40141 Commits

Author SHA1 Message Date
Sean Christopherson
72bdf34450 KVM: SVM: Update EFER software model on CR0 trap for SEV-ES
commit 4cdf351d3630a640ab6a05721ef055b9df62277f upstream.

In general, activating long mode involves setting the EFER_LME bit in
the EFER register and then enabling the X86_CR0_PG bit in the CR0
register. At this point, the EFER_LMA bit will be set automatically by
hardware.

In the case of SVM/SEV guests where writes to CR0 are intercepted, it's
necessary for the host to set EFER_LMA on behalf of the guest since
hardware does not see the actual CR0 write.

In the case of SEV-ES guests where writes to CR0 are trapped instead of
intercepted, the hardware *does* see/record the write to CR0 before
exiting and passing the value on to the host, so as part of enabling
SEV-ES support commit f1c6366e3043 ("KVM: SVM: Add required changes to
support intercepts under SEV-ES") dropped special handling of the
EFER_LMA bit with the understanding that it would be set automatically.

However, since the guest never explicitly sets the EFER_LMA bit, the
host never becomes aware that it has been set. This becomes problematic
when userspace tries to get/set the EFER values via
KVM_GET_SREGS/KVM_SET_SREGS, since the EFER contents tracked by the host
will be missing the EFER_LMA bit, and when userspace attempts to pass
the EFER value back via KVM_SET_SREGS it will fail a sanity check that
asserts that EFER_LMA should always be set when X86_CR0_PG and EFER_LME
are set.

Fix this by always inferring the value of EFER_LMA based on X86_CR0_PG
and EFER_LME, regardless of whether or not SEV-ES is enabled.

Fixes: f1c6366e3043 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Reported-by: Peter Gonda <pgonda@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210507165947.2502412-2-seanjc@google.com>
[A two year old patch that was revived after we noticed the failure in
 KVM_SET_SREGS and a similar patch was posted by Michael Roth.  This is
 Sean's patch, but with Michael's more complete commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13 18:36:49 +01:00
Borislav Petkov (AMD)
19e1052646 x86/CPU/AMD: Check vendor in the AMD microcode callback
commit 9b8493dc43044376716d789d07699f17d538a7c4 upstream.

Commit in Fixes added an AMD-specific microcode callback. However, it
didn't check the CPU vendor the kernel runs on explicitly.

The only reason the Zenbleed check in it didn't run on other x86 vendors
hardware was pure coincidental luck:

  if (!cpu_has_amd_erratum(c, amd_zenbleed))
	  return;

gives true on other vendors because they don't have those families and
models.

However, with the removal of the cpu_has_amd_erratum() in

  05f5f73936fa ("x86/CPU/AMD: Drop now unused CPU erratum checking function")

that coincidental condition is gone, leading to the zenbleed check
getting executed on other vendors too.

Add the explicit vendor check for the whole callback as it should've
been done in the first place.

Fixes: 522b1d69219d ("x86/cpu/amd: Add a Zenbleed fix")
Cc: <stable@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231201184226.16749-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13 18:36:49 +01:00
Maciej S. Szmigiero
5eb6519f48 KVM: x86: Ignore MSR_AMD64_TW_CFG access
commit 2770d4722036d6bd24bcb78e9cd7f6e572077d03 upstream.

Hyper-V enabled Windows Server 2022 KVM VM cannot be started on Zen1 Ryzen
since it crashes at boot with SYSTEM_THREAD_EXCEPTION_NOT_HANDLED +
STATUS_PRIVILEGED_INSTRUCTION (in other words, because of an unexpected #GP
in the guest kernel).

This is because Windows tries to set bit 8 in MSR_AMD64_TW_CFG and can't
handle receiving a #GP when doing so.

Give this MSR the same treatment that commit 2e32b7190641
("x86, kvm: Add MSR_AMD64_BU_CFG2 to the list of ignored MSRs") gave
MSR_AMD64_BU_CFG2 under justification that this MSR is baremetal-relevant
only.
Although apparently it was then needed for Linux guests, not Windows as in
this case.

With this change, the aforementioned guest setup is able to finish booting
successfully.

This issue can be reproduced either on a Summit Ridge Ryzen (with
just "-cpu host") or on a Naples EPYC (with "-cpu host,stepping=1" since
EPYC is ordinarily stepping 2).

Alternatively, userspace could solve the problem by using MSR filters, but
forcing every userspace to define a filter isn't very friendly and doesn't
add much, if any, value.  The only potential hiccup is if one of these
"baremetal-only" MSRs ever requires actual emulation and/or has F/M/S
specific behavior.  But if that happens, then KVM can still punt *that*
handling to userspace since userspace MSR filters "win" over KVM's default
handling.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1ce85d9c7c9e9632393816cf19c902e0a3f411f1.1697731406.git.maciej.szmigiero@oracle.com
[sean: call out MSR filtering alternative]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:56:27 +00:00
Nicolas Saenz Julienne
1c49ef7041 KVM: x86: hyper-v: Don't auto-enable stimer on write from user-space
commit d6800af51c76b6dae20e6023bbdc9b3da3ab5121 upstream.

Don't apply the stimer's counter side effects when modifying its
value from user-space, as this may trigger spurious interrupts.

For example:
 - The stimer is configured in auto-enable mode.
 - The stimer's count is set and the timer enabled.
 - The stimer expires, an interrupt is injected.
 - The VM is live migrated.
 - The stimer config and count are deserialized, auto-enable is ON, the
   stimer is re-enabled.
 - The stimer expires right away, and injects an unwarranted interrupt.

Cc: stable@vger.kernel.org
Fixes: 1f4b34f825e8 ("kvm/x86: Hyper-V SynIC timers")
Signed-off-by: Nicolas Saenz Julienne <nsaenz@amazon.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231017155101.40677-1-nsaenz@amazon.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:56:27 +00:00
Pu Wen
fe6b461c37 x86/cpu/hygon: Fix the CPU topology evaluation for real
commit ee545b94d39a00c93dc98b1dbcbcf731d2eadeb4 upstream.

Hygon processors with a model ID > 3 have CPUID leaf 0xB correctly
populated and don't need the fixed package ID shift workaround. The fixup
is also incorrect when running in a guest.

Fixes: e0ceeae708ce ("x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors")
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/tencent_594804A808BD93A4EBF50A994F228E3A7F07@qq.com
Link: https://lore.kernel.org/r/20230814085112.089607918@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:56:27 +00:00
Roxana Nicolescu
3a2adf48d8 crypto: x86/sha - load modules based on CPU features
commit 1c43c0f1f84aa59dfc98ce66f0a67b2922aa7f9d upstream.

x86 optimized crypto modules are built as modules rather than build-in and
they are not loaded when the crypto API is initialized, resulting in the
generic builtin module (sha1-generic) being used instead.

It was discovered when creating a sha1/sha256 checksum of a 2Gb file by
using kcapi-tools because it would take significantly longer than creating
a sha512 checksum of the same file. trace-cmd showed that for sha1/256 the
generic module was used, whereas for sha512 the optimized module was used
instead.

Add module aliases() for these x86 optimized crypto modules based on CPU
feature bits so udev gets a chance to load them later in the boot
process. This resulted in ~3x decrease in the real-time execution of
kcapi-dsg.

