d77f0c0 #2
Hardware name: IBM 3931 A01 704 (LPAR)
Call Trace:
[<00000003e60a3a00>] dump_stack_lvl+0x120/0x198
[<00000003e3d02e82>] __might_resched+0x60a/0x668
[<00000003e60b9908>] __mutex_lock+0xc0/0x14e0
[<00000003e60bad5a>] mutex_lock_nested+0x32/0x40
[<00000003e3f7b460>] unregister_kprobe+0x30/0xd8
[<00000003e51b2602>] test_kprobe_missed+0xf2/0x268
[<00000003e51b5406>] kunit_try_run_case+0x10e/0x290
[<00000003e51b7dfa>] kunit_generic_run_threadfn_adapter+0x62/0xb8
[<00000003e3ce30f8>] kthread+0x2d0/0x398
[<00000003e3b96afa>] __ret_from_fork+0x8a/0xe8
[<00000003e60ccada>] ret_from_fork+0xa/0x40
The reason for this error report is that kprobes handling code failed
to restore irqs.
The problem is that when kprobe is triggered from another kprobe
post_handler current sequence of enable_singlestep / disable_singlestep
is the following:
enable_singlestep <- original kprobe (saves kprobe_saved_imask)
enable_singlestep <- kprobe triggered from post_handler (clobbers kprobe_saved_imask)
disable_singlestep <- kprobe triggered from post_handler (restores kprobe_saved_imask)
disable_singlestep <- original kprobe (restores wrong clobbered kprobe_saved_imask)
There is just one kprobe_ctlblk per cpu and both calls saves and
loads irq mask to kprobe_saved_imask. To fix the problem simply move
resume_execution (which calls disable_singlestep) before calling
post_handler. This also fixes the problem that post_handler is called
with pt_regs which were not yet adjusted after single-stepping.
Cc: stable@vger.kernel.org
Fixes: 4ba069b802c2 ("[S390] add kprobes support.")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9c9cb90e76ffaabcc7ca8f275d9e82195fd6367 upstream.
When debugging vmlinux with QEMU + GDB, the following GDB error may
occur:
(gdb) c
Continuing.
Warning:
Cannot insert breakpoint -1.
Cannot access memory at address 0xffffffffffff95c0
Command aborted.
(gdb)
The reason is that, when .interp section is present, GDB tries to
locate the file specified in it in memory and put a number of
breakpoints there (see enable_break() function in gdb/solib-svr4.c).
Sometimes GDB finds a bogus location that matches its heuristics,
fails to set a breakpoint and stops. This makes further debugging
impossible.
The .interp section contains misleading information anyway (vmlinux
does not need ld.so), so fix by discarding it.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8c42dd78df148c90e48efff204cce38743906a79 upstream.
Commit f05f62d04271f ("s390/vmem: get rid of memory segment list")
reshuffled the call to vmem_add_mapping() in __segment_load(), which now
overwrites rc after it was set to contain the segment type code.
As result, __segment_load() will now always return 0 on success, which
corresponds to the segment type code SEG_TYPE_SW, i.e. a writeable
segment. This results in a kernel crash when loading a read-only segment
as dcssblk block device, and trying to write to it.
Instead of reshuffling code again, make sure to return the segment type
on success, and also describe this rather delicate and unexpected logic
in the function comment. Also initialize new segtype variable with
invalid value, to prevent possible future confusion.
Fixes: f05f62d04271 ("s390/vmem: get rid of memory segment list")
Cc: <stable@vger.kernel.org> # 5.9+
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fd8589dce8107e2ce62e92f76089654462dd67b4 ]
When clang's -Qunused-arguments is dropped from KBUILD_CPPFLAGS, it
points out that there is a linking phase flag added to CFLAGS, which
will only be used for compiling
clang-16: error: argument unused during compilation: '-shared' [-Werror,-Wunused-command-line-argument]
'-shared' is already present in ldflags-y so it can just be dropped.
Fixes: 2b2a25845d53 ("s390/vdso: Use $(LD) instead of $(CC) to link vDSO")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7b737adc10d269e7fdf714ae2caa2281b6a801cf ]
The -nostdlib option requests the compiler to not use the standard
system startup files or libraries when linking. It is effective only
when $(CC) is used as a linker driver.
Since commit 2b2a25845d53 ("s390/vdso: Use $(LD) instead of $(CC) to
link vDSO"), $(LD) is directly used, hence -nostdlib is unneeded.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Link: https://lore.kernel.org/r/20211107162111.323701-1-masahiroy@kernel.org
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Stable-dep-of: fd8589dce810 ("s390/vdso: Drop '-shared' from KBUILD_CFLAGS_64")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a2522c80f074c35254974fec39fffe8b8d75befe ]
Since commit 159491f3b509 ("s390/ap: rework assembler functions to use
unions for in/out register variables") the function ap_qact() tries to
grab the status from the wrong part of the register. Thus we always end
up with zeros. Which is wrong, among others, because we detect failures
via status.response_code.
