IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 4a204f7895878363ca8211f50ec610408c8c70aa upstream.
Expand KVM's mask for the AVIC host physical ID to the full 12 bits defined
by the architecture. The number of bits consumed by hardware is model
specific, e.g. early CPUs ignored bits 11:8, but there is no way for KVM
to enumerate the "true" size. So, KVM must allow using all bits, else it
risks rejecting completely legal x2APIC IDs on newer CPUs.
This means KVM relies on hardware to not assign x2APIC IDs that exceed the
"true" width of the field, but presumably hardware is smart enough to tie
the width to the max x2APIC ID. KVM also relies on hardware to support at
least 8 bits, as the legacy xAPIC ID is writable by software. But, those
assumptions are unavoidable due to the lack of any way to enumerate the
"true" width.
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Fixes: 44a95dae1d22 ("KVM: x86: Detect and Initialize AVIC support")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220211000851.185799-1-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[modified due to the conflict caused by the commit 391503528257 ("KVM:
x86: SVM: move avic definitions from AMD's spec to svm.h")]
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a836839cbfe60dc434c5476a7429cf2bae36415d ]
When RDTSCP is supported but RDPID is not supported in host,
RDPID emulation is available. However, __kvm_get_msr() would
only fail when RDTSCP/RDPID both are disabled in guest, so
the emulator wouldn't inject a #UD when RDPID is disabled but
RDTSCP is enabled in guest.
Fixes: fb6d4d340e05 ("KVM: x86: emulate RDPID")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <1dfd46ae5b76d3ed87bde3154d51c64ea64c99c1.1646226788.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e644896f5106aa3f6d7e8c7adf2e4dc0fce53555 ]
HSW_IN_TX* bits are used in generic code which are not supported on
AMD. Worse, these bits overlap with AMD EventSelect[11:8] and hence
using HSW_IN_TX* bits unconditionally in generic code is resulting in
unintentional pmu behavior on AMD. For example, if EventSelect[11:8]
is 0x2, pmc_reprogram_counter() wrongly assumes that
HSW_IN_TX_CHECKPOINTED is set and thus forces sampling period to be 0.
Also per the SDM, both bits 32 and 33 "may only be set if the processor
supports HLE or RTM" and for "IN_TXCP (bit 33): this bit may only be set
for IA32_PERFEVTSEL2."
Opportunistically eliminate code redundancy, because if the HSW_IN_TX*
bit is set in pmc->eventsel, it is already set in attr.config.
Reported-by: Ravi Bangoria <ravi.bangoria@amd.com>
Reported-by: Jim Mattson <jmattson@google.com>
Fixes: 103af0a98788 ("perf, kvm: Support the in_tx/in_tx_cp modifiers in KVM arch perfmon emulation v5")
Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220309084257.88931-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9b026073db2f1ad0e4d8b61c83316c8497981037 ]
AMD EPYC CPUs never raise a #GP for a WRMSR to a PerfEvtSeln MSR. Some
reserved bits are cleared, and some are not. Specifically, on
Zen3/Milan, bits 19 and 42 are not cleared.
When emulating such a WRMSR, KVM should not synthesize a #GP,
regardless of which bits are set. However, undocumented bits should
not be passed through to the hardware MSR. So, rather than checking
for reserved bits and synthesizing a #GP, just clear the reserved
bits.
This may seem pedantic, but since KVM currently does not support the
"Host/Guest Only" bits (41:40), it is necessary to clear these bits
rather than synthesizing #GP, because some popular guests (e.g Linux)
will set the "Host Only" bit even on CPUs that don't support
EFER.SVME, and they don't expect a #GP.
For example,
root@Ubuntu1804:~# perf stat -e r26 -a sleep 1
Performance counter stats for 'system wide':
0 r26
1.001070977 seconds time elapsed
Feb 23 03:59:58 Ubuntu1804 kernel: [ 405.379957] unchecked MSR access error: WRMSR to 0xc0010200 (tried to write 0x0000020000130026) at rIP: 0xffffffff9b276a28 (native_write_msr+0x8/0x30)
Feb 23 03:59:58 Ubuntu1804 kernel: [ 405.379958] Call Trace:
Feb 23 03:59:58 Ubuntu1804 kernel: [ 405.379963] amd_pmu_disable_event+0x27/0x90
Fixes: ca724305a2b0 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Reported-by: Lotus Fenn <lotusf@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Like Xu <likexu@tencent.com>
Reviewed-by: David Dunn <daviddunn@google.com>
Message-Id: <20220226234131.2167175-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4a9e7b9ea252842bc8b14d495706ac6317fafd5d ]
Include kvm_cache_regs.h to pick up the definition of is_guest_mode(),
which is referenced by nested_svm_virtualize_tpr() in svm.h. Remove
include from svm_onhpyerv.c which was done only because of lack of
include in svm.h.