Fix is inspired from commit
aa031b8f702e ("crypto: x86/sha512 - load based on CPU features")
where a similar fix was done for sha512.

Cc: stable@vger.kernel.org # 5.15+
Suggested-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Suggested-by: Julian Andres Klode <julian.klode@canonical.com>
Signed-off-by: Roxana Nicolescu <roxana.nicolescu@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:56:27 +00:00
Mike Rapoport (IBM)
e8e55fa444 x86/mm: Drop the 4 MB restriction on minimal NUMA node memory size
[ Upstream commit a1e2b8b36820d8c91275f207e77e91645b7c6836 ]

Qi Zheng reported crashes in a production environment and provided a
simplified example as a reproducer:

 |  For example, if we use Qemu to start a two NUMA node kernel,
 |  one of the nodes has 2M memory (less than NODE_MIN_SIZE),
 |  and the other node has 2G, then we will encounter the
 |  following panic:
 |
 |    BUG: kernel NULL pointer dereference, address: 0000000000000000
 |    <...>
 |    RIP: 0010:_raw_spin_lock_irqsave+0x22/0x40
 |    <...>
 |    Call Trace:
 |      <TASK>
 |      deactivate_slab()
 |      bootstrap()
 |      kmem_cache_init()
 |      start_kernel()
 |      secondary_startup_64_no_verify()

The crashes happen because of inconsistency between the nodemask that
has nodes with less than 4MB as memoryless, and the actual memory fed
into the core mm.

The commit:

  9391a3f9c7f1 ("[PATCH] x86_64: Clear more state when ignoring empty node in SRAT parsing")

... that introduced minimal size of a NUMA node does not explain why
a node size cannot be less than 4MB and what boot failures this
restriction might fix.

Fixes have been submitted to the core MM code to tighten up the
memory topologies it accepts and to not crash on weird input:

  mm: page_alloc: skip memoryless nodes entirely
  mm: memory_hotplug: drop memoryless node from fallback lists

Andrew has accepted them into the -mm tree, but there are no
stable SHA1's yet.

This patch drops the limitation for minimal node size on x86:

  - which works around the crash without the fixes to the core MM.
  - makes x86 topologies less weird,
  - removes an arbitrary and undocumented limitation on NUMA topologies.

[ mingo: Improved changelog clarity. ]

Reported-by: Qi Zheng <zhengqi.arch@bytedance.com>
Tested-by: Mario Casquero <mcasquer@redhat.com>
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lore.kernel.org/r/ZS+2qqjEO5/867br@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 16:56:15 +00:00
Yuntao Wang
81b8638e4e x86/boot: Fix incorrect startup_gdt_descr.size
[ Upstream commit 001470fed5959d01faecbd57fcf2f60294da0de1 ]

Since the size value is added to the base address to yield the last valid
byte address of the GDT, the current size value of startup_gdt_descr is
incorrect (too large by one), fix it.

[ mingo: This probably never mattered, because startup_gdt[] is only used
         in a very controlled fashion - but make it consistent nevertheless. ]

Fixes: 866b556efa12 ("x86/head/64: Install startup GDT")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20230807084547.217390-1-ytcoode@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:08:13 +01:00
Adam Dunlap
c7e8c7452e x86/sev-es: Allow copy_from_kernel_nofault() in earlier boot
[ Upstream commit f79936545fb122856bd78b189d3c7ee59928c751 ]

Previously, if copy_from_kernel_nofault() was called before
boot_cpu_data.x86_virt_bits was set up, then it would trigger undefined
behavior due to a shift by 64.

This ended up causing boot failures in the latest version of ubuntu2204
in the gcp project when using SEV-SNP.

Specifically, this function is called during an early #VC handler which
is triggered by a CPUID to check if NX is implemented.

Fixes: 1aa9aa8ee517 ("x86/sev-es: Setup GHCB-based boot #VC handler")
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Adam Dunlap <acdunlap@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jacob Xu <jacobhxu@google.com>
Link: https://lore.kernel.org/r/20230912002703.3924521-2-acdunlap@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:08:13 +01:00
Adrian Hunter
0b5da8ce0f x86: Share definition of __is_canonical_address()
[ Upstream commit 1fb85d06ad6754796cd1b920639ca9d8840abefd ]

Reduce code duplication by moving canonical address code to a common header
file.

Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220131072453.2839535-3-adrian.hunter@intel.com
Stable-dep-of: f79936545fb1 ("x86/sev-es: Allow copy_from_kernel_nofault() in earlier boot")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:08:13 +01:00
Josh Poimboeuf
f0d6e58411 x86/srso: Fix SBPB enablement for (possible) future fixed HW
[ Upstream commit 1d1142ac51307145dbb256ac3535a1d43a1c9800 ]

Make the SBPB check more robust against the (possible) case where future
HW has SRSO fixed but doesn't have the SRSO_NO bit set.

Fixes: 1b5277c0ea0b ("x86/srso: Add SRSO_NO support")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/cee5050db750b391c9f35f5334f8ff40e66c01b9.1693889988.git.jpoimboe@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:08:13 +01:00
David Howells
cc6198ff20 iov_iter, x86: Be consistent about the __user tag on copy_mc_to_user()
[ Upstream commit 066baf92bed934c9fb4bcee97a193f47aa63431c ]

copy_mc_to_user() has the destination marked __user on powerpc, but not on
x86; the latter results in a sparse warning in lib/iov_iter.c.

Fix this by applying the tag on x86 too.

Fixes: ec6347bb4339 ("x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()")
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20230925120309.1731676-3-dhowells@redhat.com
cc: Dan Williams <dan.j.williams@intel.com>
cc: Thomas Gleixner <tglx@linutronix.de>
cc: Ingo Molnar <mingo@redhat.com>
cc: Borislav Petkov <bp@alien8.de>
cc: Dave Hansen <dave.hansen@linux.intel.com>
cc: "H. Peter Anvin" <hpa@zytor.com>
cc: Alexander Viro <viro@zeniv.linux.org.uk>
cc: Jens Axboe <axboe@kernel.dk>
cc: Christoph Hellwig <hch@lst.de>
cc: Christian Brauner <christian@brauner.io>
cc: Matthew Wilcox <willy@infradead.org>
cc: Linus Torvalds <torvalds@linux-foundation.org>
cc: David Laight <David.Laight@ACULAB.COM>
cc: x86@kernel.org
cc: linux-block@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:08:12 +01:00
Juergen Gross
65fd21aa38 x86: Fix .brk attribute in linker script
commit 7e09ac27f43b382f5fe9bb7c7f4c465ece1f8a23 upstream.

Commit in Fixes added the "NOLOAD" attribute to the .brk section as a
"failsafe" measure.

Unfortunately, this leads to the linker no longer covering the .brk
section in a program header, resulting in the kernel loader not knowing
that the memory for the .brk section must be reserved.

This has led to crashes when loading the kernel as PV dom0 under Xen,
but other scenarios could be hit by the same problem (e.g. in case an
uncompressed kernel is used and the initrd is placed directly behind
it).

So drop the "NOLOAD" attribute. This has been verified to correctly
cover the .brk section by a program header of the resulting ELF file.

Fixes: e32683c6f7d2 ("x86/mm: Fix RESERVE_BRK() for older binutils")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20220630071441.28576-4-jgross@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-08 17:26:44 +01:00
Josh Poimboeuf
9e78e7709f x86/mm: Fix RESERVE_BRK() for older binutils
commit e32683c6f7d22ba624e0bfc58b02cf3348bdca63 upstream.