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Reported-by: Harald Freudenberger <freude@linux.ibm.com>
Fixes: 159491f3b509 ("s390/ap: rework assembler functions to use unions for in/out register variables")
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 394740d7645ea767795074287769dd26dbd4d782 ]
There function ap_aqic() tries to grab the status from the
wrong part of the register. Thus we always end up with
zeros. Which is wrong, among others, because we detect
failures via status.response_code.
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Reported-by: Janosch Frank <frankja@linux.ibm.com>
Fixes: 159491f3b509 ("s390/ap: rework assembler functions to use unions for in/out register variables")
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 108303b0a2d27cb14eed565e33e64ad9eefe5d7e ]
Commit b9ff81003cf1 ("s390/vmem: cleanup empty page tables") introduced
empty page tables cleanup in vmem code, but when the kernel is built
with KASAN enabled the code has no effect due to wrong KASAN shadow
memory intersection condition, which effectively ignores any memory
range below KASAN shadow. Fix intersection condition to make code
work as anticipated.
Fixes: b9ff81003cf1 ("s390/vmem: cleanup empty page tables")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3400c35a4090704e6c465449616ab7e67a9209e7 ]
Currently if for some reason sclp_early_read_info() fails,
sclp_early_get_memsize() will not set max_physmem_end and it
will stay uninitialized. Any garbage value other than 0 will lead
to detect_memory() taking wrong path or returning a garbage value
as max_physmem_end. To avoid that simply initialize max_physmem_end.
Fixes: 73045a08cf55 ("s390: unify identity mapping limits handling")
Reported-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7ab41c2c08a32132ba8c14624910e2fe8ce4ba4b ]
Historically calls to __decompress() didn't specify "out_len" parameter
on many architectures including s390, expecting that no writes beyond
uncompressed kernel image are performed. This has changed since commit
2aa14b1ab2c4 ("zstd: import usptream v1.5.2") which includes zstd library
commit 6a7ede3dfccb ("Reduce size of dctx by reutilizing dst buffer
(#2751)"). Now zstd decompression code might store literal buffer in
the unwritten portion of the destination buffer. Since "out_len" is
not set, it is considered to be unlimited and hence free to use for
optimization needs. On s390 this might corrupt initrd or ipl report
which are often placed right after the decompressor buffer. Luckily the
size of uncompressed kernel image is already known to the decompressor,
so to avoid the problem simply specify it in the "out_len" parameter.
Link: https://github.com/facebook/zstd/commit/6a7ede3dfccb
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Link: https://lore.kernel.org/r/patch-1.thread-41c676.git-41c676c2d153.your-ad-here.call-01675030179-ext-9637@work.hours
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9c89bb8e327203bc27e09ebd82d8f61ac2ae8b24 ]
This clean up the error/notification messages in kprobes related code.
Basically this defines 'pr_fmt()' macros for each files and update
the messages which describes
- what happened,
- what is the kernel going to do or not do,
- is the kernel fine,
- what can the user do about it.
Also, if the message is not needed (e.g. the function returns unique
error code, or other error message is already shown.) remove it,
and replace the message with WARN_*() macros if suitable.
Link: https://lkml.kernel.org/r/163163036568.489837.14085396178727185469.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Stable-dep-of: eb7423273cc9 ("riscv: kprobe: Fixup misaligned load text")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0e25498f8cd43c1b5aa327f373dd094e9a006da7 upstream.
There are two big uses of do_exit. The first is it's design use to be
the guts of the exit(2) system call. The second use is to terminate
a task after something catastrophic has happened like a NULL pointer
in kernel code.
Add a function make_task_dead that is initialy exactly the same as
do_exit to cover the cases where do_exit is called to handle
catastrophic failure. In time this can probably be reduced to just a
light wrapper around do_task_dead. For now keep it exactly the same so
that there will be no behavioral differences introducing this new
concept.
Replace all of the uses of do_exit that use it for catastraphic
task cleanup with make_task_dead to make it clear what the code
is doing.
As part of this rename rewind_stack_do_exit
rewind_stack_and_make_dead.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 42400d99e9f0728c17240edb9645637ead40f6b9 ]
Use READ_ONCE() before cmpxchg() to prevent that the compiler generates
code that fetches the to be compared old value several times from memory.