Fixes: 883b0a91f41ab ("KVM: SVM: Move Nested SVM Implementation to nested.c")
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Peter Gonda <pgonda@google.com>
Message-Id: <20220304161032.2270688-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 95b065bf5c431c06c68056a03a5853b660640ecc ]
The third nybble of AMD's event select overlaps with Intel's IN_TX and
IN_TXCP bits. Therefore, we can't use AMD64_RAW_EVENT_MASK on Intel
platforms that support TSX.
Declare a raw_event_mask in the kvm_pmu structure, initialize it in
the vendor-specific pmu_refresh() functions, and use that mask for
PERF_TYPE_RAW configurations in reprogram_gp_counter().
Fixes: 710c47651431 ("KVM: x86/pmu: Use AMD64_RAW_EVENT_MASK for PERF_TYPE_RAW")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220308012452.3468611-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2a8859f373b0a86f0ece8ec8312607eacf12485d upstream.
FNAME(cmpxchg_gpte) is an inefficient mess. It is at least decent if it
can go through get_user_pages_fast(), but if it cannot then it tries to
use memremap(); that is not just terribly slow, it is also wrong because
it assumes that the VM_PFNMAP VMA is contiguous.
The right way to do it would be to do the same thing as
hva_to_pfn_remapped() does since commit add6a0cd1c5b ("KVM: MMU: try to
fix up page faults before giving up", 2016-07-05), using follow_pte()
and fixup_user_fault() to determine the correct address to use for
memremap(). To do this, one could for example extract hva_to_pfn()
for use outside virt/kvm/kvm_main.c. But really there is no reason to
do that either, because there is already a perfectly valid address to
do the cmpxchg() on, only it is a userspace address. That means doing
user_access_begin()/user_access_end() and writing the code in assembly
to handle exceptions correctly. Worse, the guest PTE can be 8-byte
even on i686 so there is the extra complication of using cmpxchg8b to
account for. But at least it is an efficient mess.
(Thanks to Linus for suggesting improvement on the inline assembly).
Reported-by: Qiuhao Li <qiuhao@sysec.org>
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Reported-by: syzbot+6cde2282daa792c49ab8@syzkaller.appspotmail.com
Debugged-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Tested-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Fixes: bd53cb35a3e9 ("X86/KVM: Handle PFNs outside of kernel reach when touching GPTEs")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b1e34d325397a33d97d845e312d7cf2a8b646b44 upstream.
Setting non-zero values to SYNIC/STIMER MSRs activates certain features,
this should not happen when KVM_CAP_HYPERV_SYNIC{,2} was not activated.
Note, it would've been better to forbid writing anything to SYNIC/STIMER
MSRs, including zeroes, however, at least QEMU tries clearing
HV_X64_MSR_STIMER0_CONFIG without SynIC. HV_X64_MSR_EOM MSR is somewhat
'special' as writing zero there triggers an action, this also should not
happen when SynIC wasn't activated.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325132140.25650-4-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 00b5f37189d24ac3ed46cb7f11742094778c46ce upstream.
When kvm_irq_delivery_to_apic_fast() is called with APIC_DEST_SELF
shorthand, 'src' must not be NULL. Crash the VM with KVM_BUG_ON()
instead of crashing the host.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325132140.25650-3-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7ec37d1cbe17d8189d9562178d8b29167fe1c31a upstream.
When KVM_CAP_HYPERV_SYNIC{,2} is activated, KVM already checks for
irqchip_in_kernel() so normally SynIC irqs should never be set. It is,
however, possible for a misbehaving VMM to write to SYNIC/STIMER MSRs
causing erroneous behavior.
The immediate issue being fixed is that kvm_irq_delivery_to_apic()
(kvm_irq_delivery_to_apic_fast()) crashes when called with
'irq.shorthand = APIC_DEST_SELF' and 'src == NULL'.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325132140.25650-2-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 47d3e5cdfe607ec6883eb0faa7acf05b8cb3f92a upstream.
It has been proven on practice that at least Windows Server 2019 tries
using HVCALL_SEND_IPI_EX in 'XMM fast' mode when it has more than 64 vCPUs
and it needs to send an IPI to a vCPU > 63. Similarly to other XMM Fast
hypercalls (HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}{,_EX}), this
information is missing in TLFS as of 6.0b. Currently, KVM returns an error
(HV_STATUS_INVALID_HYPERCALL_INPUT) and Windows crashes.
Note, HVCALL_SEND_IPI is a 'standard' fast hypercall (not 'XMM fast') as
all its parameters fit into RDX:R8 and this is handled by KVM correctly.
Cc: stable@vger.kernel.org # 5.14.x: 3244867af8c0: KVM: x86: Ignore sparse banks size for an "all CPUs", non-sparse IPI req
Cc: stable@vger.kernel.org # 5.14.x
Fixes: d8f5537a8816 ("KVM: hyper-v: Advertise support for fast XMM hypercalls")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220222154642.684285-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7321f47eada53a395fb3086d49297eebb19e8e58 upstream.
