10313 Commits

Author SHA1 Message Date
Kaiwen Hu
887366faf0 btrfs: prevent subvol with swapfile from being deleted
commit 60021bd754c6ca0addc6817994f20290a321d8d6 upstream.

A subvolume with an active swapfile must not be deleted otherwise it
would not be possible to deactivate it.

After the subvolume is deleted, we cannot swapoff the swapfile in this
deleted subvolume because the path is unreachable.  The swapfile is
still active and holding references, the filesystem cannot be unmounted.

The test looks like this:

  mkfs.btrfs -f $dev > /dev/null
  mount $dev $mnt

  btrfs sub create $mnt/subvol
  touch $mnt/subvol/swapfile
  chmod 600 $mnt/subvol/swapfile
  chattr +C $mnt/subvol/swapfile
  dd if=/dev/zero of=$mnt/subvol/swapfile bs=1K count=4096
  mkswap $mnt/subvol/swapfile
  swapon $mnt/subvol/swapfile

  btrfs sub delete $mnt/subvol
  swapoff $mnt/subvol/swapfile  # failed: No such file or directory
  swapoff --all

  unmount $mnt                  # target is busy.

To prevent above issue, we simply check that whether the subvolume
contains any active swapfile, and stop the deleting process.  This
behavior is like snapshot ioctl dealing with a swapfile.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Kaiwen Hu <kevinhu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-13 20:59:23 +02:00
Ethan Lien
4b98799e18 btrfs: fix qgroup reserve overflow the qgroup limit
commit b642b52d0b50f4d398cb4293f64992d0eed2e2ce upstream.

We use extent_changeset->bytes_changed in qgroup_reserve_data() to record
how many bytes we set for EXTENT_QGROUP_RESERVED state. Currently the
bytes_changed is set as "unsigned int", and it will overflow if we try to
fallocate a range larger than 4GiB. The result is we reserve less bytes
and eventually break the qgroup limit.

Unlike regular buffered/direct write, which we use one changeset for
each ordered extent, which can never be larger than 256M.  For
fallocate, we use one changeset for the whole range, thus it no longer
respects the 256M per extent limit, and caused the problem.

The following example test script reproduces the problem:

  $ cat qgroup-overflow.sh
  #!/bin/bash

  DEV=/dev/sdj
  MNT=/mnt/sdj

  mkfs.btrfs -f $DEV
  mount $DEV $MNT

  # Set qgroup limit to 2GiB.
  btrfs quota enable $MNT
  btrfs qgroup limit 2G $MNT

  # Try to fallocate a 3GiB file. This should fail.
  echo
  echo "Try to fallocate a 3GiB file..."
  fallocate -l 3G $MNT/3G.file

  # Try to fallocate a 5GiB file.
  echo
  echo "Try to fallocate a 5GiB file..."
  fallocate -l 5G $MNT/5G.file

  # See we break the qgroup limit.
  echo
  sync
  btrfs qgroup show -r $MNT

  umount $MNT

When running the test:

  $ ./qgroup-overflow.sh
  (...)

  Try to fallocate a 3GiB file...
  fallocate: fallocate failed: Disk quota exceeded

  Try to fallocate a 5GiB file...

  qgroupid         rfer         excl     max_rfer
  --------         ----         ----     --------
  0/5           5.00GiB      5.00GiB      2.00GiB

Since we have no control of how bytes_changed is used, it's better to
set it to u64.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-13 20:59:23 +02:00
Josef Bacik
c78bada18a btrfs: make search_csum_tree return 0 if we get -EFBIG
[ Upstream commit 03ddb19d2ea745228879b9334f3b550c88acb10a ]

We can either fail to find a csum entry at all and return -ENOENT, or we
can find a range that is close, but return -EFBIG.  In essence these
both mean the same thing when we are doing a lookup for a csum in an
existing range, we didn't find a csum.  We want to treat both of these
errors the same way, complain loudly that there wasn't a csum.  This
currently happens anyway because we do

	count = search_csum_tree();
	if (count <= 0) {
		// reloc and error handling
	}

However it forces us to incorrectly treat EIO or ENOMEM errors as on
disk corruption.  Fix this by returning 0 if we get either -ENOENT or
-EFBIG from btrfs_lookup_csum() so we can do proper error handling.

Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-08 14:23:58 +02:00
Anand Jain
40d006dfed btrfs: harden identification of a stale device
[ Upstream commit 770c79fb65506fc7c16459855c3839429f46cb32 ]

Identifying and removing the stale device from the fs_uuids list is done
by btrfs_free_stale_devices().  btrfs_free_stale_devices() in turn
depends on device_path_matched() to check if the device appears in more
than one btrfs_device structure.

The matching of the device happens by its path, the device path. However,
when device mapper is in use, the dm device paths are nothing but a link
to the actual block device, which leads to the device_path_matched()
failing to match.

Fix this by matching the dev_t as provided by lookup_bdev() instead of
plain string compare of the device paths.

Reported-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-08 14:23:58 +02:00
Filipe Manana
1a97987f76 btrfs: fix unexpected error path when reflinking an inline extent
[ Upstream commit 1f4613cdbe7739ce291554b316bff8e551383389 ]

When reflinking an inline extent, we assert that its file offset is 0 and
that its uncompressed length is not greater than the sector size. We then
return an error if one of those conditions is not satisfied. However we
use a return statement, which results in returning from btrfs_clone()
without freeing the path and buffer that were allocated before, as well as
not clearing the flag BTRFS_INODE_NO_DELALLOC_FLUSH for the destination
inode.

Fix that by jumping to the 'out' label instead, and also add a WARN_ON()
for each condition so that in case assertions are disabled, we get to
known which of the unexpected conditions triggered the error.

Fixes: a61e1e0df9f321 ("Btrfs: simplify inline extent handling when doing reflinks")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-08 14:23:11 +02:00
Qu Wenruo
00c6bb4cea btrfs: verify the tranisd of the to-be-written dirty extent buffer
commit 3777369ff1518b579560611a0d0c33f930154f64 upstream.

[BUG]
There is a bug report that a bitflip in the transid part of an extent
buffer makes btrfs to reject certain tree blocks:

  BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22

[CAUSE]
Note the failed transid check, hex(262166) = 0x40016, while
hex(22) = 0x16.

It's an obvious bitflip.

Furthermore, the reporter also confirmed the bitflip is from the
hardware, so it's a real hardware caused bitflip, and such problem can
not be detected by the existing tree-checker framework.

As tree-checker can only verify the content inside one tree block, while
generation of a tree block can only be verified against its parent.

So such problem remain undetected.

[FIX]
Although tree-checker can not verify it at write-time, we still have a
quick (but not the most accurate) way to catch such obvious corruption.

Function csum_one_extent_buffer() is called before we submit metadata
write.

Thus it means, all the extent buffer passed in should be dirty tree
blocks, and should be newer than last committed transaction.

Using that we can catch the above bitflip.

Although it's not a perfect solution, as if the corrupted generation is
higher than the correct value, we have no way to catch it at all.

Reported-by: Christoph Anton Mitterer <calestyo@scientia.org>
Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Qu Wenruo <wqu@sus,ree.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-08 14:23:02 +02:00
Niels Dossche
f85ee0c845 btrfs: extend locking to all space_info members accesses
commit 06bae876634ebf837ba70ea3de532b288326103d upstream.

bytes_pinned is always accessed under space_info->lock, except in
btrfs_preempt_reclaim_metadata_space, however the other members are
accessed under that lock. The reserved member of the rsv's are also
partially accessed under a lock and partially not. Move all these
accesses into the same lock to ensure consistency.

This could potentially race and lead to a flush instead of a commit but
it's not a big problem as it's only for preemptive flush.

CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Niels Dossche <niels.dossche@ugent.be>
Signed-off-by: Niels Dossche <dossche.niels@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-08 14:23:02 +02:00
Naohiro Aota
68a8120e16 btrfs: zoned: mark relocation as writing
commit ca5e4ea0beaec8bc674121838bf8614c089effb9 upstream.

There is a hung_task issue with running generic/068 on an SMR
device. The hang occurs while a process is trying to thaw the
filesystem. The process is trying to take sb->s_umount to thaw the
FS. The lock is held by fsstress, which calls btrfs_sync_fs() and is
waiting for an ordered extent to finish. However, as the FS is frozen,
the ordered extents never finish.