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20230109145456.2895385-1-hca@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 45d619bdaf799196d702a9ae464b07066d6db2f9 ]
Symbols _edata and _end in the linker script are the
only unaligned expicitly on page boundary. Although
_end is aligned implicitly by BSS_SECTION macro that
is still inconsistent and could lead to a bug if a tool
or function would assume that _edata is as aligned as
others.
For example, vmem_map_init() function does not align
symbols _etext, _einittext etc. Should these symbols
be unaligned as well, the size of ranges to update
were short on one page.
Instead of fixing every occurrence of this kind in the
code and external tools just force the alignment on
these two symbols.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0d4d52361b6c29bf771acd4fa461f06d78fb2fac ]
Using DEBUG_H without a prefix is very generic and inconsistent with
other header guards in arch/s390/include/asm. In fact it collides with
the same name in the ath9k wireless driver though that depends on !S390
via disabled wireless support. Let's just use a consistent header guard
name and prevent possible future trouble.
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e3f360db08d55a14112bd27454e616a24296a8b0 upstream.
Make sure that *ptr__ within arch_this_cpu_to_op_simple() is only
dereferenced once by using READ_ONCE(). Otherwise the compiler could
generate incorrect code.
Cc: <stable@vger.kernel.org>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 82d3edb50a11bf3c5ef63294d5358ba230181413 upstream.
The current cmpxchg_double() loops within the perf hw sampling code do not
have READ_ONCE() semantics to read the old value from memory. This allows
the compiler to generate code which reads the "old" value several times
from memory, which again allows for inconsistencies.
For example:
/* Reset trailer (using compare-double-and-swap) */
do {
te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
te_flags |= SDB_TE_ALERT_REQ_MASK;
} while (!cmpxchg_double(&te->flags, &te->overflow,
te->flags, te->overflow,
te_flags, 0ULL));
The compiler could generate code where te->flags used within the
cmpxchg_double() call may be refetched from memory and which is not
necessarily identical to the previous read version which was used to
generate te_flags. Which in turn means that an incorrect update could
happen.
Fix this by adding READ_ONCE() semantics to all cmpxchg_double()
loops. Given that READ_ONCE() cannot generate code on s390 which atomically
reads 16 bytes, use a private compare-and-swap-double implementation to
achieve that.
Also replace cmpxchg_double() with the private implementation to be able to
re-use the old value within the loops.
As a side effect this converts the whole code to only use bit fields
to read and modify bits within the hws trailer header.
Reported-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Reviewed-by: Thomas Richter <tmricht@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/linux-s390/Y71QJBhNTIatvxUT@osiris/T/#ma14e2a5f7aa8ed4b94b6f9576799b3ad9c60f333
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c2337a40e04dde1692b5b0a46ecc59f89aaba8a1 upstream.
This commit addresses the following erroneous situation with file-based
kdump executed on a system with a valid IPL report.
On s390, a kdump kernel, its initrd and IPL report if present are loaded
into a special and reserved on boot memory region - crashkernel. When
a system crashes and kdump was activated before, the purgatory code
is entered first which swaps the crashkernel and [0 - crashkernel size]
memory regions. Only after that the kdump kernel is entered. For this
reason, the pointer to an IPL report in lowcore must point to the IPL report
after the swap and not to the address of the IPL report that was located in
crashkernel memory region before the swap. Failing to do so, makes the
kdump's decompressor try to read memory from the crashkernel memory region
which already contains the production's kernel memory.
The situation described above caused spontaneous kdump failures/hangs
on systems where the Secure IPL is activated because on such systems
an IPL report is always present. In that case kdump's decompressor tried
to parse an IPL report which frequently lead to illegal memory accesses
because an IPL report contains addresses to various data.
Cc: <stable@vger.kernel.org>
Fixes: 99feaa717e55 ("s390/kexec_file: Create ipl report and pass to next kernel")
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0dd4cdccdab3d74bd86b868768a7dca216bcce7e upstream.
We recently experienced some weird huge time jumps in nested guests when
rebooting them in certain cases. After adding some debug code to the epoch
handling in vsie.c (thanks to David Hildenbrand for the idea!), it was
obvious that the "epdx" field (the multi-epoch extension) did not get set
to 0xff in case the "epoch" field was negative.
Seems like the code misses to copy the value from the epdx field from
the guest to the shadow control block. By doing so, the weird time
jumps are gone in our scenarios.