With binutils 2.26, RESERVE_BRK() causes a build failure:

  /tmp/ccnGOKZ5.s: Assembler messages:
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: junk at end of line, first unrecognized
  character is `U'

The problem is this line:

  RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE)

Specifically, the INIT_PGT_BUF_SIZE macro which (via PAGE_SIZE's use
_AC()) has a "1UL", which makes older versions of the assembler unhappy.
Unfortunately the _AC() macro doesn't work for inline asm.

Inline asm was only needed here to convince the toolchain to add the
STT_NOBITS flag.  However, if a C variable is placed in a section whose
name is prefixed with ".bss", GCC and Clang automatically set
STT_NOBITS.  In fact, ".bss..page_aligned" already relies on this trick.

So fix the build failure (and simplify the macro) by allocating the
variable in C.

Also, add NOLOAD to the ".brk" output section clause in the linker
script.  This is a failsafe in case the ".bss" prefix magic trick ever
stops working somehow.  If there's a section type mismatch, the GNU
linker will force the ".brk" output section to be STT_NOBITS.  The LLVM
linker will fail with a "section type mismatch" error.

Note this also changes the name of the variable from .brk.##name to
__brk_##name.  The variable names aren't actually used anywhere, so it's
harmless.

Fixes: a1e2c031ec39 ("x86/mm: Simplify RESERVE_BRK()")
Reported-by: Joe Damato <jdamato@fastly.com>
Reported-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Joe Damato <jdamato@fastly.com>
Link: https://lore.kernel.org/r/22d07a44c80d8e8e1e82b9a806ddc8c6bbb2606e.1654759036.git.jpoimboe@kernel.org
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-08 17:26:43 +01:00
Josh Poimboeuf
d3201c7180 x86/mm: Simplify RESERVE_BRK()
commit a1e2c031ec3949b8c039b739c0b5bf9c30007b00 upstream.

RESERVE_BRK() reserves data in the .brk_reservation section.  The data
is initialized to zero, like BSS, so the macro specifies 'nobits' to
prevent the data from taking up space in the vmlinux binary.  The only
way to get the compiler to do that (without putting the variable in .bss
proper) is to use inline asm.

The macro also has a hack which encloses the inline asm in a discarded
function, which allows the size to be passed (global inline asm doesn't
allow inputs).

Remove the need for the discarded function hack by just stringifying the
size rather than supplying it as an input to the inline asm.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220506121631.133110232@infradead.org
[nathan: Resolve conflict due to lack of 2b6ff7dea670]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-08 17:26:43 +01:00
Thomas Gleixner
897b56acf1 x86/i8259: Skip probing when ACPI/MADT advertises PCAT compatibility
commit 128b0c9781c9f2651bea163cb85e52a6c7be0f9e upstream.

David and a few others reported that on certain newer systems some legacy
interrupts fail to work correctly.

Debugging revealed that the BIOS of these systems leaves the legacy PIC in
uninitialized state which makes the PIC detection fail and the kernel
switches to a dummy implementation.

Unfortunately this fallback causes quite some code to fail as it depends on
checks for the number of legacy PIC interrupts or the availability of the
real PIC.

In theory there is no reason to use the PIC on any modern system when
IO/APIC is available, but the dependencies on the related checks cannot be
resolved trivially and on short notice. This needs lots of analysis and
rework.

The PIC detection has been added to avoid quirky checks and force selection
of the dummy implementation all over the place, especially in VM guest
scenarios. So it's not an option to revert the relevant commit as that
would break a lot of other scenarios.

One solution would be to try to initialize the PIC on detection fail and
retry the detection, but that puts the burden on everything which does not
have a PIC.

Fortunately the ACPI/MADT table header has a flag field, which advertises
in bit 0 that the system is PCAT compatible, which means it has a legacy
8259 PIC.

Evaluate that bit and if set avoid the detection routine and keep the real
PIC installed, which then gets initialized (for nothing) and makes the rest
of the code with all the dependencies work again.

Fixes: e179f6914152 ("x86, irq, pic: Probe for legacy PIC and set legacy_pic appropriately")
Reported-by: David Lazar <dlazar@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: David Lazar <dlazar@gmail.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: stable@vger.kernel.org
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218003
Link: https://lore.kernel.org/r/875y2u5s8g.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-08 17:26:43 +01:00
JP Kobryn
403d201d1f perf/x86/lbr: Filter vsyscall addresses
[ Upstream commit e53899771a02f798d436655efbd9d4b46c0f9265 ]

We found that a panic can occur when a vsyscall is made while LBR sampling
is active. If the vsyscall is interrupted (NMI) for perf sampling, this
call sequence can occur (most recent at top):

    __insn_get_emulate_prefix()
    insn_get_emulate_prefix()
    insn_get_prefixes()
    insn_get_opcode()
    decode_branch_type()
    get_branch_type()
    intel_pmu_lbr_filter()
    intel_pmu_handle_irq()
    perf_event_nmi_handler()

Within __insn_get_emulate_prefix() at frame 0, a macro is called:

    peek_nbyte_next(insn_byte_t, insn, i)

Within this macro, this dereference occurs:

    (insn)->next_byte

Inspecting registers at this point, the value of the next_byte field is the
address of the vsyscall made, for example the location of the vsyscall
version of gettimeofday() at 0xffffffffff600000. The access to an address
in the vsyscall region will trigger an oops due to an unhandled page fault.

To fix the bug, filtering for vsyscalls can be done when
determining the branch type. This patch will return
a "none" branch if a kernel address if found to lie in the
vsyscall region.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-25 11:58:58 +02:00
Sandipan Das
419ac18d88 perf/x86: Move branch classifier
[ Upstream commit 4462fbfe6ec1bfe2196b977010f6ce7b43a32f2c ]

Commit 3e702ff6d1ea ("perf/x86: Add LBR software filter support for Intel
CPUs") introduces a software branch filter which complements the hardware
branch filter and adds an x86 branch classifier.

Move the branch classifier to arch/x86/events/ so that it can be utilized
by other vendors for branch record filtering.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/bae5b95470d6bd49f40954bd379f414f5afcb965.1660211399.git.sandipan.das@amd.com
Stable-dep-of: e53899771a02 ("perf/x86/lbr: Filter vsyscall addresses")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-25 11:58:58 +02:00
Anshuman Khandual
030099bc91 perf: Add irq and exception return branch types
[ Upstream commit cedd3614e5d9c80908099c19f8716714ce0610b1 ]

This expands generic branch type classification by adding two more entries
there in i.e irq and exception return. Also updates the x86 implementation
to process X86_BR_IRET and X86_BR_IRQ records as appropriate. This changes
branch types reported to user space on x86 platform but it should not be a
problem. The possible scenarios and impacts are enumerated here.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1645681014-3346-1-git-send-email-anshuman.khandual@arm.com
Stable-dep-of: e53899771a02 ("perf/x86/lbr: Filter vsyscall addresses")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-25 11:58:58 +02:00
Joerg Roedel
582f799335 x86/sev: Check for user-space IOIO pointing to kernel space
Upstream commit: 63e44bc52047f182601e7817da969a105aa1f721

Check the memory operand of INS/OUTS before emulating the instruction.
The #VC exception can get raised from user-space, but the memory operand
can be manipulated to access kernel memory before the emulation actually
begins and after the exception handler has run.