When TLB flush hypercalls (HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX are
issued in 'XMM fast' mode, the maximum number of allowed sparse_banks is
not 'HV_HYPERCALL_MAX_XMM_REGISTERS - 1' (5) but twice as many (10) as each
XMM register is 128 bit long and can hold two 64 bit long banks.
Cc: stable@vger.kernel.org # 5.14.x
Fixes: 5974565bc26d ("KVM: x86: kvm_hv_flush_tlb use inputs from XMM registers")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220222154642.684285-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 82c1ead0d678af31e5d883656c12096a0004178b upstream.
'struct kvm_hv_hcall' has all the required information already,
there's no need to pass 'ex' additionally.
No functional change intended.
Cc: stable@vger.kernel.org # 5.14.x
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220222154642.684285-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 50e523dd79f6a856d793ce5711719abe27cffbf2 upstream.
'struct kvm_hv_hcall' has all the required information already,
there's no need to pass 'ex' additionally.
No functional change intended.
Cc: stable@vger.kernel.org # 5.14.x
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220222154642.684285-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3354ef5a592d219364cf442c2f784ce7ad7629fd upstream.
Explicitly check for present SPTEs when clearing dirty bits in the TDP
MMU. This isn't strictly required for correctness, as setting the dirty
bit in a defunct SPTE will not change the SPTE from !PRESENT to PRESENT.
However, the guarded MMU_WARN_ON() in spte_ad_need_write_protect() would
complain if anyone actually turned on KVM's MMU debugging.
Fixes: a6a0b05da9f3 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-3-seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d62007edf01f5c11f75d0f4b1e538fc52a5b1982 upstream.
Zap both valid and invalid roots when zapping/unmapping a gfn range, as
KVM must ensure it holds no references to the freed page after returning
from the unmap operation. Most notably, the TDP MMU doesn't zap invalid
roots in mmu_notifier callbacks. This leads to use-after-free and other
issues if the mmu_notifier runs to completion while an invalid root
zapper yields as KVM fails to honor the requirement that there must be
_no_ references to the page after the mmu_notifier returns.
The bug is most easily reproduced by hacking KVM to cause a collision
between set_nx_huge_pages() and kvm_mmu_notifier_release(), but the bug
exists between kvm_mmu_notifier_invalidate_range_start() and memslot
updates as well. Invalidating a root ensures pages aren't accessible by
the guest, and KVM won't read or write page data itself, but KVM will
trigger e.g. kvm_set_pfn_dirty() when zapping SPTEs, and thus completing
a zap of an invalid root _after_ the mmu_notifier returns is fatal.
WARNING: CPU: 24 PID: 1496 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:173 [kvm]
RIP: 0010:kvm_is_zone_device_pfn+0x96/0xa0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0xa8/0xe0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
zap_gfn_range+0x1f3/0x310 [kvm]
kvm_tdp_mmu_zap_invalidated_roots+0x50/0x90 [kvm]
kvm_mmu_zap_all_fast+0x177/0x1a0 [kvm]
set_nx_huge_pages+0xb4/0x190 [kvm]
param_attr_store+0x70/0x100
module_attr_store+0x19/0x30
kernfs_fop_write_iter+0x119/0x1b0
new_sync_write+0x11c/0x1b0
vfs_write+0x1cc/0x270
ksys_write+0x5f/0xe0
do_syscall_64+0x38/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Fixes: b7cccd397f31 ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 04dc4e6ce274fa729feda32aa957b27388a3870c upstream.
Move the check for an invalid root out of kvm_tdp_mmu_get_root() and into
the one place it actually matters, tdp_mmu_next_root(), as the other user
already has an implicit validity check. A future bug fix will need to
get references to invalid roots to honor mmu_notifier requests; there's
no point in forcing what will be a common path to open code getting a
reference to a root.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d6174299365ddbbf491620c0b8c5ca1a6ef2eea5 upstream.
While the guest runs, EFER.LME cannot change unless CR0.PG is clear, and
therefore EFER.NX is the only bit that can affect the MMU role. However,
set_efer accepts a host-initiated change to EFER.LME even with CR0.PG=1.
In that case, the MMU has to be reset.
Fixes: 11988499e62b ("KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ca85f002258fdac3762c57d12d5e6e401b6a41af ]
Per Intel's SDM on the "Instruction Set Reference", when
loading segment descriptor, not-present segment check should
be after all type and privilege checks. But the emulator checks
it first, then #NP is triggered instead of #GP if privilege fails
and segment is not present. Put not-present segment check after
type and privilege checks in __load_segment_descriptor().
Fixes: 38ba30ba51a00 (KVM: x86 emulator: Emulate task switch in emulator.c)
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <52573c01d369f506cadcf7233812427cf7db81a7.1644292363.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f66af9f222f08d5b11ea41c1bd6c07a0f12daa07 ]
In emulation of writing to cr8, one of the lowest four bits in TPR[3:0]
is kept.