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2140899
Fixes: 8fa1696ea781 ("KVM: s390: Multiple Epoch Facility support")
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Cc: stable@vger.kernel.org # 4.19+
Link: https://lore.kernel.org/r/20221123090833.292938-1-thuth@redhat.com
Message-Id: <20221123090833.292938-1-thuth@redhat.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f44e07a8afdd713ddc1a8832c39372fe5dd86895 ]
The size of the TOD programmable field was incorrectly increased from
four to eight bytes with commit 1a2c5840acf9 ("s390/dump: cleanup CPU
save area handling").
This leads to an elf notes section NT_S390_TODPREG which has a size of
eight instead of four bytes in case of kdump, however even worse is
that the contents is incorrect: it is supposed to contain only the
contents of the TOD programmable field, but in fact contains a mix of
the TOD programmable field (32 bit upper bits) and parts of the CPU
timer register (lower 32 bits).
Fix this by simply changing the size of the todpreg field within the
save area structure. This will implicitly also fix the size of the
corresponding elf notes sections.
This also gets rid of this compile time warning:
in function ‘fortify_memcpy_chk’,
inlined from ‘save_area_add_regs’ at arch/s390/kernel/crash_dump.c:99:2:
./include/linux/fortify-string.h:413:25: error: call to ‘__read_overflow2_field’
declared with attribute warning: detected read beyond size of field
(2nd parameter); maybe use struct_group()? [-Werror=attribute-warning]
413 | __read_overflow2_field(q_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fixes: 1a2c5840acf9 ("s390/dump: cleanup CPU save area handling")
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6973091d1b50ab4042f6a2d495f59e9db3662ab8 ]
When running under PV, the guest's TOD clock is under control of the
ultravisor and the hypervisor isn't allowed to change it. Hence, don't
allow userspace to change the guest's TOD clock by returning
-EOPNOTSUPP.
When userspace changes the guest's TOD clock, KVM updates its
kvm.arch.epoch field and, in addition, the epoch field in all state
descriptions of all VCPUs.
But, under PV, the ultravisor will ignore the epoch field in the state
description and simply overwrite it on next SIE exit with the actual
guest epoch. This leads to KVM having an incorrect view of the guest's
TOD clock: it has updated its internal kvm.arch.epoch field, but the
ultravisor ignores the field in the state description.
Whenever a guest is now waiting for a clock comparator, KVM will
incorrectly calculate the time when the guest should wake up, possibly
causing the guest to sleep for much longer than expected.
With this change, kvm_s390_set_tod() will now take the kvm->lock to be
able to call kvm_s390_pv_is_protected(). Since kvm_s390_set_tod_clock()
also takes kvm->lock, use __kvm_s390_set_tod_clock() instead.
The function kvm_s390_set_tod_clock is now unused, hence remove it.
Update the documentation to indicate the TOD clock attr calls can now
return -EOPNOTSUPP.
Fixes: 0f3035047140 ("KVM: s390: protvirt: Do only reset registers that are accessible")
Reported-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20221011160712.928239-2-nrb@linux.ibm.com
Message-Id: <20221011160712.928239-2-nrb@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4e1b5a86a5edfbefc9396d41b0fc1a2ebd0101b6 ]
For some exception types the instruction address points behind the
instruction that caused the exception. Take that into account and add
the missing exception table entries.
Cc: <stable@vger.kernel.org>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6ec803025cf3173a57222e4411097166bd06fa98 upstream.
For some exception types the instruction address points behind the
instruction that caused the exception. Take that into account and add
the missing exception table entry.
Cc: <stable@vger.kernel.org>
Fixes: f058599e22d5 ("s390/pci: Fix s390_mmio_read/write with MIO")
Reviewed-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a262d3ad6a433e4080cecd0a8841104a5906355e upstream.
For some exception types the instruction address points behind the
instruction that caused the exception. Take that into account and add
the missing exception table entry.
Cc: <stable@vger.kernel.org>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 12dd19c159659ec9050f45dc8a2ff3c3917f4be3 ]
Crash dump always starts on CPU0. In case CPU0 is offline the
prefix page is not installed and the absolute zero lowcore is
used. However, struct lowcore::mcesad is never assigned and
stays zero. That leads to __machine_kdump() -> save_vx_regs()
call silently stores vector registers to the absolute lowcore
at 0x11b0 offset.
Fixes: a62bc0739253 ("s390/kdump: add support for vector extension")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c9305b6c1f52060377c72aebe3a701389e9f3172 upstream.
Add proper alignment for .nospec_call_table and .nospec_return_table in
vmlinux.
[hca@linux.ibm.com]: The problem with the missing alignment of the nospec
tables exist since a long time, however only since commit e6ed91fd0768
("s390/alternatives: remove padding generation code") and with
CONFIG_RELOCATABLE=n the kernel may also crash at boot time.