  [ bp: Massage commit message. ]

Fixes: 597cfe48212a ("x86/boot/compressed/64: Setup a GHCB-based VC Exception handler")
Reported-by: Tom Dohrmann <erbse.13@gmx.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-25 11:58:55 +02:00
Joerg Roedel
5c2c01be80 x86/sev: Check IOBM for IOIO exceptions from user-space
Upstream commit: b9cb9c45583b911e0db71d09caa6b56469eb2bdf

Check the IO permission bitmap (if present) before emulating IOIO #VC
exceptions for user-space. These permissions are checked by hardware
already before the #VC is raised, but due to the VC-handler decoding
race it needs to be checked again in software.

Fixes: 25189d08e516 ("x86/sev-es: Add support for handling IOIO exceptions")
Reported-by: Tom Dohrmann <erbse.13@gmx.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Dohrmann <erbse.13@gmx.de>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-25 11:58:55 +02:00
Borislav Petkov (AMD)
6797c6d09e x86/sev: Disable MMIO emulation from user mode
Upstream commit: a37cd2a59d0cb270b1bba568fd3a3b8668b9d3ba

A virt scenario can be constructed where MMIO memory can be user memory.
When that happens, a race condition opens between when the hardware
raises the #VC and when the #VC handler gets to emulate the instruction.

If the MOVS is replaced with a MOVS accessing kernel memory in that
small race window, then write to kernel memory happens as the access
checks are not done at emulation time.

Disable MMIO emulation in user mode temporarily until a sensible use
case appears and justifies properly handling the race window.

Fixes: 0118b604c2c9 ("x86/sev-es: Handle MMIO String Instructions")
Reported-by: Tom Dohrmann <erbse.13@gmx.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Dohrmann <erbse.13@gmx.de>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-25 11:58:55 +02:00
Jim Mattson
0b4e772a6a KVM: x86: Mask LVTPC when handling a PMI
commit a16eb25b09c02a54c1c1b449d4b6cfa2cf3f013a upstream.

Per the SDM, "When the local APIC handles a performance-monitoring
counters interrupt, it automatically sets the mask flag in the LVT
performance counter register."  Add this behavior to KVM's local APIC
emulation.

Failure to mask the LVTPC entry results in spurious PMIs, e.g. when
running Linux as a guest, PMI handlers that do a "late_ack" spew a large
number of "dazed and confused" spurious NMI warnings.

Fixes: f5132b01386b ("KVM: Expose a version 2 architectural PMU to a guests")
Cc: stable@vger.kernel.org
Signed-off-by: Jim Mattson <jmattson@google.com>
Tested-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20230925173448.3518223-3-mizhang@google.com
[sean: massage changelog, correct Fixes]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-25 11:58:55 +02:00
Kirill A. Shutemov
ecba5afe86 x86/alternatives: Disable KASAN in apply_alternatives()
commit d35652a5fc9944784f6f50a5c979518ff8dacf61 upstream.

Fei has reported that KASAN triggers during apply_alternatives() on
a 5-level paging machine:

	BUG: KASAN: out-of-bounds in rcu_is_watching()
	Read of size 4 at addr ff110003ee6419a0 by task swapper/0/0
	...
	__asan_load4()
	rcu_is_watching()
	trace_hardirqs_on()
	text_poke_early()
	apply_alternatives()
	...

On machines with 5-level paging, cpu_feature_enabled(X86_FEATURE_LA57)
gets patched. It includes KASAN code, where KASAN_SHADOW_START depends on
__VIRTUAL_MASK_SHIFT, which is defined with cpu_feature_enabled().

KASAN gets confused when apply_alternatives() patches the
KASAN_SHADOW_START users. A test patch that makes KASAN_SHADOW_START
static, by replacing __VIRTUAL_MASK_SHIFT with 56, works around the issue.

Fix it for real by disabling KASAN while the kernel is patching alternatives.

[ mingo: updated the changelog ]

Fixes: 6657fca06e3f ("x86/mm: Allow to boot without LA57 if CONFIG_X86_5LEVEL=y")
Reported-by: Fei Yang <fei.yang@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20231012100424.1456-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-19 23:05:37 +02:00
Borislav Petkov (AMD)
4382d1a996 x86/cpu: Fix AMD erratum #1485 on Zen4-based CPUs
commit f454b18e07f518bcd0c05af17a2239138bff52de upstream.

Fix erratum #1485 on Zen4 parts where running with STIBP disabled can
cause an #UD exception. The performance impact of the fix is negligible.

Reported-by: René Rebe <rene@exactcode.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: René Rebe <rene@exactcode.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/D99589F4-BC5D-430B-87B2-72C20370CF57@exactcode.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-19 23:05:36 +02:00
Pu Wen
f090a8b4d2 x86/srso: Add SRSO mitigation for Hygon processors
commit a5ef7d68cea1344cf524f04981c2b3f80bedbb0d upstream.

Add mitigation for the speculative return stack overflow vulnerability
which exists on Hygon processors too.

Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/tencent_4A14812842F104E93AA722EC939483CEFF05@qq.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-06 13:18:21 +02:00
Josh Poimboeuf
13ea4b92e8 x86/srso: Fix SBPB enablement for spec_rstack_overflow=off
[ Upstream commit 01b057b2f4cc2d905a0bd92195657dbd9a7005ab ]

If the user has requested no SRSO mitigation, other mitigations can use
the lighter-weight SBPB instead of IBPB.

Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/b20820c3cfd1003171135ec8d762a0b957348497.1693889988.git.jpoimboe@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-06 13:18:07 +02:00
Josh Poimboeuf
e2c34afe83 x86/srso: Fix srso_show_state() side effect
[ Upstream commit a8cf700c17d9ca6cb8ee7dc5c9330dbac3948237 ]

Reading the 'spec_rstack_overflow' sysfs file can trigger an unnecessary
MSR write, and possibly even a (handled) exception if the microcode
hasn't been updated.

Avoid all that by just checking X86_FEATURE_IBPB_BRTYPE instead, which
gets set by srso_select_mitigation() if the updated microcode exists.

Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/27d128899cb8aee9eb2b57ddc996742b0c1d776b.1693889988.git.jpoimboe@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-06 13:18:07 +02:00
Song Liu
58787ff3d0 x86/purgatory: Remove LTO flags
[ Upstream commit 75b2f7e4c9e0fd750a5a27ca9736d1daa7a3762a ]

-flto* implies -ffunction-sections. With LTO enabled, ld.lld generates
multiple .text sections for purgatory.ro:

  $ readelf -S purgatory.ro  | grep " .text"
    [ 1] .text             PROGBITS         0000000000000000  00000040
    [ 7] .text.purgatory   PROGBITS         0000000000000000  000020e0
    [ 9] .text.warn        PROGBITS         0000000000000000  000021c0
    [13] .text.sha256_upda PROGBITS         0000000000000000  000022f0
    [15] .text.sha224_upda PROGBITS         0000000000000000  00002be0
    [17] .text.sha256_fina PROGBITS         0000000000000000  00002bf0
    [19] .text.sha224_fina PROGBITS         0000000000000000  00002cc0

This causes WARNING from kexec_purgatory_setup_sechdrs():

  WARNING: CPU: 26 PID: 110894 at kernel/kexec_file.c:919
  kexec_load_purgatory+0x37f/0x390

Fix this by disabling LTO for purgatory.

