37959 Commits

Author SHA1 Message Date
Chen Lin
49b830d75f ring-buffer: Do not swap cpu_buffer during resize process
[ Upstream commit 8a96c0288d0737ad77882024974c075345c72011 ]

When ring_buffer_swap_cpu was called during resize process,
the cpu buffer was swapped in the middle, resulting in incorrect state.
Continuing to run in the wrong state will result in oops.

This issue can be easily reproduced using the following two scripts:
/tmp # cat test1.sh
//#! /bin/sh
for i in `seq 0 100000`
do
         echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb
         sleep 0.5
         echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb
         sleep 0.5
done
/tmp # cat test2.sh
//#! /bin/sh
for i in `seq 0 100000`
do
        echo irqsoff > /sys/kernel/debug/tracing/current_tracer
        sleep 1
        echo nop > /sys/kernel/debug/tracing/current_tracer
        sleep 1
done
/tmp # ./test1.sh &
/tmp # ./test2.sh &

A typical oops log is as follows, sometimes with other different oops logs.

[  231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8
[  231.713375] Modules linked in:
[  231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G        W          6.5.0-rc1-00276-g20edcec23f92 #15
[  231.716750] Hardware name: linux,dummy-virt (DT)
[  231.718152] Workqueue: events update_pages_handler
[  231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[  231.721171] pc : rb_update_pages+0x378/0x3f8
[  231.722212] lr : rb_update_pages+0x25c/0x3f8
[  231.723248] sp : ffff800082b9bd50
[  231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000
[  231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0
[  231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a
[  231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000
[  231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510
[  231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002
[  231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558
[  231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001
[  231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000
[  231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208
[  231.744196] Call trace:
[  231.744892]  rb_update_pages+0x378/0x3f8
[  231.745893]  update_pages_handler+0x1c/0x38
[  231.746893]  process_one_work+0x1f0/0x468
[  231.747852]  worker_thread+0x54/0x410
[  231.748737]  kthread+0x124/0x138
[  231.749549]  ret_from_fork+0x10/0x20
[  231.750434] ---[ end trace 0000000000000000 ]---
[  233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[  233.721696] Mem abort info:
[  233.721935]   ESR = 0x0000000096000004
[  233.722283]   EC = 0x25: DABT (current EL), IL = 32 bits
[  233.722596]   SET = 0, FnV = 0
[  233.722805]   EA = 0, S1PTW = 0
[  233.723026]   FSC = 0x04: level 0 translation fault
[  233.723458] Data abort info:
[  233.723734]   ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[  233.724176]   CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[  233.724589]   GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[  233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000
[  233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
[  233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[  233.726720] Modules linked in:
[  233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G        W          6.5.0-rc1-00276-g20edcec23f92 #15
[  233.727777] Hardware name: linux,dummy-virt (DT)
[  233.728225] Workqueue: events update_pages_handler
[  233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[  233.729054] pc : rb_update_pages+0x1a8/0x3f8
[  233.729334] lr : rb_update_pages+0x154/0x3f8
[  233.729592] sp : ffff800082b9bd50
[  233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000
[  233.730220] x26: 0000000000000000 x25: ffff800082a8b840 x24: ffff0000c0102418
[  233.730653] x23: 0000000000000000 x22: fffffc000304c880 x21: 0000000000000003
[  233.731105] x20: 00000000000001f4 x19: ffff0000c0102400 x18: ffff800082fcbc58
[  233.731727] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000001
[  233.732282] x14: ffff8000825fe0c8 x13: 0000000000000001 x12: 0000000000000000
[  233.732709] x11: ffff8000826998a8 x10: 0000000000000ae0 x9 : ffff8000801b760c
[  233.733148] x8 : fefefefefefefeff x7 : 0000000000000018 x6 : ffff0000c03298c0
[  233.733553] x5 : 0000000000000002 x4 : 0000000000000000 x3 : 0000000000000000
[  233.733972] x2 : ffff0000c3a0b600 x1 : 0000000000000000 x0 : 0000000000000000
[  233.734418] Call trace:
[  233.734593]  rb_update_pages+0x1a8/0x3f8
[  233.734853]  update_pages_handler+0x1c/0x38
[  233.735148]  process_one_work+0x1f0/0x468
[  233.735525]  worker_thread+0x54/0x410
[  233.735852]  kthread+0x124/0x138
[  233.736064]  ret_from_fork+0x10/0x20
[  233.736387] Code: 92400000 910006b5 aa000021 aa0303f7 (f9400060)
[  233.736959] ---[ end trace 0000000000000000 ]---

After analysis, the seq of the error is as follows [1-5]:

int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
			int cpu_id)
{
	for_each_buffer_cpu(buffer, cpu) {
		cpu_buffer = buffer->buffers[cpu];
		//1. get cpu_buffer, aka cpu_buffer(A)
		...
		...
		schedule_work_on(cpu,
		 &cpu_buffer->update_pages_work);
		//2. 'update_pages_work' is queue on 'cpu', cpu_buffer(A) is passed to
		// update_pages_handler, do the update process, set 'update_done' in
		// complete(&cpu_buffer->update_done) and to wakeup resize process.
	//---->
		//3. Just at this moment, ring_buffer_swap_cpu is triggered,
		//cpu_buffer(A) be swaped to cpu_buffer(B), the max_buffer.
		//ring_buffer_swap_cpu is called as the 'Call trace' below.

		Call trace:
		 dump_backtrace+0x0/0x2f8
		 show_stack+0x18/0x28
		 dump_stack+0x12c/0x188
		 ring_buffer_swap_cpu+0x2f8/0x328
		 update_max_tr_single+0x180/0x210
		 check_critical_timing+0x2b4/0x2c8
		 tracer_hardirqs_on+0x1c0/0x200
		 trace_hardirqs_on+0xec/0x378
		 el0_svc_common+0x64/0x260
		 do_el0_svc+0x90/0xf8
		 el0_svc+0x20/0x30
		 el0_sync_handler+0xb0/0xb8
		 el0_sync+0x180/0x1c0
	//<----

	/* wait for all the updates to complete */
	for_each_buffer_cpu(buffer, cpu) {
		cpu_buffer = buffer->buffers[cpu];
		//4. get cpu_buffer, cpu_buffer(B) is used in the following process,
		//the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong.
		//for example, cpu_buffer(A)->update_done will leave be set 1, and will
		//not 'wait_for_completion' at the next resize round.
		  if (!cpu_buffer->nr_pages_to_update)
			continue;

		if (cpu_online(cpu))
			wait_for_completion(&cpu_buffer->update_done);
		cpu_buffer->nr_pages_to_update = 0;
	}
	...
}
	//5. the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong,
	//Continuing to run in the wrong state, then oops occurs.

Link: https://lore.kernel.org/linux-trace-kernel/202307191558478409990@zte.com.cn

Signed-off-by: Chen Lin <chen.lin5@zte.com.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-26 14:23:26 +02:00
gaoxu
ff10cd3e9b dma-remap: use kvmalloc_array/kvfree for larger dma memory remap
[ Upstream commit 51ff97d54f02b4444dfc42e380ac4c058e12d5dd ]

If dma_direct_alloc() alloc memory in size of 64MB, the inner function
dma_common_contiguous_remap() will allocate 128KB memory by invoking
the function kmalloc_array(). and the kmalloc_array seems to fail to try to
allocate 128KB mem.

Call trace:
[14977.928623] qcrosvm: page allocation failure: order:5, mode:0x40cc0
[14977.928638] dump_backtrace.cfi_jt+0x0/0x8
[14977.928647] dump_stack_lvl+0x80/0xb8
[14977.928652] warn_alloc+0x164/0x200
[14977.928657] __alloc_pages_slowpath+0x9f0/0xb4c
[14977.928660] __alloc_pages+0x21c/0x39c
[14977.928662] kmalloc_order+0x48/0x108
[14977.928666] kmalloc_order_trace+0x34/0x154
[14977.928668] __kmalloc+0x548/0x7e4
[14977.928673] dma_direct_alloc+0x11c/0x4f8
[14977.928678] dma_alloc_attrs+0xf4/0x138
[14977.928680] gh_vm_ioctl_set_fw_name+0x3c4/0x610 [gunyah]
[14977.928698] gh_vm_ioctl+0x90/0x14c [gunyah]
[14977.928705] __arm64_sys_ioctl+0x184/0x210

work around by doing kvmalloc_array instead.

Signed-off-by: Gao Xu <gaoxu2@hihonor.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-26 14:23:22 +02:00
Frederic Weisbecker
c597d8cb0d timers/nohz: Last resort update jiffies on nohz_full IRQ entry
[ Upstream commit 53e87e3cdc155f20c3417b689df8d2ac88d79576 ]

When at least one CPU runs in nohz_full mode, a dedicated timekeeper CPU
is guaranteed to stay online and to never stop its tick.

Meanwhile on some rare case, the dedicated timekeeper may be running
with interrupts disabled for a while, such as in stop_machine.

If jiffies stop being updated, a nohz_full CPU may end up endlessly
programming the next tick in the past, taking the last jiffies update
monotonic timestamp as a stale base, resulting in an tick storm.

Here is a scenario where it matters:

0) CPU 0 is the timekeeper and CPU 1 a nohz_full CPU.

1) A stop machine callback is queued to execute somewhere.

2) CPU 0 reaches MULTI_STOP_DISABLE_IRQ while CPU 1 is still in
   MULTI_STOP_PREPARE. Hence CPU 0 can't do its timekeeping duty. CPU 1
   can still take IRQs.

3) CPU 1 receives an IRQ which queues a timer callback one jiffy forward.

4) On IRQ exit, CPU 1 schedules the tick one jiffy forward, taking
   last_jiffies_update as a base. But last_jiffies_update hasn't been
   updated for 2 jiffies since the timekeeper has interrupts disabled.

5) clockevents_program_event(), which relies on ktime_get(), observes
   that the expiration is in the past and therefore programs the min
   delta event on the clock.

6) The tick fires immediately, goto 3)

7) Tick storm, the nohz_full CPU is drown and takes ages to reach
   MULTI_STOP_DISABLE_IRQ, which is the only way out of this situation.

Solve this with unconditionally updating jiffies if the value is stale
on nohz_full IRQ entry. IRQs and other disturbances are expected to be
rare enough on nohz_full for the unconditional call to ktime_get() to
actually matter.

Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20211026141055.57358-2-frederic@kernel.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-16 18:22:04 +02:00
Nicholas Piggin
b4d36e6c5d timers/nohz: Switch to ONESHOT_STOPPED in the low-res handler when the tick is stopped
[ Upstream commit 62c1256d544747b38e77ca9b5bfe3a26f9592576 ]

When tick_nohz_stop_tick() stops the tick and high resolution timers are
disabled, then the clock event device is not put into ONESHOT_STOPPED
mode. This can lead to spurious timer interrupts with some clock event
device drivers that don't shut down entirely after firing.

Eliminate these by putting the device into ONESHOT_STOPPED mode at points
where it is not being reprogrammed. When there are no timers active, then
tick_program_event() with KTIME_MAX can be used to stop the device. When
there is a timer active, the device can be stopped at the next tick (any
new timer added by timers will reprogram the tick).