The above named commit reduced the size of struct alt_instr by one byte,
so its new size is 11 bytes. Therefore depending on the number of cpu
alternatives the size of the __alt_instructions array maybe odd, which
again also causes that the addresses of the nospec tables will be odd.
If the address of __nospec_call_start is odd and the kernel is compiled
With CONFIG_RELOCATABLE=n the compiler may generate code that loads the
address of __nospec_call_start with a 'larl' instruction.
This will generate incorrect code since the 'larl' instruction only works
with even addresses. In result the members of the nospec tables will be
accessed with an off-by-one offset, which subsequently may lead to
addressing exceptions within __nospec_revert().
Fixes: f19fbd5ed642 ("s390: introduce execute-trampolines for branches")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/8719bf1ce4a72ebdeb575200290094e9ce047bcc.1661557333.git.jpoimboe@kernel.org
Cc: <stable@vger.kernel.org> # 4.16
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c8d42fdf1a84b1a0dd60d6528309c8ec127e87c upstream.
The alignment check in prepare_hugepage_range() is wrong for 2 GB
hugepages, it only checks for 1 MB hugepage alignment.
This can result in kernel crash in __unmap_hugepage_range() at the
BUG_ON(start & ~huge_page_mask(h)) alignment check, for mappings
created with MAP_FIXED at unaligned address.
Fix this by correctly handling multiple hugepage sizes, similar to the
generic version of prepare_hugepage_range().
Fixes: d08de8e2d867 ("s390/mm: add support for 2GB hugepages")
Cc: <stable@vger.kernel.org> # 4.8+
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7b6670b03641ac308aaa6fa2e6f964ac993b5ea3 ]
When booting under KVM the following error messages are issued:
hypfs.7f5705: The hardware system does not support hypfs
hypfs.7a79f0: Initialization of hypfs failed with rc=-61
Demote the severity of first message from "error" to "info" and issue
the second message only in other error cases.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20220620094534.18967-1-jgross@suse.com
[arch/s390/hypfs/hypfs_diag.c changed description]
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 13cccafe0edcd03bf1c841de8ab8a1c8e34f77d9 upstream.
The pointers for guarded storage and runtime instrumentation control
blocks are stored in the thread_struct of the associated task. These
pointers are initially copied on fork() via arch_dup_task_struct()
and then cleared via copy_thread() before fork() returns. If fork()
happens to fail after the initial task dup and before copy_thread(),
the newly allocated task and associated thread_struct memory are
freed via free_task() -> arch_release_task_struct(). This results in
a double free of the guarded storage and runtime info structs
because the fields in the failed task still refer to memory
associated with the source task.
This problem can manifest as a BUG_ON() in set_freepointer() (with
CONFIG_SLAB_FREELIST_HARDENED enabled) or KASAN splat (if enabled)
when running trinity syscall fuzz tests on s390x. To avoid this
problem, clear the associated pointer fields in
arch_dup_task_struct() immediately after the new task is copied.
Note that the RI flag is still cleared in copy_thread() because it
resides in thread stack memory and that is where stack info is
copied.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Fixes: 8d9047f8b967c ("s390/runtime instrumentation: simplify task exit handling")
Fixes: 7b83c6297d2fc ("s390/guarded storage: simplify task exit handling")
Cc: <stable@vger.kernel.org> # 4.15
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20220816155407.537372-1-bfoster@redhat.com
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 41ac42f137080bc230b5882e3c88c392ab7f2d32 upstream.
For non-protection pXd_none() page faults in do_dat_exception(), we
call do_exception() with access == (VM_READ | VM_WRITE | VM_EXEC).
In do_exception(), vma->vm_flags is checked against that before
calling handle_mm_fault().
Since commit 92f842eac7ee3 ("[S390] store indication fault optimization"),
we call handle_mm_fault() with FAULT_FLAG_WRITE, when recognizing that
it was a write access. However, the vma flags check is still only
checking against (VM_READ | VM_WRITE | VM_EXEC), and therefore also
calling handle_mm_fault() with FAULT_FLAG_WRITE in cases where the vma
does not allow VM_WRITE.
Fix this by changing access check in do_exception() to VM_WRITE only,
when recognizing write access.
Link: https://lkml.kernel.org/r/20220811103435.188481-3-david@redhat.com
Fixes: 92f842eac7ee3 ("[S390] store indication fault optimization")
Cc: <stable@vger.kernel.org>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 953503751a426413ea8aee2299ae3ee971b70d9b upstream.
This reverts commit 6f5c672d17f583b081e283927f5040f726c54598.