[ AFAICT, x86 is the only arch that supports LTO and purgatory. ]

We could also fix this with an explicit linker script to rejoin .text.*
sections back into .text. However, given the benefit of LTOing purgatory
is small, simply disable the production of more .text.* sections for now.

Fixes: b33fff07e3e3 ("x86, build: allow LTO to be selected")
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230914170138.995606-1-song@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-23 11:10:01 +02:00
Kirill A. Shutemov
8abf1ec895 x86/boot/compressed: Reserve more memory for page tables
[ Upstream commit f530ee95b72e77b09c141c4b1a4b94d1199ffbd9 ]

The decompressor has a hard limit on the number of page tables it can
allocate. This limit is defined at compile-time and will cause boot
failure if it is reached.

The kernel is very strict and calculates the limit precisely for the
worst-case scenario based on the current configuration. However, it is
easy to forget to adjust the limit when a new use-case arises. The
worst-case scenario is rarely encountered during sanity checks.

In the case of enabling 5-level paging, a use-case was overlooked. The
limit needs to be increased by one to accommodate the additional level.
This oversight went unnoticed until Aaron attempted to run the kernel
via kexec with 5-level paging and unaccepted memory enabled.

Update wost-case calculations to include 5-level paging.

To address this issue, let's allocate some extra space for page tables.
128K should be sufficient for any use-case. The logic can be simplified
by using a single value for all kernel configurations.

[ Also add a warning, should this memory run low - by Dave Hansen. ]

Fixes: 34bbb0009f3b ("x86/boot/compressed: Enable 5-level paging during decompression stage")
Reported-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915070221.10266-1-kirill.shutemov@linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-23 11:10:01 +02:00
Sean Christopherson
24481d5c74 x86/virt: Drop unnecessary check on extended CPUID level in cpu_has_svm()
[ Upstream commit 5df8ecfe3632d5879d1f154f7aa8de441b5d1c89 ]

Drop the explicit check on the extended CPUID level in cpu_has_svm(), the
kernel's cached CPUID info will leave the entire SVM leaf unset if said
leaf is not supported by hardware.  Prior to using cached information,
the check was needed to avoid false positives due to Intel's rather crazy
CPUID behavior of returning the values of the maximum supported leaf if
the specified leaf is unsupported.

Fixes: 682a8108872f ("x86/kvm/svm: Simplify cpu_has_svm()")
Link: https://lore.kernel.org/r/20230721201859.2307736-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:22:57 +02:00
Kan Liang
05c581ad3e perf/x86/uncore: Correct the number of CHAs on EMR
commit 6f7f984fa85b305799076a1bcec941b9377587de upstream.

Starting from SPR, the basic uncore PMON information is retrieved from
the discovery table (resides in an MMIO space populated by BIOS). It is
called the discovery method. The existing value of the type->num_boxes
is from the discovery table.

On some SPR variants, there is a firmware bug that makes the value from the
discovery table incorrect. We use the value from the
SPR_MSR_UNC_CBO_CONFIG MSR to replace the one from the discovery table:

   38776cc45eb7 ("perf/x86/uncore: Correct the number of CHAs on SPR")

Unfortunately, the SPR_MSR_UNC_CBO_CONFIG isn't available for the EMR
XCC (Always returns 0), but the above firmware bug doesn't impact the
EMR XCC.

Don't let the value from the MSR replace the existing value from the
discovery table.

Fixes: 38776cc45eb7 ("perf/x86/uncore: Correct the number of CHAs on SPR")
Reported-by: Stephane Eranian <eranian@google.com>
Reported-by: Yunying Sun <yunying.sun@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Yunying Sun <yunying.sun@intel.com>
Link: https://lore.kernel.org/r/20230905134248.496114-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19 12:22:53 +02:00
Jack Wang
861cfdc51f x86/sgx: Break up long non-preemptible delays in sgx_vepc_release()
commit 3d7d72a34e05b23e21bafc8bfb861e73c86b31f3 upstream.

On large enclaves we hit the softlockup warning with following call trace:

	xa_erase()
	sgx_vepc_release()
	__fput()
	task_work_run()
	do_exit()

The latency issue is similar to the one fixed in:

  8795359e35bc ("x86/sgx: Silence softlockup detection when releasing large enclaves")

The test system has 64GB of enclave memory, and all is assigned to a single VM.
Release of 'vepc' takes a longer time and causes long latencies, which triggers
the softlockup warning.

Add cond_resched() to give other tasks a chance to run and reduce
latencies, which also avoids the softlockup detector.

[ mingo: Rewrote the changelog. ]

Fixes: 540745ddbc70 ("x86/sgx: Introduce virtual EPC for use by KVM guests")
Reported-by: Yu Zhang <yu.zhang@ionos.com>
Signed-off-by: Jack Wang <jinpu.wang@ionos.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Yu Zhang <yu.zhang@ionos.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Haitao Huang <haitao.huang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19 12:22:53 +02:00
Dave Hansen
2ba8bb0072 x86/speculation: Mark all Skylake CPUs as vulnerable to GDS
[ Upstream commit c9f4c45c8ec3f07f4f083f9750032a1ec3eab6b2 ]

The Gather Data Sampling (GDS) vulnerability is common to all Skylake
processors.  However, the "client" Skylakes* are now in this list:

	https://www.intel.com/content/www/us/en/support/articles/000022396/processors.html

which means they are no longer included for new vulnerabilities here:

	https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

or in other GDS documentation.  Thus, they were not included in the
original GDS mitigation patches.

Mark SKYLAKE and SKYLAKE_L as vulnerable to GDS to match all the
other Skylake CPUs (which include Kaby Lake).  Also group the CPUs
so that the ones that share the exact same vulnerabilities are next
to each other.

Last, move SRBDS to the end of each line.  This makes it clear at a
glance that SKYLAKE_X is unique.  Of the five Skylakes, it is the
only "server" CPU and has a different implementation from the
clients of the "special register" hardware, making it immune to SRBDS.

This makes the diff much harder to read, but the resulting table is
worth it.

I very much appreciate the report from Michael Zhivich about this
issue.  Despite what level of support a hardware vendor is providing,
the kernel very much needs an accurate and up-to-date list of
vulnerable CPUs.  More reports like this are very welcome.

* Client Skylakes are CPUID 406E3/506E3 which is family 6, models
  0x4E and 0x5E, aka INTEL_FAM6_SKYLAKE and INTEL_FAM6_SKYLAKE_L.

Reported-by: Michael Zhivich <mzhivich@akamai.com>
Fixes: 8974eb588283 ("x86/speculation: Add Gather Data Sampling mitigation")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:22:48 +02:00
Randy Dunlap
2f0d202d82 x86/APM: drop the duplicate APM_MINOR_DEV macro
[ Upstream commit 4ba2909638a29630a346d6c4907a3105409bee7d ]

This source file already includes <linux/miscdevice.h>, which contains
the same macro. It doesn't need to be defined here again.