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220422141446.915024-1-npiggin@gmail.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-16 18:22:04 +02:00
Frederic Weisbecker
c3b954a51b tick: Detect and fix jiffies update stall
[ Upstream commit a1ff03cd6fb9c501fff63a4a2bface9adcfa81cd ]

tick: Detect and fix jiffies update stall

On some rare cases, the timekeeper CPU may be delaying its jiffies
update duty for a while. Known causes include:

* The timekeeper is waiting on stop_machine in a MULTI_STOP_DISABLE_IRQ
  or MULTI_STOP_RUN state. Disabled interrupts prevent from timekeeping
  updates while waiting for the target CPU to complete its
  stop_machine() callback.

* The timekeeper vcpu has VMEXIT'ed for a long while due to some overload
  on the host.

Detect and fix these situations with emergency timekeeping catchups.

Original-patch-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-16 18:22:04 +02:00
Andrii Nakryiko
683d2969a0 bpf: aggressively forget precise markings during state checkpointing
[ Upstream commit 7a830b53c17bbadcf99f778f28aaaa4e6c41df5f ]

Exploit the property of about-to-be-checkpointed state to be able to
forget all precise markings up to that point even more aggressively. We
now clear all potentially inherited precise markings right before
checkpointing and branching off into child state. If any of children
states require precise knowledge of any SCALAR register, those will be
propagated backwards later on before this state is finalized, preserving
correctness.

There is a single selftests BPF program change, but tremendous one: 25x
reduction in number of verified instructions and states in
trace_virtqueue_add_sgs.

Cilium results are more modest, but happen across wider range of programs.

SELFTESTS RESULTS
=================

$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0'
File                 Program                  Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
-------------------  -----------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
loop6.bpf.linked1.o  trace_virtqueue_add_sgs           398057            15114   -382943 (-96.20%)              8717               336      -8381 (-96.15%)
-------------------  -----------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

CILIUM RESULTS
==============

$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0'
File           Program                           Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
-------------  --------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
bpf_host.o     tail_handle_nat_fwd_ipv4                    23426            23221       -205 (-0.88%)              1537              1515         -22 (-1.43%)
bpf_host.o     tail_handle_nat_fwd_ipv6                    13009            12904       -105 (-0.81%)               719               708         -11 (-1.53%)
bpf_host.o     tail_nodeport_nat_ingress_ipv6               5261             5196        -65 (-1.24%)               247               243          -4 (-1.62%)
bpf_host.o     tail_nodeport_nat_ipv6_egress                3446             3406        -40 (-1.16%)               203               198          -5 (-2.46%)
bpf_lxc.o      tail_handle_nat_fwd_ipv4                    23426            23221       -205 (-0.88%)              1537              1515         -22 (-1.43%)
bpf_lxc.o      tail_handle_nat_fwd_ipv6                    13009            12904       -105 (-0.81%)               719               708         -11 (-1.53%)
bpf_lxc.o      tail_ipv4_ct_egress                          5074             4897       -177 (-3.49%)               255               248          -7 (-2.75%)
bpf_lxc.o      tail_ipv4_ct_ingress                         5100             4923       -177 (-3.47%)               255               248          -7 (-2.75%)
bpf_lxc.o      tail_ipv4_ct_ingress_policy_only             5100             4923       -177 (-3.47%)               255               248          -7 (-2.75%)
bpf_lxc.o      tail_ipv6_ct_egress                          4558             4536        -22 (-0.48%)               188               187          -1 (-0.53%)
bpf_lxc.o      tail_ipv6_ct_ingress                         4578             4556        -22 (-0.48%)               188               187          -1 (-0.53%)
bpf_lxc.o      tail_ipv6_ct_ingress_policy_only             4578             4556        -22 (-0.48%)               188               187          -1 (-0.53%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6               5261             5196        -65 (-1.24%)               247               243          -4 (-1.62%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6               5261             5196        -65 (-1.24%)               247               243          -4 (-1.62%)
bpf_overlay.o  tail_nodeport_nat_ipv6_egress                3482             3442        -40 (-1.15%)               204               201          -3 (-1.47%)
bpf_xdp.o      tail_nodeport_nat_egress_ipv4               17200            15619      -1581 (-9.19%)              1111              1010        -101 (-9.09%)
-------------  --------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-16 18:21:58 +02:00
Andrii Nakryiko
2516deeb87 bpf: stop setting precise in current state
[ Upstream commit f63181b6ae79fd3b034cde641db774268c2c3acf ]

Setting reg->precise to true in current state is not necessary from
correctness standpoint, but it does pessimise the whole precision (or
rather "imprecision", because that's what we want to keep as much as
possible) tracking. Why is somewhat subtle and my best attempt to
explain this is recorded in an extensive comment for __mark_chain_precise()
function. Some more careful thinking and code reading is probably required
still to grok this completely, unfortunately. Whiteboarding and a bunch
of extra handwaiving in person would be even more helpful, but is deemed
impractical in Git commit.

Next patch pushes this imprecision property even further, building on top of
the insights described in this patch.

End results are pretty nice, we get reduction in number of total instructions
and states verified due to a better states reuse, as some of the states are now
more generic and permissive due to less unnecessary precise=true requirements.

SELFTESTS RESULTS
=================

$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0'
File                                     Program                 Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
---------------------------------------  ----------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
bpf_iter_ksym.bpf.linked1.o              dump_ksym                           347              285       -62 (-17.87%)                20                19          -1 (-5.00%)
pyperf600_bpf_loop.bpf.linked1.o         on_event                           3678             3736        +58 (+1.58%)               276               285          +9 (+3.26%)
setget_sockopt.bpf.linked1.o             skops_sockopt                      4038             3947        -91 (-2.25%)               347               343          -4 (-1.15%)
test_l4lb.bpf.linked1.o                  balancer_ingress                   4559             2611     -1948 (-42.73%)               118               105        -13 (-11.02%)
test_l4lb_noinline.bpf.linked1.o         balancer_ingress                   6279             6268        -11 (-0.18%)               237               236          -1 (-0.42%)
test_misc_tcp_hdr_options.bpf.linked1.o  misc_estab                         1307             1303         -4 (-0.31%)               100                99          -1 (-1.00%)
test_sk_lookup.bpf.linked1.o             ctx_narrow_access                   456              447         -9 (-1.97%)                39                38          -1 (-2.56%)
test_sysctl_loop1.bpf.linked1.o          sysctl_tcp_mem                     1389             1384         -5 (-0.36%)                26                25          -1 (-3.85%)
test_tc_dtime.bpf.linked1.o              egress_fwdns_prio101                518              485        -33 (-6.37%)                51                46          -5 (-9.80%)
test_tc_dtime.bpf.linked1.o              egress_host                         519              468        -51 (-9.83%)                50                44         -6 (-12.00%)
test_tc_dtime.bpf.linked1.o              ingress_fwdns_prio101               842             1000      +158 (+18.76%)                73                88        +15 (+20.55%)
xdp_synproxy_kern.bpf.linked1.o          syncookie_tc                     405757           373173     -32584 (-8.03%)             25735             22882      -2853 (-11.09%)
xdp_synproxy_kern.bpf.linked1.o          syncookie_xdp                    479055           371590   -107465 (-22.43%)             29145             22207      -6938 (-23.81%)
---------------------------------------  ----------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101
is left for a follow up, there might be some more precision-related bugs
in existing BPF verifier logic.

CILIUM RESULTS
==============

$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0'
File           Program                         Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
-------------  ------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
bpf_host.o     cil_from_host                               762              556      -206 (-27.03%)                43                37         -6 (-13.95%)
bpf_host.o     tail_handle_nat_fwd_ipv4                  23541            23426       -115 (-0.49%)              1538              1537          -1 (-0.07%)
bpf_host.o     tail_nodeport_nat_egress_ipv4             33592            33566        -26 (-0.08%)              2163              2161          -2 (-0.09%)
bpf_lxc.o      tail_handle_nat_fwd_ipv4                  23541            23426       -115 (-0.49%)              1538              1537          -1 (-0.07%)
bpf_overlay.o  tail_nodeport_nat_egress_ipv4             33581            33543        -38 (-0.11%)              2160              2157          -3 (-0.14%)
bpf_xdp.o      tail_handle_nat_fwd_ipv4                  21659            20920       -739 (-3.41%)              1440              1376         -64 (-4.44%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6                  17084            17039        -45 (-0.26%)               907               905          -2 (-0.22%)
bpf_xdp.o      tail_lb_ipv4                              73442            73430        -12 (-0.02%)              4370              4369          -1 (-0.02%)
bpf_xdp.o      tail_lb_ipv6                             152114           151895       -219 (-0.14%)              6493              6479         -14 (-0.22%)
bpf_xdp.o      tail_nodeport_nat_egress_ipv4             17377            17200       -177 (-1.02%)              1125              1111         -14 (-1.24%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6             6405             6397         -8 (-0.12%)               309               308          -1 (-0.32%)
bpf_xdp.o      tail_rev_nodeport_lb4                      7126             6934       -192 (-2.69%)               414               402         -12 (-2.90%)
bpf_xdp.o      tail_rev_nodeport_lb6                     18059            17905       -154 (-0.85%)              1105              1096          -9 (-0.81%)
-------------  ------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-16 18:21:58 +02:00
Andrii Nakryiko
c47d0178ad bpf: allow precision tracking for programs with subprogs
[ Upstream commit be2ef8161572ec1973124ebc50f56dafc2925e07 ]

Stop forcing precise=true for SCALAR registers when BPF program has any
subprograms. Current restriction means that any BPF program, as soon as
it uses subprograms, will end up not getting any of the precision
tracking benefits in reduction of number of verified states.

This patch keeps the fallback mark_all_scalars_precise() behavior if
precise marking has to cross function frames. E.g., if subprogram
requires R1 (first input arg) to be marked precise, ideally we'd need to
backtrack to the parent function and keep marking R1 and its
dependencies as precise. But right now we give up and force all the
SCALARs in any of the current and parent states to be forced to
precise=true. We can lift that restriction in the future.

But this patch fixes two issues identified when trying to enable
precision tracking for subprogs.

First, prevent "escaping" from top-most state in a global subprog. While
with entry-level BPF program we never end up requesting precision for
R1-R5 registers, because R2-R5 are not initialized (and so not readable
in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is
implicitly precise. With global subprogs, though, it's different, as
global subprog a) can have up to 5 SCALAR input arguments, which might
get marked as precise=true and b) it is validated in isolation from its
main entry BPF program. b) means that we can end up exhausting parent
state chain and still not mark all registers in reg_mask as precise,
which would lead to verifier bug warning.

To handle that, we need to consider two cases. First, if the very first
state is not immediately "checkpointed" (i.e., stored in state lookup
hashtable), it will get correct first_insn_idx and last_insn_idx
instruction set during state checkpointing. As such, this case is
already handled and __mark_chain_precision() already handles that by
just doing nothing when we reach to the very first parent state.
st->parent will be NULL and we'll just stop. Perhaps some extra check
for reg_mask and stack_mask is due here, but this patch doesn't address
that issue.

More problematic second case is when global function's initial state is
immediately checkpointed before we manage to process the very first
instruction. This is happening because when there is a call to global
subprog from the main program the very first subprog's instruction is
marked as pruning point, so before we manage to process first
instruction we have to check and checkpoint state. This patch adds
a special handling for such "empty" state, which is identified by having
st->last_insn_idx set to -1. In such case, we check that we are indeed
validating global subprog, and with some sanity checking we mark input
args as precise if requested.