Having an ordered extent while the FS is frozen is the root cause of
the hang. The ordered extent is initiated from btrfs_relocate_chunk()
which is called from btrfs_reclaim_bgs_work().

This commit adds sb_*_write() around btrfs_relocate_chunk() call
site. For the usual "btrfs balance" command, we already call it with
mnt_want_file() in btrfs_ioctl_balance().

Fixes: 18bb8bbf13c1 ("btrfs: zoned: automatically reclaim zones")
CC: stable@vger.kernel.org # 5.13+
Link: https://github.com/naota/linux/issues/56
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-08 14:23:02 +02:00
Filipe Manana
4c5d94990f btrfs: skip reserved bytes warning on unmount after log cleanup failure
commit 40cdc509877bacb438213b83c7541c5e24a1d9ec upstream.

After the recent changes made by commit c2e39305299f01 ("btrfs: clear
extent buffer uptodate when we fail to write it") and its followup fix,
commit 651740a5024117 ("btrfs: check WRITE_ERR when trying to read an
extent buffer"), we can now end up not cleaning up space reservations of
log tree extent buffers after a transaction abort happens, as well as not
cleaning up still dirty extent buffers.

This happens because if writeback for a log tree extent buffer failed,
then we have cleared the bit EXTENT_BUFFER_UPTODATE from the extent buffer
and we have also set the bit EXTENT_BUFFER_WRITE_ERR on it. Later on,
when trying to free the log tree with free_log_tree(), which iterates
over the tree, we can end up getting an -EIO error when trying to read
a node or a leaf, since read_extent_buffer_pages() returns -EIO if an
extent buffer does not have EXTENT_BUFFER_UPTODATE set and has the
EXTENT_BUFFER_WRITE_ERR bit set. Getting that -EIO means that we return
immediately as we can not iterate over the entire tree.

In that case we never update the reserved space for an extent buffer in
the respective block group and space_info object.

When this happens we get the following traces when unmounting the fs:

[174957.284509] BTRFS: error (device dm-0) in cleanup_transaction:1913: errno=-5 IO failure
[174957.286497] BTRFS: error (device dm-0) in free_log_tree:3420: errno=-5 IO failure
[174957.399379] ------------[ cut here ]------------
[174957.402497] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:127 btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.407523] Modules linked in: btrfs overlay dm_zero (...)
[174957.424917] CPU: 2 PID: 3206883 Comm: umount Tainted: G        W         5.16.0-rc5-btrfs-next-109 #1
[174957.426689] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.428716] RIP: 0010:btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.429717] Code: 21 48 8b bd (...)
[174957.432867] RSP: 0018:ffffb70d41cffdd0 EFLAGS: 00010206
[174957.433632] RAX: 0000000000000001 RBX: ffff8b09c3848000 RCX: ffff8b0758edd1c8
[174957.434689] RDX: 0000000000000001 RSI: ffffffffc0b467e7 RDI: ffff8b0758edd000
[174957.436068] RBP: ffff8b0758edd000 R08: 0000000000000000 R09: 0000000000000000
[174957.437114] R10: 0000000000000246 R11: 0000000000000000 R12: ffff8b09c3848148
[174957.438140] R13: ffff8b09c3848198 R14: ffff8b0758edd188 R15: dead000000000100
[174957.439317] FS:  00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.440402] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.441164] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.442117] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.443076] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.443948] Call Trace:
[174957.444264]  <TASK>
[174957.444538]  btrfs_free_block_groups+0x255/0x3c0 [btrfs]
[174957.445238]  close_ctree+0x301/0x357 [btrfs]
[174957.445803]  ? call_rcu+0x16c/0x290
[174957.446250]  generic_shutdown_super+0x74/0x120
[174957.446832]  kill_anon_super+0x14/0x30
[174957.447305]  btrfs_kill_super+0x12/0x20 [btrfs]
[174957.447890]  deactivate_locked_super+0x31/0xa0
[174957.448440]  cleanup_mnt+0x147/0x1c0
[174957.448888]  task_work_run+0x5c/0xa0
[174957.449336]  exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.449934]  syscall_exit_to_user_mode+0x16/0x40
[174957.450512]  do_syscall_64+0x48/0xc0
[174957.450980]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.451605] RIP: 0033:0x7f328fdc4a97
[174957.452059] Code: 03 0c 00 f7 (...)
[174957.454320] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.455262] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.456131] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000560b8ae51dd0
[174957.457118] RBP: 0000560b8ae51ba0 R08: 0000000000000000 R09: 00007fff13563c40
[174957.458005] R10: 00007f328fe49fc0 R11: 0000000000000246 R12: 0000000000000000
[174957.459113] R13: 0000560b8ae51dd0 R14: 0000560b8ae51cb0 R15: 0000000000000000
[174957.460193]  </TASK>
[174957.460534] irq event stamp: 0
[174957.461003] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
[174957.461947] hardirqs last disabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.463147] softirqs last  enabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.465116] softirqs last disabled at (0): [<0000000000000000>] 0x0
[174957.466323] ---[ end trace bc7ee0c490bce3af ]---
[174957.467282] ------------[ cut here ]------------
[174957.468184] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:3976 btrfs_free_block_groups+0x330/0x3c0 [btrfs]
[174957.470066] Modules linked in: btrfs overlay dm_zero (...)
[174957.483137] CPU: 2 PID: 3206883 Comm: umount Tainted: G        W         5.16.0-rc5-btrfs-next-109 #1
[174957.484691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.486853] RIP: 0010:btrfs_free_block_groups+0x330/0x3c0 [btrfs]
[174957.488050] Code: 00 00 00 ad de (...)
[174957.491479] RSP: 0018:ffffb70d41cffde0 EFLAGS: 00010206
[174957.492520] RAX: ffff8b08d79310b0 RBX: ffff8b09c3848000 RCX: 0000000000000000
[174957.493868] RDX: 0000000000000001 RSI: fffff443055ee600 RDI: ffffffffb1131846
[174957.495183] RBP: ffff8b08d79310b0 R08: 0000000000000000 R09: 0000000000000000
[174957.496580] R10: 0000000000000001 R11: 0000000000000000 R12: ffff8b08d7931000
[174957.498027] R13: ffff8b09c38492b0 R14: dead000000000122 R15: dead000000000100
[174957.499438] FS:  00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.500990] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.502117] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.503513] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.504864] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.506167] Call Trace:
[174957.506654]  <TASK>
[174957.507047]  close_ctree+0x301/0x357 [btrfs]
[174957.507867]  ? call_rcu+0x16c/0x290
[174957.508567]  generic_shutdown_super+0x74/0x120
[174957.509447]  kill_anon_super+0x14/0x30
[174957.510194]  btrfs_kill_super+0x12/0x20 [btrfs]
[174957.511123]  deactivate_locked_super+0x31/0xa0
[174957.511976]  cleanup_mnt+0x147/0x1c0
[174957.512610]  task_work_run+0x5c/0xa0
[174957.513309]  exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.514231]  syscall_exit_to_user_mode+0x16/0x40
[174957.515069]  do_syscall_64+0x48/0xc0
[174957.515718]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.516688] RIP: 0033:0x7f328fdc4a97
[174957.517413] Code: 03 0c 00 f7 d8 (...)
[174957.521052] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.522514] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.523950] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000560b8ae51dd0
[174957.525375] RBP: 0000560b8ae51ba0 R08: 0000000000000000 R09: 00007fff13563c40
[174957.526763] R10: 00007f328fe49fc0 R11: 0000000000000246 R12: 0000000000000000
[174957.528058] R13: 0000560b8ae51dd0 R14: 0000560b8ae51cb0 R15: 0000000000000000
[174957.529404]  </TASK>
[174957.529843] irq event stamp: 0
[174957.530256] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
[174957.531061] hardirqs last disabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.532075] softirqs last  enabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.533083] softirqs last disabled at (0): [<0000000000000000>] 0x0
[174957.533865] ---[ end trace bc7ee0c490bce3b0 ]---
[174957.534452] BTRFS info (device dm-0): space_info 4 has 1070841856 free, is not full
[174957.535404] BTRFS info (device dm-0): space_info total=1073741824, used=2785280, pinned=0, reserved=49152, may_use=0, readonly=65536 zone_unusable=0
[174957.537029] BTRFS info (device dm-0): global_block_rsv: size 0 reserved 0
[174957.537859] BTRFS info (device dm-0): trans_block_rsv: size 0 reserved 0
[174957.538697] BTRFS info (device dm-0): chunk_block_rsv: size 0 reserved 0
[174957.539552] BTRFS info (device dm-0): delayed_block_rsv: size 0 reserved 0
[174957.540403] BTRFS info (device dm-0): delayed_refs_rsv: size 0 reserved 0