This breaks normal crash dump when CPU0 is offline.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0828c4a39be57768b8788e8cbd0d84683ea757e5 ]
commit e23a8020ce4e ("s390/kexec_file: Signature verification prototype")
adds support for KEXEC_SIG verification with keys from platform keyring
but the built-in keys and secondary keyring are not used.
Add support for the built-in keys and secondary keyring as x86 does.
Fixes: e23a8020ce4e ("s390/kexec_file: Signature verification prototype")
Cc: stable@vger.kernel.org
Cc: Philipp Rudo <prudo@linux.ibm.com>
Cc: kexec@lists.infradead.org
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Reviewed-by: "Lee, Chun-Yi" <jlee@suse.com>
Acked-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Coiby Xu <coxu@redhat.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6f5c672d17f583b081e283927f5040f726c54598 ]
As result of commit 915fea04f932 ("s390/smp: enable DAT before
CPU restart callback is called") the low-address protection bit
gets mistakenly unset in control register 0 save area of the
absolute zero memory. That area is used when manual PSW restart
happened to hit an offline CPU. In this case the low-address
protection for that CPU will be dropped.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Fixes: 915fea04f932 ("s390/smp: enable DAT before CPU restart callback is called")
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ed0192bc644f3553d64a5cb461bdd0b1fbae3fdf ]
Macro mem_assign_absolute() is able to access the whole memory, but
is only used and makes sense when updating the absolute lowcore.
Instead, introduce get_abs_lowcore() and put_abs_lowcore() macros
that limit access to absolute lowcore addresses only.
Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dc2ab23b992c9d5dab93b9bf01b10b10465e537e ]
Macro mem_assign_absolute() is used to initialize a target
CPU lowcore callback parameters. But despite the macro name
it writes to the absolute lowcore only if the target CPU is
offline. In case the CPU is online the macro does implicitly
write to the normal memory.
That behaviour is correct, but extremely subtle. Sacrifice
few program bits in favour of clarity and distinguish between
online vs offline CPUs and normal vs absolute lowcore pointer.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9de209c7d584d6e06ad92f120d83d4f27c200497 ]
Due to historical reasons os_info handling functions misuse
the notion of physical vs virtual addresses difference.
Note: this does not fix a bug currently, since virtual
and physical addresses are identical.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f6749da17a34eb08c9665f072ce7c812ff68aad2 ]
The number of bytes in a chunk is correctly calculated, but instead
the total number of bytes is passed to copy_to_user_real() function.
Reported-by: Matthew Wilcox <willy@infradead.org>
Fixes: df9694c7975f ("s390/dump: streamline oldmem copy functions")
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 303fd988ed644c7daa260410f3ac99266573557d ]
There is a confusion with regard to the source address of
memcpy_real() and calling functions. While the declared
type for a source assumes a virtual address, in fact it
always called with physical address of the source.
This confusion led to bugs in copy_oldmem_kernel() and
copy_oldmem_user() functions, where __pa() macro applied
mistakenly to physical addresses. It does not lead to a
real issue, since virtual and physical addresses are
currently the same.
Fix both the bugs and memcpy_real() prototype by making
type of source address consistent to the function name
and the way it actually used.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dc306186a130c6d9feb0aabc1c71b8ed1674a3bf ]
Virtual addresses of vmcore_info and os_info members are
wrongly passed to copy_oldmem_kernel(), while the function
expects physical address of the source. Instead, __pa()
macro should have been applied.
Yet, use of __pa() macro could be somehow confusing, since
copy_oldmem_kernel() may treat the source as an offset, not
as a direct physical address (that depens from the oldmem
availability and location).
Fix the virtual vs physical address confusion and make the
way the old lowcore is read consistent across all sources.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit faa2f72cb3569256480c5540d242c84e99965160 ]
Each secure guest must have a unique ASCE (address space control
element); we must avoid that new guests use the same page for their
ASCE, to avoid errors.
Since the ASCE mostly consists of the address of the topmost page table
(plus some flags), we must not return that memory to the pool unless
the ASCE is no longer in use.
Only a successful Destroy Secure Configuration UVC will make the ASCE
reusable again.
If the Destroy Configuration UVC fails, the ASCE cannot be reused for a
secure guest (either for the ASCE or for other memory areas). To avoid
a collision, it must not be used again. This is a permanent error and
the page becomes in practice unusable, so we set it aside and leak it.
On failure we already leak other memory that belongs to the ultravisor
(i.e. the variable and base storage for a guest) and not leaking the
topmost page table was an oversight.
This error (and thus the leakage) should not happen unless the hardware
is broken or KVM has some unknown serious bug.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Fixes: 29b40f105ec8d55 ("KVM: s390: protvirt: Add initial vm and cpu lifecycle handling")
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20220628135619.32410-2-imbrenda@linux.ibm.com
Message-Id: <20220628135619.32410-2-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c3f0e5fd2d33d80c5a5a8b5e5d2bab2841709cc8 upstream.