Note that we also initialize state->first_insn_idx with correct start
insn_idx offset. For main program zero is correct value, but for any
subprog it's quite confusing to not have first_insn_idx set. This
doesn't have any functional impact, but helps with debugging and state
printing. We also explicitly initialize state->last_insns_idx instead of
relying on is_state_visited() to do this with env->prev_insns_idx, which
will be -1 on the very first instruction. This concludes necessary
changes to handle specifically global subprog's precision tracking.

Second identified problem was missed handling of BPF helper functions
that call into subprogs (e.g., bpf_loop and few others). From precision
tracking and backtracking logic's standpoint those are effectively calls
into subprogs and should be called as BPF_PSEUDO_CALL calls.

This patch takes the least intrusive way and just checks against a short
list of current BPF helpers that do call subprogs, encapsulated in
is_callback_calling_function() function. But to prevent accidentally
forgetting to add new BPF helpers to this "list", we also do a sanity
check in __check_func_call, which has to be called for each such special
BPF helper, to validate that BPF helper is indeed recognized as
callback-calling one. This should catch any missed checks in the future.
Adding some special flags to be added in function proto definitions
seemed like an overkill in this case.

With the above changes, it's possible to remove forceful setting of
reg->precise to true in __mark_reg_unknown, which turns on precision
tracking both inside subprogs and entry progs that have subprogs. No
warnings or errors were detected across all the selftests, but also when
validating with veristat against internal Meta BPF objects and Cilium
objects. Further, in some BPF programs there are noticeable reduction in
number of states and instructions validated due to more effective
precision tracking, especially benefiting syncookie test.

$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv  | grep -v '+0'
File                                      Program                     Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
----------------------------------------  --------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
pyperf600_bpf_loop.bpf.linked1.o          on_event                               3966             3678       -288 (-7.26%)               306               276         -30 (-9.80%)
pyperf_global.bpf.linked1.o               on_event                               7563             7530        -33 (-0.44%)               520               517          -3 (-0.58%)
pyperf_subprogs.bpf.linked1.o             on_event                              36358            36934       +576 (+1.58%)              2499              2531         +32 (+1.28%)
setget_sockopt.bpf.linked1.o              skops_sockopt                          3965             4038        +73 (+1.84%)               343               347          +4 (+1.17%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect                          64965            64901        -64 (-0.10%)              4619              4612          -7 (-0.15%)
test_misc_tcp_hdr_options.bpf.linked1.o   misc_estab                             1491             1307      -184 (-12.34%)               110               100         -10 (-9.09%)
test_pkt_access.bpf.linked1.o             test_pkt_access                         354              349         -5 (-1.41%)                25                24          -1 (-4.00%)
test_sock_fields.bpf.linked1.o            egress_read_sock_fields                 435              375       -60 (-13.79%)                22                20          -2 (-9.09%)
test_sysctl_loop2.bpf.linked1.o           sysctl_tcp_mem                         1508             1501         -7 (-0.46%)                29                28          -1 (-3.45%)
test_tc_dtime.bpf.linked1.o               egress_fwdns_prio100                    468              435        -33 (-7.05%)                45                41          -4 (-8.89%)
test_tc_dtime.bpf.linked1.o               ingress_fwdns_prio100                   398              408        +10 (+2.51%)                42                39          -3 (-7.14%)
test_tc_dtime.bpf.linked1.o               ingress_fwdns_prio101                  1096              842      -254 (-23.18%)                97                73        -24 (-24.74%)
test_tcp_hdr_options.bpf.linked1.o        estab                                  2758             2408      -350 (-12.69%)               208               181        -27 (-12.98%)
test_urandom_usdt.bpf.linked1.o           urand_read_with_sema                    466              448        -18 (-3.86%)                31                28          -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o           urand_read_without_sema                 466              448        -18 (-3.86%)                31                28          -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o           urandlib_read_with_sema                 466              448        -18 (-3.86%)                31                28          -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o           urandlib_read_without_sema              466              448        -18 (-3.86%)                31                28          -3 (-9.68%)
test_xdp_noinline.bpf.linked1.o           balancer_ingress_v6                    4302             4294         -8 (-0.19%)               257               256          -1 (-0.39%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc                         583722           405757   -177965 (-30.49%)             35846             25735     -10111 (-28.21%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp                        609123           479055   -130068 (-21.35%)             35452             29145      -6307 (-17.79%)
----------------------------------------  --------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-16 18:21:58 +02:00
Hou Tao
b44d28b98f bpf, cpumap: Make sure kthread is running before map update returns
commit 640a604585aa30f93e39b17d4d6ba69fcb1e66c9 upstream.

The following warning was reported when running stress-mode enabled
xdp_redirect_cpu with some RT threads:

  ------------[ cut here ]------------
  WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135
  CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
  Workqueue: events cpu_map_kthread_stop
  RIP: 0010:put_cpu_map_entry+0xda/0x220
  ......
  Call Trace:
   <TASK>
   ? show_regs+0x65/0x70
   ? __warn+0xa5/0x240
   ......
   ? put_cpu_map_entry+0xda/0x220
   cpu_map_kthread_stop+0x41/0x60
   process_one_work+0x6b0/0xb80
   worker_thread+0x96/0x720
   kthread+0x1a5/0x1f0
   ret_from_fork+0x3a/0x70
   ret_from_fork_asm+0x1b/0x30
   </TASK>

The root cause is the same as commit 436901649731 ("bpf: cpumap: Fix memory
leak in cpu_map_update_elem"). The kthread is stopped prematurely by
kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call
cpu_map_kthread_run() at all but XDP program has already queued some
frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks
the ptr_ring, it will find it was not emptied and report a warning.

An alternative fix is to use __cpu_map_ring_cleanup() to drop these
pending frames or skbs when kthread_stop() returns -EINTR, but it may
confuse the user, because these frames or skbs have been handled
correctly by XDP program. So instead of dropping these frames or skbs,
just make sure the per-cpu kthread is running before
__cpu_map_entry_alloc() returns.

After apply the fix, the error handle for kthread_stop() will be
unnecessary because it will always return 0, so just remove it.

Fixes: 6710e1126934 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Pu Lehui <pulehui@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230729095107.1722450-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11 15:13:58 +02:00
Jiri Olsa
c81bdf8f9f bpf: Disable preemption in bpf_event_output
commit d62cc390c2e99ae267ffe4b8d7e2e08b6c758c32 upstream.

We received report [1] of kernel crash, which is caused by
using nesting protection without disabled preemption.

The bpf_event_output can be called by programs executed by
bpf_prog_run_array_cg function that disabled migration but
keeps preemption enabled.

This can cause task to be preempted by another one inside the
nesting protection and lead eventually to two tasks using same
perf_sample_data buffer and cause crashes like:

  BUG: kernel NULL pointer dereference, address: 0000000000000001
  #PF: supervisor instruction fetch in kernel mode
  #PF: error_code(0x0010) - not-present page
  ...
  ? perf_output_sample+0x12a/0x9a0
  ? finish_task_switch.isra.0+0x81/0x280
  ? perf_event_output+0x66/0xa0
  ? bpf_event_output+0x13a/0x190
  ? bpf_event_output_data+0x22/0x40
  ? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb
  ? xa_load+0x87/0xe0
  ? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0
  ? release_sock+0x3e/0x90
  ? sk_setsockopt+0x1a1/0x12f0
  ? udp_pre_connect+0x36/0x50
  ? inet_dgram_connect+0x93/0xa0
  ? __sys_connect+0xb4/0xe0
  ? udp_setsockopt+0x27/0x40
  ? __pfx_udp_push_pending_frames+0x10/0x10
  ? __sys_setsockopt+0xdf/0x1a0
  ? __x64_sys_connect+0xf/0x20
  ? do_syscall_64+0x3a/0x90
  ? entry_SYSCALL_64_after_hwframe+0x72/0xdc

Fixing this by disabling preemption in bpf_event_output.

[1] https://github.com/cilium/cilium/issues/26756
Cc: stable@vger.kernel.org
Reported-by: Oleg "livelace" Popov <o.popov@livelace.ru>
Closes: https://github.com/cilium/cilium/issues/26756
Fixes: 2a916f2f546c ("bpf: Use migrate_disable/enable in array macros and cgroup/lirc code.")
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230725084206.580930-3-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11 15:13:57 +02:00
Hou Tao
b58d34068f bpf, cpumap: Handle skb as well when clean up ptr_ring
[ Upstream commit 7c62b75cd1a792e14b037fa4f61f9b18914e7de1 ]

The following warning was reported when running xdp_redirect_cpu with
both skb-mode and stress-mode enabled:

  ------------[ cut here ]------------
  Incorrect XDP memory type (-2128176192) usage
  WARNING: CPU: 7 PID: 1442 at net/core/xdp.c:405
  Modules linked in:
  CPU: 7 PID: 1442 Comm: kworker/7:0 Tainted: G  6.5.0-rc2+ #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
  Workqueue: events __cpu_map_entry_free
  RIP: 0010:__xdp_return+0x1e4/0x4a0
  ......
  Call Trace:
   <TASK>
   ? show_regs+0x65/0x70
   ? __warn+0xa5/0x240
   ? __xdp_return+0x1e4/0x4a0
   ......
   xdp_return_frame+0x4d/0x150
   __cpu_map_entry_free+0xf9/0x230
   process_one_work+0x6b0/0xb80
   worker_thread+0x96/0x720
   kthread+0x1a5/0x1f0
   ret_from_fork+0x3a/0x70
   ret_from_fork_asm+0x1b/0x30
   </TASK>

The reason for the warning is twofold. One is due to the kthread
cpu_map_kthread_run() is stopped prematurely. Another one is
__cpu_map_ring_cleanup() doesn't handle skb mode and treats skbs in
ptr_ring as XDP frames.

Prematurely-stopped kthread will be fixed by the preceding patch and
ptr_ring will be empty when __cpu_map_ring_cleanup() is called. But
as the comments in __cpu_map_ring_cleanup() said, handling and freeing
skbs in ptr_ring as well to "catch any broken behaviour gracefully".

Fixes: 11941f8a8536 ("bpf: cpumap: Implement generic cpumap")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230729095107.1722450-3-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-11 15:13:52 +02:00
Peter Zijlstra
40601542c4 perf: Fix function pointer case
commit 1af6239d1d3e61d33fd2f0ba53d3d1a67cc50574 upstream.

With the advent of CFI it is no longer acceptible to cast function
pointers.

The robot complains thusly:

  kernel-events-core.c⚠️cast-from-int-(-)(struct-perf_cpu_pmu_context-)-to-remote_function_f-(aka-int-(-)(void-)-)-converts-to-incompatible-function-type

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Cixi Geng <cixi.geng1@unisoc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11 15:13:48 +02:00
Peter Zijlstra
d0317b9502 mm: Move mm_cachep initialization to mm_init()
commit af80602799681c78f14fbe20b6185a56020dedee upstream.

In order to allow using mm_alloc() much earlier, move initializing
mm_cachep into mm_init().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221025201057.751153381@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:58:33 +02:00
Peter Zijlstra
8e4c253087 x86/mm: Use mm_alloc() in poking_init()
commit 3f4c8211d982099be693be9aa7d6fc4607dff290 upstream.