According to Intel SDM 10.8.6.1(baremetal scenario):
"APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0";
and SDM 28.3(use TPR shadow):
"MOV to CR8. The instruction stores bits 3:0 of its source operand into
bits 7:4 of VTPR; the remainder of VTPR (bits 3:0 and bits 31:8) are
cleared.";
and AMD's APM 16.6.4:
"Task Priority Sub-class (TPS)-Bits 3 : 0. The TPS field indicates the
current sub-priority to be used when arbitrating lowest-priority messages.
This field is written with zero when TPR is written using the architectural
CR8 register.";
so in KVM emulated scenario, clear TPR[3:0] to make a consistent behavior
as in other scenarios.
This doesn't impact evaluation and delivery of pending virtual interrupts
because processor does not use the processor-priority sub-class to
determine which interrupts to delivery and which to inhibit.
Sub-class is used by hardware to arbitrate lowest priority interrupts,
but KVM just does a round-robin style delivery.
Fixes: b93463aa59d6 ("KVM: Accelerated apic support")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220210094506.20181-1-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a7cc099f2ec3117678adeb69749bef7e9dde3148 upstream.
This looks like a typo in 8f32d5e563cb. This change didn't intend to do
any functional changes.
The problem was caught by gVisor tests.
Fixes: 8f32d5e563cb ("KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Message-Id: <20211015163221.472508-1-avagin@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 3a55f729240a686aa8af00af436306c0cd532522 ]
If vcpu has tsc_always_catchup set each request updates pvclock data.
KVM_HC_CLOCK_PAIRING consumers such as ptp_kvm_x86 rely on tsc read on
host's side and do hypercall inside pvclock_read_retry loop leading to
infinite loop in such situation.
v3:
Removed warn
Changed return code to KVM_EFAULT
v2:
Added warn
Signed-off-by: Anton Romanov <romanton@google.com>
Message-Id: <20220216182653.506850-1-romanton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c6c937d673aaa1d603f62f134e1ca9c173eeeed3 upstream.
Just like on the optional mmu_alloc_direct_roots() path, once shadow
path reaches "r = -EIO" somewhere, the caller needs to know the actual
state in order to enter error handling and avoid something worse.
Fixes: 4a38162ee9f1 ("KVM: MMU: load PDPTRs outside mmu_lock")
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220301124941.48412-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit adbfb12d4c4517a8adde23a7fc46538953d56eea ]
em_rdmsr() and em_wrmsr() return X86EMUL_IO_NEEDED if MSR accesses
required an exit to userspace. However, x86_emulate_insn() doesn't return
X86EMUL_*, so x86_emulate_instruction() doesn't directly act on
X86EMUL_IO_NEEDED; instead, it looks for other signals to differentiate
between PIO, MMIO, etc. causing RDMSR/WRMSR emulation not to
exit to userspace now.
Nevertheless, if the userspace_msr_exit_test testcase in selftests
is changed to test RDMSR/WRMSR with a forced emulation prefix,
the test passes. What happens is that first userspace exit
information is filled but the userspace exit does not happen.
Because x86_emulate_instruction() returns 1, the guest retries
the instruction---but this time RIP has already been adjusted
past the forced emulation prefix, so the guest executes RDMSR/WRMSR
and the userspace exit finally happens.
Since the X86EMUL_IO_NEEDED path has provided a complete_userspace_io
callback, x86_emulate_instruction() can just return 0 if the
callback is not NULL. Then RDMSR/WRMSR instruction emulation will
exit to userspace directly, without the RDMSR/WRMSR vmexit.
Fixes: 1ae099540e8c7 ("KVM: x86: Allow deflecting unknown MSR accesses to user space")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <56f9df2ee5c05a81155e2be366c9dc1f7adc8817.1635842679.git.houwenlong93@linux.alibaba.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5e854864ee4384736f27a986633bae21731a4e4e ]
Truncate the new EIP to a 32-bit value when handling EMULTYPE_SKIP as the
decode phase does not truncate _eip. Wrapping the 32-bit boundary is
legal if and only if CS is a flat code segment, but that check is
implicitly handled in the form of limit checks in the decode phase.
Opportunstically prepare for a future fix by storing the result of any
truncation in "eip" instead of "_eip".
Fixes: 1957aa63be53 ("KVM: VMX: Handle single-step #DB for EMULTYPE_SKIP on EPT misconfig")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <093eabb1eab2965201c9b018373baf26ff256d85.1635842679.git.houwenlong93@linux.alibaba.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2c5653caecc4807b8abfe9c41880ac38417be7bf ]
For VMX with EPT, dirty PDPTRs need to be loaded before the next vmentry
via vmx_load_mmu_pgd()
But not all paths that call load_pdptrs() will cause vmx_load_mmu_pgd()
to be invoked. Normally, kvm_mmu_reset_context() is used to cause
KVM_REQ_LOAD_MMU_PGD, but sometimes it is skipped:
* commit d81135a57aa6("KVM: x86: do not reset mmu if CR0.CD and
CR0.NW are changed") skips kvm_mmu_reset_context() after load_pdptrs()
when changing CR0.CD and CR0.NW.