This also means that in case we have log tree extent buffers that are
still dirty, we can end up not cleaning them up in case we find an
extent buffer with EXTENT_BUFFER_WRITE_ERR set on it, as in that case
we have no way for iterating over the rest of the tree.

This issue is very often triggered with test cases generic/475 and
generic/648 from fstests.

The issue could almost be fixed by iterating over the io tree attached to
each log root which keeps tracks of the range of allocated extent buffers,
log_root->dirty_log_pages, however that does not work and has some
inconveniences:

1) After we sync the log, we clear the range of the extent buffers from
   the io tree, so we can't find them after writeback. We could keep the
   ranges in the io tree, with a separate bit to signal they represent
   extent buffers already written, but that means we need to hold into
   more memory until the transaction commits.

   How much more memory is used depends a lot on whether we are able to
   allocate contiguous extent buffers on disk (and how often) for a log
   tree - if we are able to, then a single extent state record can
   represent multiple extent buffers, otherwise we need multiple extent
   state record structures to track each extent buffer.
   In fact, my earlier approach did that:

   https://lore.kernel.org/linux-btrfs/3aae7c6728257c7ce2279d6660ee2797e5e34bbd.1641300250.git.fdmanana@suse.com/

   However that can cause a very significant negative impact on
   performance, not only due to the extra memory usage but also because
   we get a larger and deeper dirty_log_pages io tree.
   We got a report that, on beefy machines at least, we can get such
   performance drop with fsmark for example:

   https://lore.kernel.org/linux-btrfs/20220117082426.GE32491@xsang-OptiPlex-9020/

2) We would be doing it only to deal with an unexpected and exceptional
   case, which is basically failure to read an extent buffer from disk
   due to IO failures. On a healthy system we don't expect transaction
   aborts to happen after all;

3) Instead of relying on iterating the log tree or tracking the ranges
   of extent buffers in the dirty_log_pages io tree, using the radix
   tree that tracks extent buffers (fs_info->buffer_radix) to find all
   log tree extent buffers is not reliable either, because after writeback
   of an extent buffer it can be evicted from memory by the release page
   callback of the btree inode (btree_releasepage()).

Since there's no way to be able to properly cleanup a log tree without
being able to read its extent buffers from disk and without using more
memory to track the logical ranges of the allocated extent buffers do
the following:

1) When we fail to cleanup a log tree, setup a flag that indicates that
   failure;

2) Trigger writeback of all log tree extent buffers that are still dirty,
   and wait for the writeback to complete. This is just to cleanup their
   state, page states, page leaks, etc;

3) When unmounting the fs, ignore if the number of bytes reserved in a
   block group and in a space_info is not 0 if, and only if, we failed to
   cleanup a log tree. Also ignore only for metadata block groups and the
   metadata space_info object.

This is far from a perfect solution, but it serves to silence test
failures such as those from generic/475 and generic/648. However having
a non-zero value for the reserved bytes counters on unmount after a
transaction abort, is not such a terrible thing and it's completely
harmless, it does not affect the filesystem integrity in any way.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-23 09:16:43 +01:00
Filipe Manana
a1ce40f8ae btrfs: make send work with concurrent block group relocation
commit d96b34248c2f4ea8cd09286090f2f6f77102eaab upstream.

We don't allow send and balance/relocation to run in parallel in order
to prevent send failing or silently producing some bad stream. This is
because while send is using an extent (specially metadata) or about to
read a metadata extent and expecting it belongs to a specific parent
node, relocation can run, the transaction used for the relocation is
committed and the extent gets reallocated while send is still using the
extent, so it ends up with a different content than expected. This can
result in just failing to read a metadata extent due to failure of the
validation checks (parent transid, level, etc), failure to find a
backreference for a data extent, and other unexpected failures. Besides
reallocation, there's also a similar problem of an extent getting
discarded when it's unpinned after the transaction used for block group
relocation is committed.