Instead of duplicating init_mm, allocate a fresh mm. The advantage is
that mm_alloc() has much simpler dependencies. Additionally it makes
more conceptual sense, init_mm has no (and must not have) user state
to duplicate.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221025201057.816175235@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:58:33 +02:00
Steven Rostedt (Google)
e8e93e2f01 tracing: Fix trace_event_raw_event_synth() if else statement
commit 9971c3f944489ff7aacb9d25e0cde841a5f6018a upstream.

The test to check if the field is a stack is to be done if it is not a
string. But the code had:

    } if (event->fields[i]->is_stack) {

and not

   } else if (event->fields[i]->is_stack) {

which would cause it to always be tested. Worse yet, this also included an
"else" statement that was only to be called if the field was not a string
and a stack, but this code allows it to be called if it was a string (and
not a stack).

Also fixed some whitespace issues.

Link: https://lore.kernel.org/all/202301302110.mEtNwkBD-lkp@intel.com/
Link: https://lore.kernel.org/linux-trace-kernel/20230131095237.63e3ca8d@gandalf.local.home

Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 00cf3d672a9d ("tracing: Allow synthetic events to pass around stacktraces")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03 10:22:46 +02:00
Peter Zijlstra
4ed1549129 locking/rtmutex: Fix task->pi_waiters integrity
[ Upstream commit f7853c34241807bb97673a5e97719123be39a09e ]

Henry reported that rt_mutex_adjust_prio_check() has an ordering
problem and puts the lie to the comment in [7]. Sharing the sort key
between lock->waiters and owner->pi_waiters *does* create problems,
since unlike what the comment claims, holding [L] is insufficient.

Notably, consider:

	A
      /   \
     M1   M2
     |     |
     B     C

That is, task A owns both M1 and M2, B and C block on them. In this
case a concurrent chain walk (B & C) will modify their resp. sort keys
in [7] while holding M1->wait_lock and M2->wait_lock. So holding [L]
is meaningless, they're different Ls.

This then gives rise to a race condition between [7] and [11], where
the requeue of pi_waiters will observe an inconsistent tree order.

	B				C

  (holds M1->wait_lock,		(holds M2->wait_lock,
   holds B->pi_lock)		 holds A->pi_lock)

  [7]
  waiter_update_prio();
  ...
  [8]
  raw_spin_unlock(B->pi_lock);
  ...
  [10]
  raw_spin_lock(A->pi_lock);

				[11]
				rt_mutex_enqueue_pi();
				// observes inconsistent A->pi_waiters
				// tree order

Fixing this means either extending the range of the owner lock from
[10-13] to [6-13], with the immediate problem that this means [6-8]
hold both blocked and owner locks, or duplicating the sort key.

Since the locking in chain walk is horrible enough without having to
consider pi_lock nesting rules, duplicate the sort key instead.

By giving each tree their own sort key, the above race becomes
harmless, if C sees B at the old location, then B will correct things
(if they need correcting) when it walks up the chain and reaches A.

Fixes: fb00aca47440 ("rtmutex: Turn the plist into an rb-tree")
Reported-by: Henry Wu <triangletrap12@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Henry Wu <triangletrap12@gmail.com>
Link: https://lkml.kernel.org/r/20230707161052.GF2883469%40hirez.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03 10:22:45 +02:00
Zheng Yejian
813cede7b2 tracing: Fix warning in trace_buffered_event_disable()
[ Upstream commit dea499781a1150d285c62b26659f62fb00824fce ]

Warning happened in trace_buffered_event_disable() at
  WARN_ON_ONCE(!trace_buffered_event_ref)

  Call Trace:
   ? __warn+0xa5/0x1b0
   ? trace_buffered_event_disable+0x189/0x1b0
   __ftrace_event_enable_disable+0x19e/0x3e0
   free_probe_data+0x3b/0xa0
   unregister_ftrace_function_probe_func+0x6b8/0x800
   event_enable_func+0x2f0/0x3d0
   ftrace_process_regex.isra.0+0x12d/0x1b0
   ftrace_filter_write+0xe6/0x140
   vfs_write+0x1c9/0x6f0
   [...]

The cause of the warning is in __ftrace_event_enable_disable(),
trace_buffered_event_enable() was called once while
trace_buffered_event_disable() was called twice.
Reproduction script show as below, for analysis, see the comments:
 ```
 #!/bin/bash

 cd /sys/kernel/tracing/

 # 1. Register a 'disable_event' command, then:
 #    1) SOFT_DISABLED_BIT was set;
 #    2) trace_buffered_event_enable() was called first time;
 echo 'cmdline_proc_show:disable_event:initcall:initcall_finish' > \
     set_ftrace_filter

 # 2. Enable the event registered, then:
 #    1) SOFT_DISABLED_BIT was cleared;
 #    2) trace_buffered_event_disable() was called first time;
 echo 1 > events/initcall/initcall_finish/enable

 # 3. Try to call into cmdline_proc_show(), then SOFT_DISABLED_BIT was
 #    set again!!!
 cat /proc/cmdline

 # 4. Unregister the 'disable_event' command, then:
 #    1) SOFT_DISABLED_BIT was cleared again;
 #    2) trace_buffered_event_disable() was called second time!!!
 echo '!cmdline_proc_show:disable_event:initcall:initcall_finish' > \
     set_ftrace_filter
 ```

To fix it, IIUC, we can change to call trace_buffered_event_enable() at
fist time soft-mode enabled, and call trace_buffered_event_disable() at
last time soft-mode disabled.

Link: https://lore.kernel.org/linux-trace-kernel/20230726095804.920457-1-zhengyejian1@huawei.com

Cc: <mhiramat@kernel.org>
Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03 10:22:39 +02:00
Zheng Yejian
23e8a65f9a ring-buffer: Fix wrong stat of cpu_buffer->read
[ Upstream commit 2d093282b0d4357373497f65db6a05eb0c28b7c8 ]

When pages are removed in rb_remove_pages(), 'cpu_buffer->read' is set
to 0 in order to make sure any read iterators reset themselves. However,
this will mess 'entries' stating, see following steps:

  # cd /sys/kernel/tracing/
  # 1. Enlarge ring buffer prepare for later reducing:
  # echo 20 > per_cpu/cpu0/buffer_size_kb
  # 2. Write a log into ring buffer of cpu0:
  # taskset -c 0 echo "hello1" > trace_marker
  # 3. Read the log:
  # cat per_cpu/cpu0/trace_pipe
       <...>-332     [000] .....    62.406844: tracing_mark_write: hello1
  # 4. Stop reading and see the stats, now 0 entries, and 1 event readed:
  # cat per_cpu/cpu0/stats
   entries: 0
   [...]
   read events: 1
  # 5. Reduce the ring buffer
  # echo 7 > per_cpu/cpu0/buffer_size_kb
  # 6. Now entries became unexpected 1 because actually no entries!!!
  # cat per_cpu/cpu0/stats
   entries: 1
   [...]
   read events: 0

To fix it, introduce 'page_removed' field to count total removed pages
since last reset, then use it to let read iterators reset themselves
instead of changing the 'read' pointer.

Link: https://lore.kernel.org/linux-trace-kernel/20230724054040.3489499-1-zhengyejian1@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <vnagarnaik@google.com>
Fixes: 83f40318dab0 ("ring-buffer: Make removal of ring buffer pages atomic")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03 10:22:39 +02:00
Masami Hiramatsu (Google)
ace6bed424 tracing/probes: Fix to record 0-length data_loc in fetch_store_string*() if fails
[ Upstream commit 797311bce5c2ac90b8d65e357603cfd410d36ebb ]

Fix to record 0-length data to data_loc in fetch_store_string*() if it fails
to get the string data.
Currently those expect that the data_loc is updated by store_trace_args() if
it returns the error code. However, that does not work correctly if the
argument is an array of strings. In that case, store_trace_args() only clears
the first entry of the array (which may have no error) and leaves other
entries. So it should be cleared by fetch_store_string*() itself.
Also, 'dyndata' and 'maxlen' in store_trace_args() should be updated
only if it is used (ret > 0 and argument is a dynamic data.)

Link: https://lore.kernel.org/all/168908496683.123124.4761206188794205601.stgit@devnote2/

Fixes: 40b53b771806 ("tracing: probeevent: Add array type support")
Cc: stable@vger.kernel.org
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03 10:22:31 +02:00
Masami Hiramatsu (Google)
30c8ba1da3 Revert "tracing: Add "(fault)" name injection to kernel probes"
[ Upstream commit 4ed8f337dee32df71435689c19d22e4ee846e15a ]

This reverts commit 2e9906f84fc7c99388bb7123ade167250d50f1c0.

It was turned out that commit 2e9906f84fc7 ("tracing: Add "(fault)"
name injection to kernel probes") did not work correctly and probe
events still show just '(fault)' (instead of '"(fault)"'). Also,
current '(fault)' is more explicit that it faulted.

This also moves FAULT_STRING macro to trace.h so that synthetic
event can keep using it, and uses it in trace_probe.c too.

Link: https://lore.kernel.org/all/168908495772.123124.1250788051922100079.stgit@devnote2/
Link: https://lore.kernel.org/all/20230706230642.3793a593@rorschach.local.home/

Cc: stable@vger.kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 797311bce5c2 ("tracing/probes: Fix to record 0-length data_loc in fetch_store_string*() if fails")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03 10:22:31 +02:00
Steven Rostedt (Google)
5f52389bdd tracing: Allow synthetic events to pass around stacktraces
[ Upstream commit 00cf3d672a9dd409418647e9f98784c339c3ff63 ]

Allow a stacktrace from one event to be displayed by the end event of a
synthetic event. This is very useful when looking for the longest latency
of a sleep or something blocked on I/O.

 # cd /sys/kernel/tracing/
 # echo 's:block_lat pid_t pid; u64 delta; unsigned long[] stack;' > dynamic_events
 # echo 'hist:keys=next_pid:ts=common_timestamp.usecs,st=stacktrace  if prev_state == 1||prev_state == 2' > events/sched/sched_switch/trigger
 # echo 'hist:keys=prev_pid:delta=common_timestamp.usecs-$ts,s=$st:onmax($delta).trace(block_lat,prev_pid,$delta,$s)' >> events/sched/sched_switch/trigger

The above creates a "block_lat" synthetic event that take the stacktrace of
when a task schedules out in either the interruptible or uninterruptible
states, and on a new per process max $delta (the time it was scheduled
out), will print the process id and the stacktrace.

  # echo 1 > events/synthetic/block_lat/enable
  # cat trace
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
    kworker/u16:0-767     [006] d..4.   560.645045: block_lat: pid=767 delta=66 stack=STACK:
 => __schedule
 => schedule
 => pipe_read
 => vfs_read
 => ksys_read
 => do_syscall_64
 => 0x966000aa

           <idle>-0       [003] d..4.   561.132117: block_lat: pid=0 delta=413787 stack=STACK:
 => __schedule
 => schedule
 => schedule_hrtimeout_range_clock
 => do_sys_poll
 => __x64_sys_poll
 => do_syscall_64
 => 0x966000aa

            <...>-153     [006] d..4.   562.068407: block_lat: pid=153 delta=54 stack=STACK:
 => __schedule
 => schedule
 => io_schedule
 => rq_qos_wait
 => wbt_wait
 => __rq_qos_throttle
 => blk_mq_submit_bio
 => submit_bio_noacct_nocheck
 => ext4_bio_write_page
 => mpage_submit_page
 => mpage_process_page_bufs
 => mpage_prepare_extent_to_map
 => ext4_do_writepages
 => ext4_writepages
 => do_writepages
 => __writeback_single_inode

Link: https://lkml.kernel.org/r/20230117152236.010941267@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Ching-lin Yu <chinglinyu@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 797311bce5c2 ("tracing/probes: Fix to record 0-length data_loc in fetch_store_string*() if fails")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03 10:22:30 +02:00
Masami Hiramatsu (Google)
e7b4d24fa0 tracing/probes: Fix to avoid double count of the string length on the array
[ Upstream commit 66bcf65d6cf0ca6540e2341e88ee7ef02dbdda08 ]

If an array is specified with the ustring or symstr, the length of the
strings are accumlated on both of 'ret' and 'total', which means the
length is double counted.
Just set the length to the 'ret' value for avoiding double counting.