* commit 21823fbda552("KVM: x86: Invalidate all PGDs for the current
PCID on MOV CR3 w/ flush") skips KVM_REQ_LOAD_MMU_PGD after
load_pdptrs() when rewriting the CR3 with the same value.
* commit a91a7c709600("KVM: X86: Don't reset mmu context when
toggling X86_CR4_PGE") skips kvm_mmu_reset_context() after
load_pdptrs() when changing CR4.PGE.
Fixes: d81135a57aa6 ("KVM: x86: do not reset mmu if CR0.CD and CR0.NW are changed")
Fixes: 21823fbda552 ("KVM: x86: Invalidate all PGDs for the current PCID on MOV CR3 w/ flush")
Fixes: a91a7c709600 ("KVM: X86: Don't reset mmu context when toggling X86_CR4_PGE")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cfb0e1306a3790eb055ebf7cdb7b0ee8a23e9b6e ]
Use READ_ONCE() when loading the posted interrupt descriptor control
field to ensure "old" and "new" have the same base value. If the
compiler emits separate loads, and loads into "new" before "old", KVM
could theoretically drop the ON bit if it were set between the loads.
Fixes: 28b835d60fcc ("KVM: Update Posted-Interrupts Descriptor when vCPU is preempted")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1831fa44df743a7cdffdf1c12c799bf6f3c12b8c ]
Don't configure the wakeup handler when a vCPU is blocking with IRQs
disabled, in which case any IRQ, posted or otherwise, should not be
recognized and thus should not wake the vCPU.
Fixes: bf9f6ac8d749 ("KVM: Update Posted-Interrupts Descriptor when vCPU is blocked")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6f3c1fc53d86d580d8d6d749c4af23705e4f6f79 upstream.
In current async pagefault logic, when a page is ready, KVM relies on
kvm_arch_can_dequeue_async_page_present() to determine whether to deliver
a READY event to the Guest. This function test token value of struct
kvm_vcpu_pv_apf_data, which must be reset to zero by Guest kernel when a
READY event is finished by Guest. If value is zero meaning that a READY
event is done, so the KVM can deliver another.
But the kvm_arch_setup_async_pf() may produce a valid token with zero
value, which is confused with previous mention and may lead the loss of
this READY event.
This bug may cause task blocked forever in Guest:
INFO: task stress:7532 blocked for more than 1254 seconds.
Not tainted 5.10.0 #16
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:stress state:D stack: 0 pid: 7532 ppid: 1409
flags:0x00000080
Call Trace:
__schedule+0x1e7/0x650
schedule+0x46/0xb0
kvm_async_pf_task_wait_schedule+0xad/0xe0
? exit_to_user_mode_prepare+0x60/0x70
__kvm_handle_async_pf+0x4f/0xb0
? asm_exc_page_fault+0x8/0x30
exc_page_fault+0x6f/0x110
? asm_exc_page_fault+0x8/0x30
asm_exc_page_fault+0x1e/0x30
RIP: 0033:0x402d00
RSP: 002b:00007ffd31912500 EFLAGS: 00010206
RAX: 0000000000071000 RBX: ffffffffffffffff RCX: 00000000021a32b0
RDX: 000000000007d011 RSI: 000000000007d000 RDI: 00000000021262b0
RBP: 00000000021262b0 R08: 0000000000000003 R09: 0000000000000086
R10: 00000000000000eb R11: 00007fefbdf2baa0 R12: 0000000000000000
R13: 0000000000000002 R14: 000000000007d000 R15: 0000000000001000
Signed-off-by: Liang Zhang <zhangliang5@huawei.com>
Message-Id: <20220222031239.1076682-1-zhangliang5@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 710c476514313c74045c41c0571bb5178fd16e3d ]
AMD's event select is 3 nybbles, with the high nybble in bits 35:32 of
a PerfEvtSeln MSR. Don't mask off the high nybble when configuring a
RAW perf event.
Fixes: ca724305a2b0 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220203014813.2130559-2-jmattson@google.com>
Reviewed-by: David Dunn <daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b8bfee85f1307426e0242d654f3a14c06ef639c5 ]
AMD's event select is 3 nybbles, with the high nybble in bits 35:32 of
a PerfEvtSeln MSR. Don't drop the high nybble when setting up the
config field of a perf_event_attr structure for a call to
perf_event_create_kernel_counter().