Fixes: 874bcd00f520 ("apm-emulation: move APM_MINOR_DEV to include/linux/miscdevice.h")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: x86@kernel.org
Cc: Sohil Mehta <sohil.mehta@intel.com>
Cc: Corentin Labbe <clabbe.montjoie@gmail.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20230728011120.759-1-rdunlap@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:22:45 +02:00
Janusz Krzysztofik
188f2d41fa x86/mm: Fix PAT bit missing from page protection modify mask
[ Upstream commit 548cb932051fb6232ac983ed6673dae7bdf3cf4c ]

Visible glitches have been observed when running graphics applications on
Linux under Xen hypervisor.  Those observations have been confirmed with
failures from kms_pwrite_crc Intel GPU test that verifies data coherency
of DRM frame buffer objects using hardware CRC checksums calculated by
display controllers, exposed to userspace via debugfs.  Affected
processing paths have then been identified with new IGT test variants that
mmap the objects using different methods and caching modes [1].

When running as a Xen PV guest, Linux uses Xen provided PAT configuration
which is different from its native one.  In particular, Xen specific PTE
encoding of write-combining caching, likely used by graphics applications,
differs from the Linux default one found among statically defined minimal
set of supported modes.  Since Xen defines PTE encoding of the WC mode as
_PAGE_PAT, it no longer belongs to the minimal set, depends on correct
handling of _PAGE_PAT bit, and can be mismatched with write-back caching.

When a user calls mmap() for a DRM buffer object, DRM device specific
.mmap file operation, called from mmap_region(), takes care of setting PTE
encoding bits in a vm_page_prot field of an associated virtual memory area
structure.  Unfortunately, _PAGE_PAT bit is not preserved when the vma's
.vm_flags are then applied to .vm_page_prot via vm_set_page_prot().  Bits
to be preserved are determined with _PAGE_CHG_MASK symbol that doesn't
cover _PAGE_PAT.  As a consequence, WB caching is requested instead of WC
when running under Xen (also, WP is silently changed to WT, and UC
downgraded to UC_MINUS).  When running on bare metal, WC is not affected,
but WP and WT extra modes are unintentionally replaced with WC and UC,
respectively.

WP and WT modes, encoded with _PAGE_PAT bit set, were introduced by commit
281d4078bec3 ("x86: Make page cache mode a real type").  Care was taken
to extend _PAGE_CACHE_MASK symbol with that additional bit, but that
symbol has never been used for identification of bits preserved when
applying page protection flags.  Support for all cache modes under Xen,
including the problematic WC mode, was then introduced by commit
47591df50512 ("xen: Support Xen pv-domains using PAT").

The issue needs to be fixed by including _PAGE_PAT bit into a bitmask used
by pgprot_modify() for selecting bits to be preserved.  We can do that
either internally to pgprot_modify() (as initially proposed), or by making
_PAGE_PAT a part of _PAGE_CHG_MASK.  If we go for the latter then, since
_PAGE_PAT is the same as _PAGE_PSE, we need to note that _HPAGE_CHG_MASK
-- a huge pmds' counterpart of _PAGE_CHG_MASK, introduced by commit
c489f1257b8c ("thp: add pmd_modify"), defined as (_PAGE_CHG_MASK |
_PAGE_PSE) -- will no longer differ from _PAGE_CHG_MASK.  If such
modification of _PAGE_CHG_MASK was irrelevant to its users then one might
wonder why that new _HPAGE_CHG_MASK symbol was introduced instead of
reusing the existing one with that otherwise irrelevant bit (_PAGE_PSE in
that case) added.

Add _PAGE_PAT to _PAGE_CHG_MASK and _PAGE_PAT_LARGE to _HPAGE_CHG_MASK for
symmetry.  Split out common bits from both symbols to a common symbol for
clarity.

[ dhansen: tweak the solution changelog description ]

[1] https://gitlab.freedesktop.org/drm/igt-gpu-tools/-/commit/0f0754413f14

Fixes: 281d4078bec3 ("x86: Make page cache mode a real type")
Signed-off-by: Janusz Krzysztofik <janusz.krzysztofik@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Shyti <andi.shyti@linux.intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Tested-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Link: https://gitlab.freedesktop.org/drm/intel/-/issues/7648
Link: https://lore.kernel.org/all/20230710073613.8006-2-janusz.krzysztofik%40linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:22:37 +02:00
Ard Biesheuvel
0a872a0521 x86/decompressor: Don't rely on upper 32 bits of GPRs being preserved
[ Upstream commit 264b82fdb4989cf6a44a2bcd0c6ea05e8026b2ac ]

The 4-to-5 level mode switch trampoline disables long mode and paging in
order to be able to flick the LA57 bit. According to section 3.4.1.1 of
the x86 architecture manual [0], 64-bit GPRs might not retain the upper
32 bits of their contents across such a mode switch.

Given that RBP, RBX and RSI are live at this point, preserve them on the
stack, along with the return address that might be above 4G as well.

[0] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture

  "Because the upper 32 bits of 64-bit general-purpose registers are
   undefined in 32-bit modes, the upper 32 bits of any general-purpose
   register are not preserved when switching from 64-bit mode to a 32-bit
   mode (to protected mode or compatibility mode). Software must not
   depend on these bits to maintain a value after a 64-bit to 32-bit
   mode switch."

Fixes: 194a9749c73d650c ("x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-2-ardb@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:22:31 +02:00
Feng Tang
a7a1849899 x86/fpu: Set X86_FEATURE_OSXSAVE feature after enabling OSXSAVE in CR4
commit 2c66ca3949dc701da7f4c9407f2140ae425683a5 upstream.

0-Day found a 34.6% regression in stress-ng's 'af-alg' test case, and
bisected it to commit b81fac906a8f ("x86/fpu: Move FPU initialization into
arch_cpu_finalize_init()"), which optimizes the FPU init order, and moves
the CR4_OSXSAVE enabling into a later place:

   arch_cpu_finalize_init
       identify_boot_cpu
	   identify_cpu
	       generic_identify
                   get_cpu_cap --> setup cpu capability
       ...
       fpu__init_cpu
           fpu__init_cpu_xstate
               cr4_set_bits(X86_CR4_OSXSAVE);

As the FPU is not yet initialized the CPU capability setup fails to set
X86_FEATURE_OSXSAVE. Many security module like 'camellia_aesni_avx_x86_64'
depend on this feature and therefore fail to load, causing the regression.

Cure this by setting X86_FEATURE_OSXSAVE feature right after OSXSAVE
enabling.

[ tglx: Moved it into the actual BSP FPU initialization code and added a comment ]

Fixes: b81fac906a8f ("x86/fpu: Move FPU initialization into arch_cpu_finalize_init()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/lkml/202307192135.203ac24e-oliver.sang@intel.com
Link: https://lore.kernel.org/lkml/20230823065747.92257-1-feng.tang@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-30 16:18:19 +02:00
Rick Edgecombe
ad79f943c8 x86/fpu: Invalidate FPU state correctly on exec()
commit 1f69383b203e28cf8a4ca9570e572da1699f76cd upstream.

The thread flag TIF_NEED_FPU_LOAD indicates that the FPU saved state is
valid and should be reloaded when returning to userspace. However, the
kernel will skip doing this if the FPU registers are already valid as
determined by fpregs_state_valid(). The logic embedded there considers
the state valid if two cases are both true:

  1: fpu_fpregs_owner_ctx points to the current tasks FPU state
  2: the last CPU the registers were live in was the current CPU.