Link: https://lore.kernel.org/all/168908492917.123124.15076463491122036025.stgit@devnote2/

Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/all/8819b154-2ba1-43c3-98a2-cbde20892023@moroto.mountain/
Fixes: 88903c464321 ("tracing/probe: Add ustring type for user-space string")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03 10:22:30 +02:00
Masami Hiramatsu (Google)
3a1a229712 tracing/probes: Add symstr type for dynamic events
[ Upstream commit b26a124cbfa80f42bfc4e63e1d5643ca98159d66 ]

Add 'symstr' type for storing the kernel symbol as a string data
instead of the symbol address. This allows us to filter the
events by wildcard symbol name.

e.g.
  # echo 'e:wqfunc workqueue.workqueue_execute_start symname=$function:symstr' >> dynamic_events
  # cat events/eprobes/wqfunc/format
  name: wqfunc
  ID: 2110
  format:
  	field:unsigned short common_type;	offset:0;	size:2;	signed:0;
  	field:unsigned char common_flags;	offset:2;	size:1;	signed:0;
  	field:unsigned char common_preempt_count;	offset:3;	size:1;	signed:0;
  	field:int common_pid;	offset:4;	size:4;	signed:1;

  	field:__data_loc char[] symname;	offset:8;	size:4;	signed:1;

  print fmt: " symname=\"%s\"", __get_str(symname)

Note that there is already 'symbol' type which just change the
print format (so it still stores the symbol address in the tracing
ring buffer.) On the other hand, 'symstr' type stores the actual
"symbol+offset/size" data as a string.

Link: https://lore.kernel.org/all/166679930847.1528100.4124308529180235965.stgit@devnote3/

Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Stable-dep-of: 66bcf65d6cf0 ("tracing/probes: Fix to avoid double count of the string length on the array")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03 10:22:30 +02:00
Mohamed Khalfella
22f4093a42 tracing/histograms: Return an error if we fail to add histogram to hist_vars list
commit 4b8b3905165ef98386a3c06f196c85d21292d029 upstream.

Commit 6018b585e8c6 ("tracing/histograms: Add histograms to hist_vars if
they have referenced variables") added a check to fail histogram creation
if save_hist_vars() failed to add histogram to hist_vars list. But the
commit failed to set ret to failed return code before jumping to
unregister histogram, fix it.

Link: https://lore.kernel.org/linux-trace-kernel/20230714203341.51396-1-mkhalfella@purestorage.com

Cc: stable@vger.kernel.org
Fixes: 6018b585e8c6 ("tracing/histograms: Add histograms to hist_vars if they have referenced variables")
Signed-off-by: Mohamed Khalfella <mkhalfella@purestorage.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-27 08:47:04 +02:00
Kumar Kartikeya Dwivedi
e35dc107a1 bpf: Fix subprog idx logic in check_max_stack_depth
[ Upstream commit ba7b3e7d5f9014be65879ede8fd599cb222901c9 ]

The assignment to idx in check_max_stack_depth happens once we see a
bpf_pseudo_call or bpf_pseudo_func. This is not an issue as the rest of
the code performs a few checks and then pushes the frame to the frame
stack, except the case of async callbacks. If the async callback case
causes the loop iteration to be skipped, the idx assignment will be
incorrect on the next iteration of the loop. The value stored in the
frame stack (as the subprogno of the current subprog) will be incorrect.

This leads to incorrect checks and incorrect tail_call_reachable
marking. Save the target subprog in a new variable and only assign to
idx once we are done with the is_async_cb check which may skip pushing
of frame to the frame stack and subsequent stack depth checks and tail
call markings.

Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:47:01 +02:00
Masami Hiramatsu (Google)
25d63eb730 tracing/probes: Fix to update dynamic data counter if fetcharg uses it
commit e38e2c6a9efc435f9de344b7c91f7697e01b47d5 upstream.

Fix to update dynamic data counter ('dyndata') and max length ('maxlen')
only if the fetcharg uses the dynamic data. Also get out arg->dynamic
from unlikely(). This makes dynamic data address wrong if
process_fetch_insn() returns error on !arg->dynamic case.

Link: https://lore.kernel.org/all/168908494781.123124.8160245359962103684.stgit@devnote2/

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Link: https://lore.kernel.org/all/20230710233400.5aaf024e@gandalf.local.home/
Fixes: 9178412ddf5a ("tracing: probeevent: Return consumed bytes of dynamic area")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23 13:47:56 +02:00
Masami Hiramatsu (Google)
8277bcacf1 tracing/probes: Fix not to count error code to total length
commit b41326b5e0f82e93592c4366359917b5d67b529f upstream.

Fix not to count the error code (which is minus value) to the total
used length of array, because it can mess up the return code of
process_fetch_insn_bottom(). Also clear the 'ret' value because it
will be used for calculating next data_loc entry.

Link: https://lore.kernel.org/all/168908493827.123124.2175257289106364229.stgit@devnote2/

Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/all/8819b154-2ba1-43c3-98a2-cbde20892023@moroto.mountain/
Fixes: 9b960a38835f ("tracing: probeevent: Unify fetch_insn processing common part")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23 13:47:56 +02:00
Mateusz Stachyra
3b5d9b7b87 tracing: Fix null pointer dereference in tracing_err_log_open()
commit 02b0095e2fbbc060560c1065f86a211d91e27b26 upstream.

Fix an issue in function 'tracing_err_log_open'.
The function doesn't call 'seq_open' if the file is opened only with
write permissions, which results in 'file->private_data' being left as null.
If we then use 'lseek' on that opened file, 'seq_lseek' dereferences
'file->private_data' in 'mutex_lock(&m->lock)', resulting in a kernel panic.
Writing to this node requires root privileges, therefore this bug
has very little security impact.

Tracefs node: /sys/kernel/tracing/error_log

Example Kernel panic:

Unable to handle kernel NULL pointer dereference at virtual address 0000000000000038
Call trace:
 mutex_lock+0x30/0x110
 seq_lseek+0x34/0xb8
 __arm64_sys_lseek+0x6c/0xb8
 invoke_syscall+0x58/0x13c
 el0_svc_common+0xc4/0x10c
 do_el0_svc+0x24/0x98
 el0_svc+0x24/0x88
 el0t_64_sync_handler+0x84/0xe4
 el0t_64_sync+0x1b4/0x1b8
Code: d503201f aa0803e0 aa1f03e1 aa0103e9 (c8e97d02)
---[ end trace 561d1b49c12cf8a5 ]---
Kernel panic - not syncing: Oops: Fatal exception

Link: https://lore.kernel.org/linux-trace-kernel/20230703155237eucms1p4dfb6a19caa14c79eb6c823d127b39024@eucms1p4
Link: https://lore.kernel.org/linux-trace-kernel/20230704102706eucms1p30d7ecdcc287f46ad67679fc8491b2e0f@eucms1p3

Cc: stable@vger.kernel.org
Fixes: 8a062902be725 ("tracing: Add tracing error log")
Signed-off-by: Mateusz Stachyra <m.stachyra@samsung.com>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23 13:47:56 +02:00
Zheng Yejian
179feeeef6 ftrace: Fix possible warning on checking all pages used in ftrace_process_locs()
commit 26efd79c4624294e553aeaa3439c646729bad084 upstream.

As comments in ftrace_process_locs(), there may be NULL pointers in
mcount_loc section:
 > Some architecture linkers will pad between
 > the different mcount_loc sections of different
 > object files to satisfy alignments.
 > Skip any NULL pointers.

After commit 20e5227e9f55 ("ftrace: allow NULL pointers in mcount_loc"),
NULL pointers will be accounted when allocating ftrace pages but skipped
before adding into ftrace pages, this may result in some pages not being
used. Then after commit 706c81f87f84 ("ftrace: Remove extra helper
functions"), warning may occur at:
  WARN_ON(pg->next);

To fix it, only warn for case that no pointers skipped but pages not used
up, then free those unused pages after releasing ftrace_lock.

Link: https://lore.kernel.org/linux-trace-kernel/20230712060452.3175675-1-zhengyejian1@huawei.com

Cc: stable@vger.kernel.org
Fixes: 706c81f87f84 ("ftrace: Remove extra helper functions")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23 13:47:56 +02:00
Zheng Yejian
bb14a93bcc ring-buffer: Fix deadloop issue on reading trace_pipe
commit 7e42907f3a7b4ce3a2d1757f6d78336984daf8f5 upstream.

Soft lockup occurs when reading file 'trace_pipe':

  watchdog: BUG: soft lockup - CPU#6 stuck for 22s! [cat:4488]
  [...]
  RIP: 0010:ring_buffer_empty_cpu+0xed/0x170
  RSP: 0018:ffff88810dd6fc48 EFLAGS: 00000246
  RAX: 0000000000000000 RBX: 0000000000000246 RCX: ffffffff93d1aaeb
  RDX: ffff88810a280040 RSI: 0000000000000008 RDI: ffff88811164b218
  RBP: ffff88811164b218 R08: 0000000000000000 R09: ffff88815156600f
  R10: ffffed102a2acc01 R11: 0000000000000001 R12: 0000000051651901
  R13: 0000000000000000 R14: ffff888115e49500 R15: 0000000000000000
  [...]
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f8d853c2000 CR3: 000000010dcd8000 CR4: 00000000000006e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   __find_next_entry+0x1a8/0x4b0
   ? peek_next_entry+0x250/0x250
   ? down_write+0xa5/0x120
   ? down_write_killable+0x130/0x130
   trace_find_next_entry_inc+0x3b/0x1d0
   tracing_read_pipe+0x423/0xae0
   ? tracing_splice_read_pipe+0xcb0/0xcb0
   vfs_read+0x16b/0x490
   ksys_read+0x105/0x210
   ? __ia32_sys_pwrite64+0x200/0x200
   ? switch_fpu_return+0x108/0x220
   do_syscall_64+0x33/0x40
   entry_SYSCALL_64_after_hwframe+0x61/0xc6

Through the vmcore, I found it's because in tracing_read_pipe(),
ring_buffer_empty_cpu() found some buffer is not empty but then it
cannot read anything due to "rb_num_of_entries() == 0" always true,
Then it infinitely loop the procedure due to user buffer not been
filled, see following code path:

  tracing_read_pipe() {
    ... ...
    waitagain:
      tracing_wait_pipe() // 1. find non-empty buffer here
      trace_find_next_entry_inc()  // 2. loop here try to find an entry
        __find_next_entry()
          ring_buffer_empty_cpu();  // 3. find non-empty buffer
          peek_next_entry()  // 4. but peek always return NULL
            ring_buffer_peek()
              rb_buffer_peek()
                rb_get_reader_page()
                  // 5. because rb_num_of_entries() == 0 always true here
                  //    then return NULL
      // 6. user buffer not been filled so goto 'waitgain'
      //    and eventually leads to an deadloop in kernel!!!
  }

By some analyzing, I found that when resetting ringbuffer, the 'entries'
of its pages are not all cleared (see rb_reset_cpu()). Then when reducing
the ringbuffer, and if some reduced pages exist dirty 'entries' data, they
will be added into 'cpu_buffer->overrun' (see rb_remove_pages()), which
cause wrong 'overrun' count and eventually cause the deadloop issue.