Fixes: ca724305a2b0 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220203014813.2130559-1-jmattson@google.com>
Reviewed-by: David Dunn <daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7c174f305cbee6bdba5018aae02b84369e7ab995 ]
The find_arch_event() returns a "unsigned int" value,
which is used by the pmc_reprogram_counter() to
program a PERF_TYPE_HARDWARE type perf_event.
The returned value is actually the kernel defined generic
perf_hw_id, let's rename it to pmc_perf_hw_id() with simpler
incoming parameters for better self-explanation.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e8efa4ff00374d2e6f47f6e4628ca3b541c001af upstream.
While usually, restoring the smm state makes the KVM enter
the nested guest thus a different vmcb (vmcb02 vs vmcb01),
KVM should still mark it as dirty, since hardware
can in theory cache multiple vmcbs.
Failure to do so, combined with lack of setting the
nested_run_pending (which is fixed in the next patch),
might make KVM re-enter vmcb01, which was just exited from,
with completely different set of guest state registers
(SMM vs non SMM) and without proper dirty bits set,
which results in the CPU reusing stale IDTR pointer
which leads to a guest shutdown on any interrupt.
On the real hardware this usually doesn't happen,
but when running nested, L0's KVM does check and
honour few dirty bits, causing this issue to happen.
This patch fixes boot of hyperv and SMM enabled
windows VM running nested on KVM.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Message-Id: <20220207155447.840194-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e1779c2714c3023e4629825762bcbc43a3b943df upstream.
Turns out that due to review feedback and/or rebases
I accidentally moved the call to nested_svm_load_cr3 to be too early,
before the NPT is enabled, which is very wrong to do.
KVM can't even access guest memory at that point as nested NPT
is needed for that, and of course it won't initialize the walk_mmu,
which is main issue the patch was addressing.
Fix this for real.
Fixes: 232f75d3b4b5 ("KVM: nSVM: call nested_svm_load_cr3 on nested state load")
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220207155447.840194-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c53bbe2145f51d3bc0438c2db02e737b9b598bf3 upstream.
When the guest doesn't enable paging, and NPT/EPT is disabled, we
use guest't paging CR3's as KVM's shadow paging pointer and
we are technically in direct mode as if we were to use NPT/EPT.
In direct mode we create SPTEs with user mode permissions
because usually in the direct mode the NPT/EPT doesn't
need to restrict access based on guest CPL
(there are MBE/GMET extenstions for that but KVM doesn't use them).
In this special "use guest paging as direct" mode however,
and if CR4.SMAP/CR4.SMEP are enabled, that will make the CPU
fault on each access and KVM will enter endless loop of page faults.
Since page protection doesn't have any meaning in !PG case,
just don't passthrough these bits.
The fix is the same as was done for VMX in commit:
commit 656ec4a4928a ("KVM: VMX: fix SMEP and SMAP without EPT")
This fixes the boot of windows 10 without NPT for good.
(Without this patch, BSP boots, but APs were stuck in endless
loop of page faults, causing the VM boot with 1 CPU)
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Message-Id: <20220207155447.840194-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 759cbd59674a6c0aec616a3f4f0740ebd3f5fbef upstream.
While RSM induced VM entries are not full VM entries,
they still need to be followed by actual VM entry to complete it,
unlike setting the nested state.
This patch fixes boot of hyperv and SMM enabled
windows VM running nested on KVM, which fail due
to this issue combined with lack of dirty bit setting.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Message-Id: <20220207155447.840194-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fcb732d8f8cf6084f8480015ad41d25fb023a4dd upstream.
There are circumstances whem kvm_xen_update_runstate_guest() should not
sleep because it ends up being called from __schedule() when the vCPU
is preempted:
[ 222.830825] kvm_xen_update_runstate_guest+0x24/0x100
[ 222.830878] kvm_arch_vcpu_put+0x14c/0x200
[ 222.830920] kvm_sched_out+0x30/0x40
[ 222.830960] __schedule+0x55c/0x9f0
To handle this, make it use the same trick as __kvm_xen_has_interrupt(),
of using the hva from the gfn_to_hva_cache directly. Then it can use
pagefault_disable() around the accesses and just bail out if the page
is absent (which is unlikely).
I almost switched to using a gfn_to_pfn_cache here and bailing out if
kvm_map_gfn() fails, like kvm_steal_time_set_preempted() does — but on
closer inspection it looks like kvm_map_gfn() will *always* fail in
atomic context for a page in IOMEM, which means it will silently fail
to make the update every single time for such guests, AFAICT. So I
didn't do it that way after all. And will probably fix that one too.
Cc: stable@vger.kernel.org
Fixes: 30b5c851af79 ("KVM: x86/xen: Add support for vCPU runstate information")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <b17a93e5ff4561e57b1238e3e7ccd0b613eb827e.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dd4589eee99db8f61f7b8f7df1531cad3f74a64d upstream.
Remove a WARN on an "AVIC IPI invalid target" exit, the WARN is trivial
to trigger from guest as it will fail on any destination APIC ID that
doesn't exist from the guest's perspective.