When the SIGP interpretation facility is present and a VCPU sends an
ecall to another VCPU in enabled wait, the sending VCPU receives a 56
intercept (partial execution), so KVM can wake up the receiving CPU.
Note that the SIGP interpretation facility will take care of the
interrupt delivery and KVM's only job is to wake the receiving VCPU.
For PV, the sending VCPU will receive a 108 intercept (pv notify) and
should continue like in the non-PV case, i.e. wake the receiving VCPU.
For PV and non-PV guests the interrupt delivery will occur through the
SIGP interpretation facility on SIE entry when SIE finds the X bit in
the status field set.
However, in handle_pv_notification(), there was no special handling for
SIGP, which leads to interrupt injection being requested by KVM for the
next SIE entry. This results in the interrupt being delivered twice:
once by the SIGP interpretation facility and once by KVM through the
IICTL.
Add the necessary special handling in handle_pv_notification(), similar
to handle_partial_execution(), which simply wakes the receiving VCPU and
leave interrupt delivery to the SIGP interpretation facility.
In contrast to external calls, emergency calls are not interpreted but
also cause a 108 intercept, which is why we still need to call
handle_instruction() for SIGP orders other than ecall.
Since kvm_s390_handle_sigp_pei() is now called for all SIGP orders which
cause a 108 intercept - even if they are actually handled by
handle_instruction() - move the tracepoint in kvm_s390_handle_sigp_pei()
to avoid possibly confusing trace messages.
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Cc: <stable@vger.kernel.org> # 5.7
Fixes: da24a0cc58ed ("KVM: s390: protvirt: Instruction emulation")
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20220718130434.73302-1-nrb@linux.ibm.com
Message-Id: <20220718130434.73302-1-nrb@linux.ibm.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 918e75f77af7d2e049bb70469ec0a2c12782d96a upstream.
This patch slightly reworks the s390 arch_get_random_seed_{int,long}
implementation: Make sure the CPACF trng instruction is never
called in any interrupt context. This is done by adding an
additional condition in_task().
Justification:
There are some constrains to satisfy for the invocation of the
arch_get_random_seed_{int,long}() functions:
- They should provide good random data during kernel initialization.
- They should not be called in interrupt context as the TRNG
instruction is relatively heavy weight and may for example
make some network loads cause to timeout and buck.
However, it was not clear what kind of interrupt context is exactly
encountered during kernel init or network traffic eventually calling
arch_get_random_seed_long().
After some days of investigations it is clear that the s390
start_kernel function is not running in any interrupt context and
so the trng is called:
Jul 11 18:33:39 t35lp54 kernel: [<00000001064e90ca>] arch_get_random_seed_long.part.0+0x32/0x70
Jul 11 18:33:39 t35lp54 kernel: [<000000010715f246>] random_init+0xf6/0x238
Jul 11 18:33:39 t35lp54 kernel: [<000000010712545c>] start_kernel+0x4a4/0x628
Jul 11 18:33:39 t35lp54 kernel: [<000000010590402a>] startup_continue+0x2a/0x40
The condition in_task() is true and the CPACF trng provides random data
during kernel startup.