To fix it, we need to clear every pages in rb_reset_cpu().

Link: https://lore.kernel.org/linux-trace-kernel/20230708225144.3785600-1-zhengyejian1@huawei.com

Cc: stable@vger.kernel.org
Fixes: a5fb833172eca ("ring-buffer: Fix uninitialized read_stamp")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23 13:47:55 +02:00
Zheng Yejian
954792db9f tracing: Fix memory leak of iter->temp when reading trace_pipe
commit d5a821896360cc8b93a15bd888fabc858c038dc0 upstream.

kmemleak reports:
  unreferenced object 0xffff88814d14e200 (size 256):
    comm "cat", pid 336, jiffies 4294871818 (age 779.490s)
    hex dump (first 32 bytes):
      04 00 01 03 00 00 00 00 08 00 00 00 00 00 00 00  ................
      0c d8 c8 9b ff ff ff ff 04 5a ca 9b ff ff ff ff  .........Z......
    backtrace:
      [<ffffffff9bdff18f>] __kmalloc+0x4f/0x140
      [<ffffffff9bc9238b>] trace_find_next_entry+0xbb/0x1d0
      [<ffffffff9bc9caef>] trace_print_lat_context+0xaf/0x4e0
      [<ffffffff9bc94490>] print_trace_line+0x3e0/0x950
      [<ffffffff9bc95499>] tracing_read_pipe+0x2d9/0x5a0
      [<ffffffff9bf03a43>] vfs_read+0x143/0x520
      [<ffffffff9bf04c2d>] ksys_read+0xbd/0x160
      [<ffffffff9d0f0edf>] do_syscall_64+0x3f/0x90
      [<ffffffff9d2000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8

when reading file 'trace_pipe', 'iter->temp' is allocated or relocated
in trace_find_next_entry() but not freed before 'trace_pipe' is closed.

To fix it, free 'iter->temp' in tracing_release_pipe().

Link: https://lore.kernel.org/linux-trace-kernel/20230713141435.1133021-1-zhengyejian1@huawei.com

Cc: stable@vger.kernel.org
Fixes: ff895103a84ab ("tracing: Save off entry when peeking at next entry")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23 13:47:55 +02:00
Mohamed Khalfella
97f54b330c tracing/histograms: Add histograms to hist_vars if they have referenced variables
commit 6018b585e8c6fa7d85d4b38d9ce49a5b67be7078 upstream.

Hist triggers can have referenced variables without having direct
variables fields. This can be the case if referenced variables are added
for trigger actions. In this case the newly added references will not
have field variables. Not taking such referenced variables into
consideration can result in a bug where it would be possible to remove
hist trigger with variables being refenced. This will result in a bug
that is easily reproducable like so

$ cd /sys/kernel/tracing
$ echo 'synthetic_sys_enter char[] comm; long id' >> synthetic_events
$ echo 'hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
$ echo 'hist:keys=common_pid.execname,id.syscall:onmatch(raw_syscalls.sys_enter).synthetic_sys_enter($comm, id)' >> events/raw_syscalls/sys_enter/trigger
$ echo '!hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger

[  100.263533] ==================================================================
[  100.264634] BUG: KASAN: slab-use-after-free in resolve_var_refs+0xc7/0x180
[  100.265520] Read of size 8 at addr ffff88810375d0f0 by task bash/439
[  100.266320]
[  100.266533] CPU: 2 PID: 439 Comm: bash Not tainted 6.5.0-rc1 #4
[  100.267277] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014
[  100.268561] Call Trace:
[  100.268902]  <TASK>
[  100.269189]  dump_stack_lvl+0x4c/0x70
[  100.269680]  print_report+0xc5/0x600
[  100.270165]  ? resolve_var_refs+0xc7/0x180
[  100.270697]  ? kasan_complete_mode_report_info+0x80/0x1f0
[  100.271389]  ? resolve_var_refs+0xc7/0x180
[  100.271913]  kasan_report+0xbd/0x100
[  100.272380]  ? resolve_var_refs+0xc7/0x180
[  100.272920]  __asan_load8+0x71/0xa0
[  100.273377]  resolve_var_refs+0xc7/0x180
[  100.273888]  event_hist_trigger+0x749/0x860
[  100.274505]  ? kasan_save_stack+0x2a/0x50
[  100.275024]  ? kasan_set_track+0x29/0x40
[  100.275536]  ? __pfx_event_hist_trigger+0x10/0x10
[  100.276138]  ? ksys_write+0xd1/0x170
[  100.276607]  ? do_syscall_64+0x3c/0x90
[  100.277099]  ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[  100.277771]  ? destroy_hist_data+0x446/0x470
[  100.278324]  ? event_hist_trigger_parse+0xa6c/0x3860
[  100.278962]  ? __pfx_event_hist_trigger_parse+0x10/0x10
[  100.279627]  ? __kasan_check_write+0x18/0x20
[  100.280177]  ? mutex_unlock+0x85/0xd0
[  100.280660]  ? __pfx_mutex_unlock+0x10/0x10
[  100.281200]  ? kfree+0x7b/0x120
[  100.281619]  ? ____kasan_slab_free+0x15d/0x1d0
[  100.282197]  ? event_trigger_write+0xac/0x100
[  100.282764]  ? __kasan_slab_free+0x16/0x20
[  100.283293]  ? __kmem_cache_free+0x153/0x2f0
[  100.283844]  ? sched_mm_cid_remote_clear+0xb1/0x250
[  100.284550]  ? __pfx_sched_mm_cid_remote_clear+0x10/0x10
[  100.285221]  ? event_trigger_write+0xbc/0x100
[  100.285781]  ? __kasan_check_read+0x15/0x20
[  100.286321]  ? __bitmap_weight+0x66/0xa0
[  100.286833]  ? _find_next_bit+0x46/0xe0
[  100.287334]  ? task_mm_cid_work+0x37f/0x450
[  100.287872]  event_triggers_call+0x84/0x150
[  100.288408]  trace_event_buffer_commit+0x339/0x430
[  100.289073]  ? ring_buffer_event_data+0x3f/0x60
[  100.292189]  trace_event_raw_event_sys_enter+0x8b/0xe0
[  100.295434]  syscall_trace_enter.constprop.0+0x18f/0x1b0
[  100.298653]  syscall_enter_from_user_mode+0x32/0x40
[  100.301808]  do_syscall_64+0x1a/0x90
[  100.304748]  entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[  100.307775] RIP: 0033:0x7f686c75c1cb
[  100.310617] Code: 73 01 c3 48 8b 0d 65 3c 10 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 21 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 3c 10 00 f7 d8 64 89 01 48
[  100.317847] RSP: 002b:00007ffc60137a38 EFLAGS: 00000246 ORIG_RAX: 0000000000000021
[  100.321200] RAX: ffffffffffffffda RBX: 000055f566469ea0 RCX: 00007f686c75c1cb
[  100.324631] RDX: 0000000000000001 RSI: 0000000000000001 RDI: 000000000000000a
[  100.328104] RBP: 00007ffc60137ac0 R08: 00007f686c818460 R09: 000000000000000a
[  100.331509] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000009
[  100.334992] R13: 0000000000000007 R14: 000000000000000a R15: 0000000000000007
[  100.338381]  </TASK>

We hit the bug because when second hist trigger has was created
has_hist_vars() returned false because hist trigger did not have
variables. As a result of that save_hist_vars() was not called to add
the trigger to trace_array->hist_vars. Later on when we attempted to
remove the first histogram find_any_var_ref() failed to detect it is
being used because it did not find the second trigger in hist_vars list.

With this change we wait until trigger actions are created so we can take
into consideration if hist trigger has variable references. Also, now we
check the return value of save_hist_vars() and fail trigger creation if
save_hist_vars() fails.

Link: https://lore.kernel.org/linux-trace-kernel/20230712223021.636335-1-mkhalfella@purestorage.com

Cc: stable@vger.kernel.org
Fixes: 067fe038e70f6 ("tracing: Add variable reference handling to hist triggers")
Signed-off-by: Mohamed Khalfella <mkhalfella@purestorage.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23 13:47:55 +02:00
Pu Lehui
d26299f50f bpf: cpumap: Fix memory leak in cpu_map_update_elem
[ Upstream commit 4369016497319a9635702da010d02af1ebb1849d ]

Syzkaller reported a memory leak as follows:

BUG: memory leak
unreferenced object 0xff110001198ef748 (size 192):
  comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
  hex dump (first 32 bytes):
    00 00 00 00 4a 19 00 00 80 ad e3 e4 fe ff c0 00  ....J...........
    00 b2 d3 0c 01 00 11 ff 28 f5 8e 19 01 00 11 ff  ........(.......
  backtrace:
    [<ffffffffadd28087>] __cpu_map_entry_alloc+0xf7/0xb00
    [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
    [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
    [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
    [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
    [<ffffffffb029cc80>] do_syscall_64+0x30/0x40
    [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6

BUG: memory leak
unreferenced object 0xff110001198ef528 (size 192):
  comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
  hex dump (first 32 bytes):
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace:
    [<ffffffffadd281f0>] __cpu_map_entry_alloc+0x260/0xb00
    [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
    [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
    [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
    [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
    [<ffffffffb029cc80>] do_syscall_64+0x30/0x40
    [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6

BUG: memory leak
unreferenced object 0xff1100010fd93d68 (size 8):
  comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
  hex dump (first 8 bytes):
    00 00 00 00 00 00 00 00                          ........
  backtrace:
    [<ffffffffade5db3e>] kvmalloc_node+0x11e/0x170
    [<ffffffffadd28280>] __cpu_map_entry_alloc+0x2f0/0xb00
    [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
    [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
    [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
    [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
    [<ffffffffb029cc80>] do_syscall_64+0x30/0x40
    [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6

In the cpu_map_update_elem flow, when kthread_stop is called before
calling the threadfn of rcpu->kthread, since the KTHREAD_SHOULD_STOP bit
of kthread has been set by kthread_stop, the threadfn of rcpu->kthread
will never be executed, and rcpu->refcnt will never be 0, which will
lead to the allocated rcpu, rcpu->queue and rcpu->queue->queue cannot be
released.

Calling kthread_stop before executing kthread's threadfn will return
-EINTR. We can complete the release of memory resources in this state.

Fixes: 6710e1126934 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230711115848.2701559-1-pulehui@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:47:45 +02:00
Tzvetomir Stoyanov (VMware)
d29387922b kernel/trace: Fix cleanup logic of enable_trace_eprobe
[ Upstream commit cf0a624dc706c306294c14e6b3e7694702f25191 ]

The enable_trace_eprobe() function enables all event probes, attached
to given trace probe. If an error occurs in enabling one of the event
probes, all others should be roll backed. There is a bug in that roll
back logic - instead of all event probes, only the failed one is
disabled.