Don't bother recording anything in the kernel log, the common tracepoint
for kvm_avic_incomplete_ipi() is sufficient for debugging.
This reverts commit 37ef0c4414c9743ba7f1af4392f0a27a99649f2a.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e3bcfda012edd3564e12551b212afbd2521a1f68 ]
CPUID.(EAX=7,ECX=0):EBX.FDP_EXCPTN_ONLY[bit 6] and
CPUID.(EAX=7,ECX=0):EBX.ZERO_FCS_FDS[bit 13] are "defeature"
bits. Unlike most of the other CPUID feature bits, these bits are
clear if the features are present and set if the features are not
present. These bits should be reported in KVM_GET_SUPPORTED_CPUID,
because if these bits are set on hardware, they cannot be cleared in
the guest CPUID. Doing so would claim guest support for a feature that
the hardware doesn't support and that can't be efficiently emulated.
Of course, any software (e.g WIN87EM.DLL) expecting these features to
be present likely predates these CPUID feature bits and therefore
doesn't know to check for them anyway.
Aaron Lewis added the corresponding X86_FEATURE macros in
commit cbb99c0f5887 ("x86/cpufeatures: Add FDP_EXCPTN_ONLY and
ZERO_FCS_FDS"), with the intention of reporting these bits in
KVM_GET_SUPPORTED_CPUID, but I was unable to find a proposed patch on
the kvm list.
Opportunistically reordered the CPUID_7_0_EBX capability bits from
least to most significant.
Cc: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220204001348.2844660-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b9bed78e2fa9571b7c983b20666efa0009030c71 ]
Set vmcs.GUEST_PENDING_DBG_EXCEPTIONS.BS, a.k.a. the pending single-step
breakpoint flag, when re-injecting a #DB with RFLAGS.TF=1, and STI or
MOVSS blocking is active. Setting the flag is necessary to make VM-Entry
consistency checks happy, as VMX has an invariant that if RFLAGS.TF is
set and STI/MOVSS blocking is true, then the previous instruction must
have been STI or MOV/POP, and therefore a single-step #DB must be pending
since the RFLAGS.TF cannot have been set by the previous instruction,
i.e. the one instruction delay after setting RFLAGS.TF must have already
expired.
Normally, the CPU sets vmcs.GUEST_PENDING_DBG_EXCEPTIONS.BS appropriately
when recording guest state as part of a VM-Exit, but #DB VM-Exits
intentionally do not treat the #DB as "guest state" as interception of
the #DB effectively makes the #DB host-owned, thus KVM needs to manually
set PENDING_DBG.BS when forwarding/re-injecting the #DB to the guest.
Note, although this bug can be triggered by guest userspace, doing so
requires IOPL=3, and guest userspace running with IOPL=3 has full access
to all I/O ports (from the guest's perspective) and can crash/reboot the
guest any number of ways. IOPL=3 is required because STI blocking kicks
in if and only if RFLAGS.IF is toggled 0=>1, and if CPL>IOPL, STI either
takes a #GP or modifies RFLAGS.VIF, not RFLAGS.IF.
MOVSS blocking can be initiated by userspace, but can be coincident with
a #DB if and only if DR7.GD=1 (General Detect enabled) and a MOV DR is
executed in the MOVSS shadow. MOV DR #GPs at CPL>0, thus MOVSS blocking
is problematic only for CPL0 (and only if the guest is crazy enough to
access a DR in a MOVSS shadow). All other sources of #DBs are either
suppressed by MOVSS blocking (single-step, code fetch, data, and I/O),
are mutually exclusive with MOVSS blocking (T-bit task switch), or are
already handled by KVM (ICEBP, a.k.a. INT1).
This bug was originally found by running tests[1] created for XSA-308[2].
Note that Xen's userspace test emits ICEBP in the MOVSS shadow, which is
presumably why the Xen bug was deemed to be an exploitable DOS from guest
userspace. KVM already handles ICEBP by skipping the ICEBP instruction
and thus clears MOVSS blocking as a side effect of its "emulation".
[1] http://xenbits.xenproject.org/docs/xtf/xsa-308_2main_8c_source.html
[2] https://xenbits.xen.org/xsa/advisory-308.html
Reported-by: David Woodhouse <dwmw2@infradead.org>
Reported-by: Alexander Graf <graf@amazon.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220120000624.655815-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cdf85e0c5dc766fc7fc779466280e454a6d04f87 ]
Inject a #GP instead of synthesizing triple fault to try to avoid killing
the guest if emulation of an SEV guest fails due to encountering the SMAP
erratum. The injected #GP may still be fatal to the guest, e.g. if the
userspace process is providing critical functionality, but KVM should
make every attempt to keep the guest alive.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f80ae0ef089a09e8c18da43a382c3caac9a424a7 ]
Similar to MSR_IA32_VMX_EXIT_CTLS/MSR_IA32_VMX_TRUE_EXIT_CTLS,
MSR_IA32_VMX_ENTRY_CTLS/MSR_IA32_VMX_TRUE_ENTRY_CTLS pair,
MSR_IA32_VMX_TRUE_PINBASED_CTLS needs to be filtered the same way
MSR_IA32_VMX_PINBASED_CTLS is currently filtered as guests may solely rely
on 'true' MSR data.