The network traffic however, is more difficult. A typical call stack
looks like this:
Jul 06 17:37:07 t35lp54 kernel: [<000000008b5600fc>] extract_entropy.constprop.0+0x23c/0x240
Jul 06 17:37:07 t35lp54 kernel: [<000000008b560136>] crng_reseed+0x36/0xd8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b5604b8>] crng_make_state+0x78/0x340
Jul 06 17:37:07 t35lp54 kernel: [<000000008b5607e0>] _get_random_bytes+0x60/0xf8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b56108a>] get_random_u32+0xda/0x248
Jul 06 17:37:07 t35lp54 kernel: [<000000008aefe7a8>] kfence_guarded_alloc+0x48/0x4b8
Jul 06 17:37:07 t35lp54 kernel: [<000000008aeff35e>] __kfence_alloc+0x18e/0x1b8
Jul 06 17:37:07 t35lp54 kernel: [<000000008aef7f10>] __kmalloc_node_track_caller+0x368/0x4d8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b611eac>] kmalloc_reserve+0x44/0xa0
Jul 06 17:37:07 t35lp54 kernel: [<000000008b611f98>] __alloc_skb+0x90/0x178
Jul 06 17:37:07 t35lp54 kernel: [<000000008b6120dc>] __napi_alloc_skb+0x5c/0x118
Jul 06 17:37:07 t35lp54 kernel: [<000000008b8f06b4>] qeth_extract_skb+0x13c/0x680
Jul 06 17:37:07 t35lp54 kernel: [<000000008b8f6526>] qeth_poll+0x256/0x3f8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b63d76e>] __napi_poll.constprop.0+0x46/0x2f8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b63dbec>] net_rx_action+0x1cc/0x408
Jul 06 17:37:07 t35lp54 kernel: [<000000008b937302>] __do_softirq+0x132/0x6b0
Jul 06 17:37:07 t35lp54 kernel: [<000000008abf46ce>] __irq_exit_rcu+0x13e/0x170
Jul 06 17:37:07 t35lp54 kernel: [<000000008abf531a>] irq_exit_rcu+0x22/0x50
Jul 06 17:37:07 t35lp54 kernel: [<000000008b922506>] do_io_irq+0xe6/0x198
Jul 06 17:37:07 t35lp54 kernel: [<000000008b935826>] io_int_handler+0xd6/0x110
Jul 06 17:37:07 t35lp54 kernel: [<000000008b9358a6>] psw_idle_exit+0x0/0xa
Jul 06 17:37:07 t35lp54 kernel: ([<000000008ab9c59a>] arch_cpu_idle+0x52/0xe0)
Jul 06 17:37:07 t35lp54 kernel: [<000000008b933cfe>] default_idle_call+0x6e/0xd0
Jul 06 17:37:07 t35lp54 kernel: [<000000008ac59f4e>] do_idle+0xf6/0x1b0
Jul 06 17:37:07 t35lp54 kernel: [<000000008ac5a28e>] cpu_startup_entry+0x36/0x40
Jul 06 17:37:07 t35lp54 kernel: [<000000008abb0d90>] smp_start_secondary+0x148/0x158
Jul 06 17:37:07 t35lp54 kernel: [<000000008b935b9e>] restart_int_handler+0x6e/0x90
which confirms that the call is in softirq context. So in_task() covers exactly
the cases where we want to have CPACF trng called: not in nmi, not in hard irq,
not in soft irq but in normal task context and during kernel init.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Juergen Christ <jchrist@linux.ibm.com>
Link: https://lore.kernel.org/r/20220713131721.257907-1-freude@linux.ibm.com
Fixes: e4f74400308c ("s390/archrandom: simplify back to earlier design and initialize earlier")
[agordeev@linux.ibm.com changed desc, added Fixes and Link, removed -stable]
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c0573ba5c5a2244dc02060b1f374d4593c1d20b7 ]
When handling the SCK instruction, the kvm lock is taken, even though
the vcpu lock is already being held. The normal locking order is kvm
lock first and then vcpu lock. This is can (and in some circumstances
does) lead to deadlocks.
The function kvm_s390_set_tod_clock is called both by the SCK handler
and by some IOCTLs to set the clock. The IOCTLs will not hold the vcpu
lock, so they can safely take the kvm lock. The SCK handler holds the
vcpu lock, but will also somehow need to acquire the kvm lock without
relinquishing the vcpu lock.
The solution is to factor out the code to set the clock, and provide
two wrappers. One is called like the original function and does the
locking, the other is called kvm_s390_try_set_tod_clock and uses
trylock to try to acquire the kvm lock. This new wrapper is then used
in the SCK handler. If locking fails, -EAGAIN is returned, which is
eventually propagated to userspace, thus also freeing the vcpu lock and
allowing for forward progress.
This is not the most efficient or elegant way to solve this issue, but
the SCK instruction is deprecated and its performance is not critical.
The goal of this patch is just to provide a simple but correct way to
fix the bug.
Fixes: 6a3f95a6b04c ("KVM: s390: Intercept SCK instruction")
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Reviewed-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Link: https://lore.kernel.org/r/20220301143340.111129-1-imbrenda@linux.ibm.com
Cc: stable@vger.kernel.org
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6b4b54c7ca347bcb4aa7a3cc01aa16e84ac7fbe4 ]
We need to preserve the values at OLDMEM_BASE and OLDMEM_SIZE which are
used by zgetdump in case when kdump crashes. In that case zgetdump will
attempt to read OLDMEM_BASE and OLDMEM_SIZE in order to find out where
the memory range [0 - OLDMEM_SIZE] belonging to the production kernel is.
Fixes: f1a546947431 ("s390/setup: don't reserve memory that occupied decompressor's head")
Cc: stable@vger.kernel.org # 5.15+
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 04f11ed7d8e018e1f01ebda5814ddfeb3a1e6ae1 ]
memblock_reserve() function accepts physcal address of a memory
block to be reserved, but provided with virtual memory pointers.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>