Link: https://lore.kernel.org/all/20230703042853.1427493-1-tz.stoyanov@gmail.com/

Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Fixes: 7491e2c44278 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:47:43 +02:00
Kumar Kartikeya Dwivedi
4a4804e6ae bpf: Fix max stack depth check for async callbacks
[ Upstream commit 5415ccd50a8620c8cbaa32d6f18c946c453566f5 ]

The check_max_stack_depth pass happens after the verifier's symbolic
execution, and attempts to walk the call graph of the BPF program,
ensuring that the stack usage stays within bounds for all possible call
chains. There are two cases to consider: bpf_pseudo_func and
bpf_pseudo_call. In the former case, the callback pointer is loaded into
a register, and is assumed that it is passed to some helper later which
calls it (however there is no way to be sure), but the check remains
conservative and accounts the stack usage anyway. For this particular
case, asynchronous callbacks are skipped as they execute asynchronously
when their corresponding event fires.

The case of bpf_pseudo_call is simpler and we know that the call is
definitely made, hence the stack depth of the subprog is accounted for.

However, the current check still skips an asynchronous callback even if
a bpf_pseudo_call was made for it. This is erroneous, as it will miss
accounting for the stack usage of the asynchronous callback, which can
be used to breach the maximum stack depth limit.

Fix this by only skipping asynchronous callbacks when the instruction is
not a pseudo call to the subprog.

Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230705144730.235802-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:47:40 +02:00
Linus Torvalds
d528faa9e8 workqueue: clean up WORK_* constant types, clarify masking
commit afa4bb778e48d79e4a642ed41e3b4e0de7489a6c upstream.

Dave Airlie reports that gcc-13.1.1 has started complaining about some
of the workqueue code in 32-bit arm builds:

  kernel/workqueue.c: In function ‘get_work_pwq’:
  kernel/workqueue.c:713:24: error: cast to pointer from integer of different size [-Werror=int-to-pointer-cast]
    713 |                 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
        |                        ^
  [ ... a couple of other cases ... ]

and while it's not immediately clear exactly why gcc started complaining
about it now, I suspect it's some C23-induced enum type handlign fixup in
gcc-13 is the cause.

Whatever the reason for starting to complain, the code and data types
are indeed disgusting enough that the complaint is warranted.

The wq code ends up creating various "helper constants" (like that
WORK_STRUCT_WQ_DATA_MASK) using an enum type, which is all kinds of
confused.  The mask needs to be 'unsigned long', not some unspecified
enum type.

To make matters worse, the actual "mask and cast to a pointer" is
repeated a couple of times, and the cast isn't even always done to the
right pointer, but - as the error case above - to a 'void *' with then
the compiler finishing the job.

That's now how we roll in the kernel.

So create the masks using the proper types rather than some ambiguous
enumeration, and use a nice helper that actually does the type
conversion in one well-defined place.

Incidentally, this magically makes clang generate better code.  That,
admittedly, is really just a sign of clang having been seriously
confused before, and cleaning up the typing unconfuses the compiler too.

Reported-by: Dave Airlie <airlied@gmail.com>
Link: https://lore.kernel.org/lkml/CAPM=9twNnV4zMCvrPkw3H-ajZOH-01JVh_kDrxdPYQErz8ZTdA@mail.gmail.com/
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23 13:47:38 +02:00
Christophe Leroy
d4f3531cd2 kcsan: Don't expect 64 bits atomic builtins from 32 bits architectures
[ Upstream commit 353e7300a1db928e427462f2745f9a2cd1625b3d ]

Activating KCSAN on a 32 bits architecture leads to the following
link-time failure:

    LD      .tmp_vmlinux.kallsyms1
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_load':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_load_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_store':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_store_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_exchange':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_exchange_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_add':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_add_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_sub':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_sub_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_and':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_and_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_or':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_or_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_xor':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_xor_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_nand':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_nand_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_compare_exchange_strong':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_compare_exchange_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_compare_exchange_weak':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_compare_exchange_8'
  powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_compare_exchange_val':
  kernel/kcsan/core.c:1273: undefined reference to `__atomic_compare_exchange_8'

32 bits architectures don't have 64 bits atomic builtins. Only
include DEFINE_TSAN_ATOMIC_OPS(64) on 64 bits architectures.

Fixes: 0f8ad5f2e934 ("kcsan: Add support for atomic builtins")
Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Marco Elver <elver@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/d9c6afc28d0855240171a4e0ad9ffcdb9d07fceb.1683892665.git.christophe.leroy@csgroup.eu
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:47:12 +02:00
Zhen Lei
79c0fbf8f3 kexec: fix a memory leak in crash_shrink_memory()
[ Upstream commit 1cba6c4309f03de570202c46f03df3f73a0d4c82 ]

Patch series "kexec: enable kexec_crash_size to support two crash kernel
regions".

When crashkernel=X fails to reserve region under 4G, it will fall back to
reserve region above 4G and a region of the default size will also be
reserved under 4G.  Unfortunately, /sys/kernel/kexec_crash_size only
supports one crash kernel region now, the user cannot sense the low memory
reserved by reading /sys/kernel/kexec_crash_size.  Also, low memory cannot
be freed by writing this file.

For example:
resource_size(crashk_res) = 512M
resource_size(crashk_low_res) = 256M

The result of 'cat /sys/kernel/kexec_crash_size' is 512M, but it should be
768M.  When we execute 'echo 0 > /sys/kernel/kexec_crash_size', the size
of crashk_res becomes 0 and resource_size(crashk_low_res) is still 256 MB,
which is incorrect.

Since crashk_res manages the memory with high address and crashk_low_res
manages the memory with low address, crashk_low_res is shrunken only when
all crashk_res is shrunken.  And because when there is only one crash
kernel region, crashk_res is always used.  Therefore, if all crashk_res is
shrunken and crashk_low_res still exists, swap them.

This patch (of 6):

If the value of parameter 'new_size' is in the semi-open and semi-closed
interval (crashk_res.end - KEXEC_CRASH_MEM_ALIGN + 1, crashk_res.end], the
calculation result of ram_res is:

	ram_res->start = crashk_res.end + 1
	ram_res->end   = crashk_res.end

The operation of insert_resource() fails, and ram_res is not added to
iomem_resource.  As a result, the memory of the control block ram_res is
leaked.

In fact, on all architectures, the start address and size of crashk_res
are already aligned by KEXEC_CRASH_MEM_ALIGN.  Therefore, we do not need
to round up crashk_res.start again.  Instead, we should round up
'new_size' in advance.

Link: https://lkml.kernel.org/r/20230527123439.772-1-thunder.leizhen@huawei.com
Link: https://lkml.kernel.org/r/20230527123439.772-2-thunder.leizhen@huawei.com
Fixes: 6480e5a09237 ("kdump: add missing RAM resource in crash_shrink_memory()")
Fixes: 06a7f711246b ("kexec: premit reduction of the reserved memory size")
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Cong Wang <amwang@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:46:52 +02:00
Douglas Anderson
ed8d827f43 watchdog/perf: more properly prevent false positives with turbo modes
[ Upstream commit 4379e59fe5665cfda737e45b8bf2f05321ef049c ]

Currently, in the watchdog_overflow_callback() we first check to see if
the watchdog had been touched and _then_ we handle the workaround for
turbo mode.  This order should be reversed.

Specifically, "touching" the hardlockup detector's watchdog should avoid
lockups being detected for one period that should be roughly the same
regardless of whether we're running turbo or not.  That means that we
should do the extra accounting for turbo _before_ we look at (and clear)
the global indicating that we've been touched.

NOTE: this fix is made based on code inspection.  I am not aware of any
reports where the old code would have generated false positives.  That
being said, this order seems more correct and also makes it easier down
the line to share code with the "buddy" hardlockup detector.

Link: https://lkml.kernel.org/r/20230519101840.v5.2.I843b0d1de3e096ba111a179f3adb16d576bef5c7@changeid
Fixes: 7edaeb6841df ("kernel/watchdog: Prevent false positives with turbo modes")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:46:52 +02:00
Stanislav Fomichev
ac6158b5c4 bpf: Don't EFAULT for {g,s}setsockopt with wrong optlen
[ Upstream commit 29ebbba7d46136cba324264e513a1e964ca16c0a ]

With the way the hooks implemented right now, we have a special
condition: optval larger than PAGE_SIZE will expose only first 4k into
BPF; any modifications to the optval are ignored. If the BPF program
doesn't handle this condition by resetting optlen to 0,
the userspace will get EFAULT.

The intention of the EFAULT was to make it apparent to the
developers that the program is doing something wrong.
However, this inadvertently might affect production workloads
with the BPF programs that are not too careful (i.e., returning EFAULT
for perfectly valid setsockopt/getsockopt calls).

Let's try to minimize the chance of BPF program screwing up userspace
by ignoring the output of those BPF programs (instead of returning
EFAULT to the userspace). pr_info_once those cases to
the dmesg to help with figuring out what's going wrong.

Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks")
Suggested-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230511170456.1759459-2-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:46:49 +02:00
Qiuxu Zhuo
f766d45ab2 rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale
[ Upstream commit 23fc8df26dead16687ae6eb47b0561a4a832e2f6 ]

Running the 'kfree_rcu_test' test case [1] results in a splat [2].
The root cause is the kfree_scale_thread thread(s) continue running
after unloading the rcuscale module.  This commit fixes that isue by
invoking kfree_scale_cleanup() from rcu_scale_cleanup() when removing
the rcuscale module.

[1] modprobe rcuscale kfree_rcu_test=1
    // After some time
    rmmod rcuscale
    rmmod torture

[2] BUG: unable to handle page fault for address: ffffffffc0601a87
    #PF: supervisor instruction fetch in kernel mode
    #PF: error_code(0x0010) - not-present page
    PGD 11de4f067 P4D 11de4f067 PUD 11de51067 PMD 112f4d067 PTE 0
    Oops: 0010 [#1] PREEMPT SMP NOPTI
    CPU: 1 PID: 1798 Comm: kfree_scale_thr Not tainted 6.3.0-rc1-rcu+ #1
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
    RIP: 0010:0xffffffffc0601a87
    Code: Unable to access opcode bytes at 0xffffffffc0601a5d.
    RSP: 0018:ffffb25bc2e57e18 EFLAGS: 00010297
    RAX: 0000000000000000 RBX: ffffffffc061f0b6 RCX: 0000000000000000
    RDX: 0000000000000000 RSI: ffffffff962fd0de RDI: ffffffff962fd0de
    RBP: ffffb25bc2e57ea8 R08: 0000000000000000 R09: 0000000000000000
    R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
    R13: 0000000000000000 R14: 000000000000000a R15: 00000000001c1dbe
    FS:  0000000000000000(0000) GS:ffff921fa2200000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: ffffffffc0601a5d CR3: 000000011de4c006 CR4: 0000000000370ee0
    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
    DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
    Call Trace:
     <TASK>
     ? kvfree_call_rcu+0xf0/0x3a0
     ? kthread+0xf3/0x120
     ? kthread_complete_and_exit+0x20/0x20
     ? ret_from_fork+0x1f/0x30
     </TASK>
    Modules linked in: rfkill sunrpc ... [last unloaded: torture]
    CR2: ffffffffc0601a87
    ---[ end trace 0000000000000000 ]---

Fixes: e6e78b004fa7 ("rcuperf: Add kfree_rcu() performance Tests")
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:46:47 +02:00
Qiuxu Zhuo
bfe210f625 rcu/rcuscale: Move rcu_scale_*() after kfree_scale_cleanup()
[ Upstream commit bf5ddd736509a7d9077c0b6793e6f0852214dbea ]

This code-movement-only commit moves the rcu_scale_cleanup() and
rcu_scale_shutdown() functions to follow kfree_scale_cleanup().
This is code movement is in preparation for a bug-fix patch that invokes
kfree_scale_cleanup() from rcu_scale_cleanup().

Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Stable-dep-of: 23fc8df26dea ("rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:46:47 +02:00
Paul E. McKenney
751cb95117 rcuscale: Move shutdown from wait_event() to wait_event_idle()
[ Upstream commit ef1ef3d47677dc191b88650a9f7f91413452cc1b ]

The rcu_scale_shutdown() and kfree_scale_shutdown() kthreads/functions
use wait_event() to wait for the rcuscale test to complete.  However,
each updater thread in such a test waits for at least 100 grace periods.
If each grace period takes more than 1.2 seconds, which is long, but
not insanely so, this can trigger the hung-task timeout.

This commit therefore replaces those wait_event() calls with calls to
wait_event_idle(), which do not trigger the hung-task timeout.

Reported-by: kernel test robot <yujie.liu@intel.com>
Reported-by: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Yujie Liu <yujie.liu@intel.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Stable-dep-of: 23fc8df26dea ("rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:46:47 +02:00
Li Zhijian
a6d33ea305 rcuscale: Always log error message
[ Upstream commit 86e7ed1bd57d020e35d430542bf5d689c3200568 ]

Unconditionally log messages corresponding to errors.

Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Li Zhijian <zhijianx.li@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Stable-dep-of: 23fc8df26dea ("rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:46:47 +02:00
Thomas Gleixner
0670c4c567 posix-timers: Prevent RT livelock in itimer_delete()
[ Upstream commit 9d9e522010eb5685d8b53e8a24320653d9d4cbbf ]

itimer_delete() has a retry loop when the timer is concurrently expired. On
non-RT kernels this just spin-waits until the timer callback has completed,
except for posix CPU timers which have HAVE_POSIX_CPU_TIMERS_TASK_WORK
enabled.

In that case and on RT kernels the existing task could live lock when
preempting the task which does the timer delivery.

Replace spin_unlock() with an invocation of timer_wait_running() to handle
it the same way as the other retry loops in the posix timer code.

Fixes: ec8f954a40da ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87v8g7c50d.ffs@tglx
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:46:45 +02:00
Krister Johansen
3477323177 bpf: ensure main program has an extable
commit 0108a4e9f3584a7a2c026d1601b0682ff7335d95 upstream.

When subprograms are in use, the main program is not jit'd after the
subprograms because jit_subprogs sets a value for prog->bpf_func upon
success.  Subsequent calls to the JIT are bypassed when this value is
non-NULL.  This leads to a situation where the main program and its
func[0] counterpart are both in the bpf kallsyms tree, but only func[0]
has an extable.  Extables are only created during JIT.  Now there are
two nearly identical program ksym entries in the tree, but only one has
an extable.  Depending upon how the entries are placed, there's a chance
that a fault will call search_extable on the aux with the NULL entry.

Since jit_subprogs already copies state from func[0] to the main
program, include the extable pointer in this state duplication.
Additionally, ensure that the copy of the main program in func[0] is not
added to the bpf_prog_kallsyms table. Instead, let the main program get
added later in bpf_prog_load().  This ensures there is only a single
copy of the main program in the kallsyms table, and that its tag matches
the tag observed by tooling like bpftool.

Cc: stable@vger.kernel.org
Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/6de9b2f4b4724ef56efbb0339daaa66c8b68b1e7.1686616663.git.kjlx@templeofstupid.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-05 18:25:05 +01:00
Florent Revest
b7db41a865 bpf/btf: Accept function names that contain dots
[ Upstream commit 9724160b3942b0a967b91a59f81da5593f28b8ba ]

When building a kernel with LLVM=1, LLVM_IAS=0 and CONFIG_KASAN=y, LLVM
leaves DWARF tags for the "asan.module_ctor" & co symbols. In turn,
pahole creates BTF_KIND_FUNC entries for these and this makes the BTF
metadata validation fail because they contain a dot.

In a dramatic turn of event, this BTF verification failure can cause
the netfilter_bpf initialization to fail, causing netfilter_core to
free the netfilter_helper hashmap and netfilter_ftp to trigger a
use-after-free. The risk of u-a-f in netfilter will be addressed
separately but the existence of "asan.module_ctor" debug info under some
build conditions sounds like a good enough reason to accept functions
that contain dots in BTF.

Although using only LLVM=1 is the recommended way to compile clang-based
kernels, users can certainly do LLVM=1, LLVM_IAS=0 as well and we still
try to support that combination according to Nick. To clarify:

  - > v5.10 kernel, LLVM=1 (LLVM_IAS=0 is not the default) is recommended,
    but user can still have LLVM=1, LLVM_IAS=0 to trigger the issue

  - <= 5.10 kernel, LLVM=1 (LLVM_IAS=0 is the default) is recommended in
    which case GNU as will be used

Fixes: 1dc92851849c ("bpf: kernel side support for BTF Var and DataSec")
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Cc: Yonghong Song <yhs@meta.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/bpf/20230615145607.3469985-1-revest@chromium.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 10:29:49 +02:00
Maxim Mikityanskiy
25e89fa7b5 bpf: Fix verifier id tracking of scalars on spill
[ Upstream commit 713274f1f2c896d37017efee333fd44149710119 ]

The following scenario describes a bug in the verifier where it
incorrectly concludes about equivalent scalar IDs which could lead to
verifier bypass in privileged mode:

1. Prepare a 32-bit rogue number.
2. Put the rogue number into the upper half of a 64-bit register, and
   roll a random (unknown to the verifier) bit in the lower half. The
   rest of the bits should be zero (although variations are possible).
3. Assign an ID to the register by MOVing it to another arbitrary
   register.
4. Perform a 32-bit spill of the register, then perform a 32-bit fill to
   another register. Due to a bug in the verifier, the ID will be
   preserved, although the new register will contain only the lower 32
   bits, i.e. all zeros except one random bit.

At this point there are two registers with different values but the same
ID, which means the integrity of the verifier state has been corrupted.

5. Compare the new 32-bit register with 0. In the branch where it's
   equal to 0, the verifier will believe that the original 64-bit
   register is also 0, because it has the same ID, but its actual value
   still contains the rogue number in the upper half.
   Some optimizations of the verifier prevent the actual bypass, so
   extra care is needed: the comparison must be between two registers,
   and both branches must be reachable (this is why one random bit is
   needed). Both branches are still suitable for the bypass.
6. Right shift the original register by 32 bits to pop the rogue number.
7. Use the rogue number as an offset with any pointer. The verifier will
   believe that the offset is 0, while in reality it's the given number.

The fix is similar to the 32-bit BPF_MOV handling in check_alu_op for
SCALAR_VALUE. If the spill is narrowing the actual register value, don't
keep the ID, make sure it's reset to 0.

Fixes: 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Andrii Nakryiko <andrii@kernel.org> # Checked veristat delta
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230607123951.558971-2-maxtram95@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 10:29:46 +02:00
Eduard Zingerman
0b180495f6 bpf: track immediate values written to stack by BPF_ST instruction
[ Upstream commit ecdf985d7615356b78241fdb159c091830ed0380 ]

For aligned stack writes using BPF_ST instruction track stored values
in a same way BPF_STX is handled, e.g. make sure that the following
commands produce similar verifier knowledge:

  fp[-8] = 42;             r1 = 42;
                       fp[-8] = r1;

This covers two cases:
 - non-null values written to stack are stored as spill of fake
   registers;
 - null values written to stack are stored as STACK_ZERO marks.

Previously both cases above used STACK_MISC marks instead.

Some verifier test cases relied on the old logic to obtain STACK_MISC
marks for some stack values. These test cases are updated in the same
commit to avoid failures during bisect.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 713274f1f2c8 ("bpf: Fix verifier id tracking of scalars on spill")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 10:29:46 +02:00
Xiu Jianfeng
4a557910bb cgroup: Do not corrupt task iteration when rebinding subsystem
commit 6f363f5aa845561f7ea496d8b1175e3204470486 upstream.

We found a refcount UAF bug as follows:

refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 342 at lib/refcount.c:25 refcount_warn_saturate+0xa0/0x148
Workqueue: events cpuset_hotplug_workfn
Call trace:
 refcount_warn_saturate+0xa0/0x148
 __refcount_add.constprop.0+0x5c/0x80
 css_task_iter_advance_css_set+0xd8/0x210
 css_task_iter_advance+0xa8/0x120
 css_task_iter_next+0x94/0x158
 update_tasks_root_domain+0x58/0x98
 rebuild_root_domains+0xa0/0x1b0
 rebuild_sched_domains_locked+0x144/0x188
 cpuset_hotplug_workfn+0x138/0x5a0
 process_one_work+0x1e8/0x448
 worker_thread+0x228/0x3e0
 kthread+0xe0/0xf0
 ret_from_fork+0x10/0x20

then a kernel panic will be triggered as below:

Unable to handle kernel paging request at virtual address 00000000c0000010
Call trace:
 cgroup_apply_control_disable+0xa4/0x16c
 rebind_subsystems+0x224/0x590
 cgroup_destroy_root+0x64/0x2e0
 css_free_rwork_fn+0x198/0x2a0
 process_one_work+0x1d4/0x4bc
 worker_thread+0x158/0x410
 kthread+0x108/0x13c
 ret_from_fork+0x10/0x18

The race that cause this bug can be shown as below:

(hotplug cpu)                | (umount cpuset)
mutex_lock(&cpuset_mutex)    | mutex_lock(&cgroup_mutex)
cpuset_hotplug_workfn        |
 rebuild_root_domains        |  rebind_subsystems
  update_tasks_root_domain   |   spin_lock_irq(&css_set_lock)
   css_task_iter_start       |    list_move_tail(&cset->e_cset_node[ss->id]
   while(css_task_iter_next) |                  &dcgrp->e_csets[ss->id]);
   css_task_iter_end         |   spin_unlock_irq(&css_set_lock)
mutex_unlock(&cpuset_mutex)  | mutex_unlock(&cgroup_mutex)

Inside css_task_iter_start/next/end, css_set_lock is hold and then
released, so when iterating task(left side), the css_set may be moved to
another list(right side), then it->cset_head points to the old list head
and it->cset_pos->next points to the head node of new list, which can't
be used as struct css_set.

To fix this issue, switch from all css_sets to only scgrp's css_sets to
patch in-flight iterators to preserve correct iteration, and then
update it->cset_head as well.

Reported-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Link: https://www.spinics.net/lists/cgroups/msg37935.html
Suggested-by: Michal Koutný <mkoutny@suse.com>
Link: https://lore.kernel.org/all/20230526114139.70274-1-xiujianfeng@huaweicloud.com/
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Fixes: 2d8f243a5e6e ("cgroup: implement cgroup->e_csets[]")
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-06-28 10:29:43 +02:00