Note, none of the currently existing Windows/Hyper-V versions are known
to stumble upon the unfiltered MSR_IA32_VMX_TRUE_PINBASED_CTLS, the change
is aimed at making the filtering future proof.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220112170134.1904308-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7a601e2cf61558dfd534a9ecaad09f5853ad8204 ]
Enlightened VMCS v1 doesn't have VMX_PREEMPTION_TIMER_VALUE field,
PIN_BASED_VMX_PREEMPTION_TIMER is also filtered out already so it makes
sense to filter out VM_EXIT_SAVE_VMX_PREEMPTION_TIMER too.
Note, none of the currently existing Windows/Hyper-V versions are known
to enable 'save VMX-preemption timer value' when eVMCS is in use, the
change is aimed at making the filtering future proof.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220112170134.1904308-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 05a9e065059e566f218f8778c4d17ee75db56c55 upstream.
XCR0 is reset to 1 by RESET but not INIT and IA32_XSS is zeroed by
both RESET and INIT. The kvm_set_msr_common()'s handling of MSR_IA32_XSS
also needs to update kvm_update_cpuid_runtime(). In the above cases, the
size in bytes of the XSAVE area containing all states enabled by XCR0 or
(XCRO | IA32_XSS) needs to be updated.
For simplicity and consistency, existing helpers are used to write values
and call kvm_update_cpuid_runtime(), and it's not exactly a fast path.
Fixes: a554d207dc46 ("KVM: X86: Processor States following Reset or INIT")
Cc: stable@vger.kernel.org
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4c282e51e4450b94680d6ca3b10f830483b1f243 upstream.
Do a runtime CPUID update for a vCPU if MSR_IA32_XSS is written, as the
size in bytes of the XSAVE area is affected by the states enabled in XSS.
Fixes: 203000993de5 ("kvm: vmx: add MSR logic for XSAVES")
Cc: stable@vger.kernel.org
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: split out as a separate patch, adjust Fixes tag]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit be4f3b3f82271c3193ce200a996dc70682c8e622 upstream.
It has been corrected from SDM version 075 that MSR_IA32_XSS is reset to
zero on Power up and Reset but keeps unchanged on INIT.
Fixes: a554d207dc46 ("KVM: X86: Processor States following Reset or INIT")
Cc: stable@vger.kernel.org
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f7e570780efc5cec9b2ed1e0472a7da14e864fdb upstream.
Forcibly leave nested virtualization operation if userspace toggles SMM
state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace
forces the vCPU out of SMM while it's post-VMXON and then injects an SMI,
vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both
vmxon=false and smm.vmxon=false, but all other nVMX state allocated.
Don't attempt to gracefully handle the transition as (a) most transitions
are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't
sufficient information to handle all transitions, e.g. SVM wants access
to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede
KVM_SET_NESTED_STATE during state restore as the latter disallows putting
the vCPU into L2 if SMM is active, and disallows tagging the vCPU as
being post-VMXON in SMM if SMM is not active.
Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX
due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond
just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU
in an architecturally impossible state.
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Modules linked in:
CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00
Call Trace:
<TASK>
kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123
kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline]
kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460
kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline]
kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline]
kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250
kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273
__fput+0x286/0x9f0 fs/file_table.c:311
task_work_run+0xdd/0x1a0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0xb29/0x2a30 kernel/exit.c:806
do_group_exit+0xd2/0x2f0 kernel/exit.c:935
get_signal+0x4b0/0x28c0 kernel/signal.c:2862
arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Cc: stable@vger.kernel.org
Reported-by: syzbot+8112db3ab20e70d50c31@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220125220358.2091737-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 47c28d436f409f5b009dc82bd82d4971088aa391 upstream.
The bug occurs on #GP triggered by VMware backdoor when eax value is
unaligned. eax alignment check should not be applied to non-SVM
instructions because it leads to incorrect omission of the instructions
emulation.
Apply the alignment check only to SVM instructions to fix.
Fixes: d1cba6c92237 ("KVM: x86: nSVM: test eax for 4K alignment for GP errata workaround")
Signed-off-by: Denis Valeev <lemniscattaden@gmail.com>
Message-Id: <Yexlhaoe1Fscm59u@q>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0b0be065b7563ac708aaa9f69dd4941c80b3446d upstream.
Never intercept #GP for SEV guests as reading SEV guest private memory
will return cyphertext, i.e. emulating on #GP can't work as intended.
Cc: stable@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>