This is usually correct logic. A CPU’s fpu_fpregs_owner_ctx is set to
the current FPU during the fpregs_restore_userregs() operation, so it
indicates that the registers have been restored on this CPU. But this
alone doesn’t preclude that the task hasn’t been rescheduled to a
different CPU, where the registers were modified, and then back to the
current CPU. To verify that this was not the case the logic relies on the
second condition. So the assumption is that if the registers have been
restored, AND they haven’t had the chance to be modified (by being
loaded on another CPU), then they MUST be valid on the current CPU.

Besides the lazy FPU optimizations, the other cases where the FPU
registers might not be valid are when the kernel modifies the FPU register
state or the FPU saved buffer. In this case the operation modifying the
FPU state needs to let the kernel know the correspondence has been
broken. The comment in “arch/x86/kernel/fpu/context.h” has:
/*
...
 * If the FPU register state is valid, the kernel can skip restoring the
 * FPU state from memory.
 *
 * Any code that clobbers the FPU registers or updates the in-memory
 * FPU state for a task MUST let the rest of the kernel know that the
 * FPU registers are no longer valid for this task.
 *
 * Either one of these invalidation functions is enough. Invalidate
 * a resource you control: CPU if using the CPU for something else
 * (with preemption disabled), FPU for the current task, or a task that
 * is prevented from running by the current task.
 */

However, this is not completely true. When the kernel modifies the
registers or saved FPU state, it can only rely on
__fpu_invalidate_fpregs_state(), which wipes the FPU’s last_cpu
tracking. The exec path instead relies on fpregs_deactivate(), which sets
the CPU’s FPU context to NULL. This was observed to fail to restore the
reset FPU state to the registers when returning to userspace in the
following scenario:

1. A task is executing in userspace on CPU0
	- CPU0’s FPU context points to tasks
	- fpu->last_cpu=CPU0

2. The task exec()’s

3. While in the kernel the task is preempted
	- CPU0 gets a thread executing in the kernel (such that no other
		FPU context is activated)
	- Scheduler sets task’s fpu->last_cpu=CPU0 when scheduling out

4. Task is migrated to CPU1

5. Continuing the exec(), the task gets to
   fpu_flush_thread()->fpu_reset_fpregs()
	- Sets CPU1’s fpu context to NULL
	- Copies the init state to the task’s FPU buffer
	- Sets TIF_NEED_FPU_LOAD on the task

6. The task reschedules back to CPU0 before completing the exec() and
   returning to userspace
	- During the reschedule, scheduler finds TIF_NEED_FPU_LOAD is set
	- Skips saving the registers and updating task’s fpu→last_cpu,
	  because TIF_NEED_FPU_LOAD is the canonical source.

7. Now CPU0’s FPU context is still pointing to the task’s, and
   fpu->last_cpu is still CPU0. So fpregs_state_valid() returns true even
   though the reset FPU state has not been restored.

So the root cause is that exec() is doing the wrong kind of invalidate. It
should reset fpu->last_cpu via __fpu_invalidate_fpregs_state(). Further,
fpu__drop() doesn't really seem appropriate as the task (and FPU) are not
going away, they are just getting reset as part of an exec. So switch to
__fpu_invalidate_fpregs_state().

Also, delete the misleading comment that says that either kind of
invalidate will be enough, because it’s not always the case.

Fixes: 33344368cb08 ("x86/fpu: Clean up the fpu__clear() variants")
Reported-by: Lei Wang <lei4.wang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Lijun Pan <lijun.pan@intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Acked-by: Lijun Pan <lijun.pan@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230818170305.502891-1-rick.p.edgecombe@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-30 16:18:19 +02:00
Sean Christopherson
7e546bd089 Revert "KVM: x86: enable TDP MMU by default"
This reverts commit 71ba3f3189c78f756a659568fb473600fd78f207.

Disable the TDP MMU by default in v5.15 kernels to "fix" several severe
performance bugs that have since been found and fixed in the TDP MMU, but
are unsuitable for backporting to v5.15.

The problematic bugs are fixed by upstream commit edbdb43fc96b ("KVM:
x86: Preserve TDP MMU roots until they are explicitly invalidated") and
commit 01b31714bd90 ("KVM: x86: Do not unload MMU roots when only toggling
CR0.WP with TDP enabled").  Both commits fix scenarios where KVM will
rebuild all TDP MMU page tables in paths that are frequently hit by
certain guest workloads.  While not exactly common, the guest workloads
are far from rare.  The fallout of rebuilding TDP MMU page tables can be
so severe in some cases that it induces soft lockups in the guest.

Commit edbdb43fc96b would require _significant_ effort and churn to
backport due it depending on a major rework that was done in v5.18.

Commit 01b31714bd90 has far fewer direct conflicts, but has several subtle
_known_ dependencies, and it's unclear whether or not there are more
unknown dependencies that have been missed.

Lastly, disabling the TDP MMU in v5.15 kernels also fixes a lurking train
wreck started by upstream commit a955cad84cda ("KVM: x86/mmu: Retry page
fault if root is invalidated by memslot update").  That commit was tagged
for stable to fix a memory leak, but didn't cherry-pick cleanly and was
never backported to v5.15.  Which is extremely fortunate, as it introduced
not one but two bugs, one of which was fixed by upstream commit
18c841e1f411 ("KVM: x86: Retry page fault if MMU reload is pending and
root has no sp"), while the other was unknowingly fixed by upstream
commit ba6e3fe25543 ("KVM: x86/mmu: Grab mmu_invalidate_seq in
kvm_faultin_pfn()") in v6.3 (a one-off fix will be made for v6.1 kernels,
which did receive a backport for a955cad84cda).  Disabling the TDP MMU
by default reduces the probability of breaking v5.15 kernels by
backporting only a subset of the fixes.

As far as what is lost by disabling the TDP MMU, the main selling point of
the TDP MMU is its ability to service page fault VM-Exits in parallel,
i.e. the main benefactors of the TDP MMU are deployments of large VMs
(hundreds of vCPUs), and in particular delployments that live-migrate such
VMs and thus need to fault-in huge amounts of memory on many vCPUs after
restarting the VM after migration.

Smaller VMs can see performance improvements, but nowhere enough to make
up for the TDP MMU (in v5.15) absolutely cratering performance for some
workloads.  And practically speaking, anyone that is deploying and
migrating VMs with hundreds of vCPUs is likely rolling their own kernel,
not using a stock v5.15 series kernel.

Link: https://lore.kernel.org/all/ZDmEGM+CgYpvDLh6@google.com
Link: https://lore.kernel.org/all/f023d927-52aa-7e08-2ee5-59a2fbc65953@gameservers.com
Acked-by: Mathias Krause <minipli@grsecurity.net>
Acked-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-30 16:18:16 +02:00
Borislav Petkov (AMD)
9080f4fcc2 x86/srso: Correct the mitigation status when SMT is disabled
commit 6405b72e8d17bd1875a56ae52d23ec3cd51b9d66 upstream.

Specify how is SRSO mitigated when SMT is disabled. Also, correct the
SMT check for that.

Fixes: e9fbc47b818b ("x86/srso: Disable the mitigation on unaffected configurations")
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20230814200813.p5czl47zssuej7nv@treble
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:40 +02:00
Petr Pavlu
55f1cbeaa1 x86/retpoline,kprobes: Fix position of thunk sections with CONFIG_LTO_CLANG
commit 79cd2a11224eab86d6673fe8a11d2046ae9d2757 upstream.

The linker script arch/x86/kernel/vmlinux.lds.S matches the thunk
sections ".text.__x86.*" from arch/x86/lib/retpoline.S as follows:

  .text {
    [...]
    TEXT_TEXT
    [...]
    __indirect_thunk_start = .;
    *(.text.__x86.*)
    __indirect_thunk_end = .;
    [...]
  }

Macro TEXT_TEXT references TEXT_MAIN which normally expands to only
".text". However, with CONFIG_LTO_CLANG, TEXT_MAIN becomes
".text .text.[0-9a-zA-Z_]*" which wrongly matches also the thunk
sections. The output layout is then different than expected. For
instance, the currently defined range [__indirect_thunk_start,
__indirect_thunk_end] becomes empty.

Prevent the problem by using ".." as the first separator, for example,
".text..__x86.indirect_thunk". This pattern is utilized by other
explicit section names which start with one of the standard prefixes,
such as ".text" or ".data", and that need to be individually selected in
the linker script.

  [ nathan: Fix conflicts with SRSO and fold in fix issue brought up by
    Andrew Cooper in post-review:
    https://lore.kernel.org/20230803230323.1478869-1-andrew.cooper3@citrix.com ]

Fixes: dc5723b02e52 ("kbuild: add support for Clang LTO")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230711091952.27944-2-petr.pavlu@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:40 +02:00
Borislav Petkov (AMD)
fa24cd0fbc x86/srso: Disable the mitigation on unaffected configurations
commit e9fbc47b818b964ddff5df5b2d5c0f5f32f4a147 upstream.

Skip the srso cmd line parsing which is not needed on Zen1/2 with SMT
disabled and with the proper microcode applied (latter should be the
case anyway) as those are not affected.

Fixes: 5a15d8348881 ("x86/srso: Tie SBPB bit setting to microcode patch detection")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230813104517.3346-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:40 +02:00
Borislav Petkov (AMD)
aa0777ce0d x86/CPU/AMD: Fix the DIV(0) initial fix attempt
commit f58d6fbcb7c848b7f2469be339bc571f2e9d245b upstream.

Initially, it was thought that doing an innocuous division in the #DE
handler would take care to prevent any leaking of old data from the
divider but by the time the fault is raised, the speculation has already
advanced too far and such data could already have been used by younger
operations.

Therefore, do the innocuous division on every exit to userspace so that
userspace doesn't see any potentially old data from integer divisions in
kernel space.

Do the same before VMRUN too, to protect host data from leaking into the
guest too.

Fixes: 77245f1c3c64 ("x86/CPU/AMD: Do not leak quotient data after a division by 0")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230811213824.10025-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:40 +02:00
Sean Christopherson
bbe585239d x86/retpoline: Don't clobber RFLAGS during srso_safe_ret()
commit ba5ca5e5e6a1d55923e88b4a83da452166f5560e upstream.

Use LEA instead of ADD when adjusting %rsp in srso_safe_ret{,_alias}()
so as to avoid clobbering flags.  Drop one of the INT3 instructions to
account for the LEA consuming one more byte than the ADD.

KVM's emulator makes indirect calls into a jump table of sorts, where
the destination of each call is a small blob of code that performs fast
emulation by executing the target instruction with fixed operands.

E.g. to emulate ADC, fastop() invokes adcb_al_dl():

  adcb_al_dl:
    <+0>:  adc    %dl,%al
    <+2>:  jmp    <__x86_return_thunk>

A major motivation for doing fast emulation is to leverage the CPU to
handle consumption and manipulation of arithmetic flags, i.e. RFLAGS is
both an input and output to the target of the call.  fastop() collects
the RFLAGS result by pushing RFLAGS onto the stack and popping them back
into a variable (held in %rdi in this case):

  asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"

  <+71>: mov    0xc0(%r8),%rdx
  <+78>: mov    0x100(%r8),%rcx
  <+85>: push   %rdi
  <+86>: popf
  <+87>: call   *%rsi
  <+89>: nop
  <+90>: nop
  <+91>: nop
  <+92>: pushf
  <+93>: pop    %rdi

and then propagating the arithmetic flags into the vCPU's emulator state:

  ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);

  <+64>:  and    $0xfffffffffffff72a,%r9
  <+94>:  and    $0x8d5,%edi
  <+109>: or     %rdi,%r9
  <+122>: mov    %r9,0x10(%r8)

The failures can be most easily reproduced by running the "emulator"
test in KVM-Unit-Tests.

If you're feeling a bit of deja vu, see commit b63f20a778c8
("x86/retpoline: Don't clobber RFLAGS during CALL_NOSPEC on i386").

In addition, this breaks booting of clang-compiled guest on
a gcc-compiled host where the host contains the %rsp-modifying SRSO
mitigations.

  [ bp: Massage commit message, extend, remove addresses. ]

Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Closes: https://lore.kernel.org/all/de474347-122d-54cd-eabf-9dcc95ab9eae@amd.com
Reported-by: Srikanth Aithal <sraithal@amd.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20230810013334.GA5354@dev-arch.thelio-3990X/
Link: https://lore.kernel.org/r/20230811155255.250835-1-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:40 +02:00
Peter Zijlstra
19f23d16b0 x86/static_call: Fix __static_call_fixup()
commit 54097309620ef0dc2d7083783dc521c6a5fef957 upstream.

Christian reported spurious module load crashes after some of Song's
module memory layout patches.

Turns out that if the very last instruction on the very last page of the
module is a 'JMP __x86_return_thunk' then __static_call_fixup() will
trip a fault and die.

And while the module rework made this slightly more likely to happen,
it's always been possible.

Fixes: ee88d363d156 ("x86,static_call: Use alternative RET encoding")
Reported-by: Christian Bricart <christian@bricart.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lkml.kernel.org/r/20230816104419.GA982867@hirez.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:40 +02:00
Borislav Petkov (AMD)
df6495f203 x86/srso: Explain the untraining sequences a bit more
commit 9dbd23e42ff0b10c9b02c9e649c76e5228241a8e upstream.

The goal is to eventually have a proper documentation about all this.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814164447.GFZNpZ/64H4lENIe94@fat_crate.local
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:39 +02:00
Peter Zijlstra
43548590ad x86/cpu: Cleanup the untrain mess
commit e7c25c441e9e0fa75b4c83e0b26306b702cfe90d upstream.

Since there can only be one active return_thunk, there only needs be
one (matching) untrain_ret. It fundamentally doesn't make sense to
allow multiple untrain_ret at the same time.

Fold all the 3 different untrain methods into a single (temporary)
helper stub.

Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:39 +02:00
Peter Zijlstra
035e906bfc x86/cpu: Rename srso_(.*)_alias to srso_alias_\1
commit 42be649dd1f2eee6b1fb185f1a231b9494cf095f upstream.

For a more consistent namespace.

  [ bp: Fixup names in the doc too. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.976236447@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:39 +02:00
Peter Zijlstra
19c1c04996 x86/cpu: Rename original retbleed methods
commit d025b7bac07a6e90b6b98b487f88854ad9247c39 upstream.

Rename the original retbleed return thunk and untrain_ret to
retbleed_return_thunk() and retbleed_untrain_ret().

No functional changes.

Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.909378169@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 14:23:39 +02:00