The restriction between balance and send was added in commit 9e967495e0e0
("Btrfs: prevent send failures and crashes due to concurrent relocation"),
kernel 5.3, while the more general restriction between send and relocation
was added in commit 1cea5cf0e664 ("btrfs: ensure relocation never runs
while we have send operations running"), kernel 5.14.

Both send and relocation can be very long running operations. Relocation
because it has to do a lot of IO and expensive backreference lookups in
case there are many snapshots, and send due to read IO when operating on
very large trees. This makes it inconvenient for users and tools to deal
with scheduling both operations.

For zoned filesystem we also have automatic block group relocation, so
send can fail with -EAGAIN when users least expect it or send can end up
delaying the block group relocation for too long. In the future we might
also get the automatic block group relocation for non zoned filesystems.

This change makes it possible for send and relocation to run in parallel.
This is achieved the following way:

1) For all tree searches, send acquires a read lock on the commit root
   semaphore;

2) After each tree search, and before releasing the commit root semaphore,
   the leaf is cloned and placed in the search path (struct btrfs_path);

3) After releasing the commit root semaphore, the changed_cb() callback
   is invoked, which operates on the leaf and writes commands to the pipe
   (or file in case send/receive is not used with a pipe). It's important
   here to not hold a lock on the commit root semaphore, because if we did
   we could deadlock when sending and receiving to the same filesystem
   using a pipe - the send task blocks on the pipe because it's full, the
   receive task, which is the only consumer of the pipe, triggers a
   transaction commit when attempting to create a subvolume or reserve
   space for a write operation for example, but the transaction commit
   blocks trying to write lock the commit root semaphore, resulting in a
   deadlock;

4) Before moving to the next key, or advancing to the next change in case
   of an incremental send, check if a transaction used for relocation was
   committed (or is about to finish its commit). If so, release the search
   path(s) and restart the search, to where we were before, so that we
   don't operate on stale extent buffers. The search restarts are always
   possible because both the send and parent roots are RO, and no one can
   add, remove of update keys (change their offset) in RO trees - the
   only exception is deduplication, but that is still not allowed to run
   in parallel with send;

5) Periodically check if there is contention on the commit root semaphore,
   which means there is a transaction commit trying to write lock it, and
   release the semaphore and reschedule if there is contention, so as to
   avoid causing any significant delays to transaction commits.

This leaves some room for optimizations for send to have less path
releases and re searching the trees when there's relocation running, but
for now it's kept simple as it performs quite well (on very large trees
with resulting send streams in the order of a few hundred gigabytes).

Test case btrfs/187, from fstests, stresses relocation, send and
deduplication attempting to run in parallel, but without verifying if send
succeeds and if it produces correct streams. A new test case will be added
that exercises relocation happening in parallel with send and then checks
that send succeeds and the resulting streams are correct.

A final note is that for now this still leaves the mutual exclusion
between send operations and deduplication on files belonging to a root
used by send operations. A solution for that will be slightly more complex
but it will eventually be built on top of this change.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-16 14:23:46 +01:00
Josef Bacik
6599d5e8bd btrfs: do not start relocation until in progress drops are done
commit b4be6aefa73c9a6899ef3ba9c5faaa8a66e333ef upstream.

We hit a bug with a recovering relocation on mount for one of our file
systems in production.  I reproduced this locally by injecting errors
into snapshot delete with balance running at the same time.  This
presented as an error while looking up an extent item

  WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680
  CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8
  RIP: 0010:lookup_inline_extent_backref+0x647/0x680
  RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202
  RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000
  RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000
  RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001
  R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000
  R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000
  FS:  0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0
  Call Trace:
   <TASK>
   insert_inline_extent_backref+0x46/0xd0
   __btrfs_inc_extent_ref.isra.0+0x5f/0x200
   ? btrfs_merge_delayed_refs+0x164/0x190
   __btrfs_run_delayed_refs+0x561/0xfa0
   ? btrfs_search_slot+0x7b4/0xb30
   ? btrfs_update_root+0x1a9/0x2c0
   btrfs_run_delayed_refs+0x73/0x1f0
   ? btrfs_update_root+0x1a9/0x2c0
   btrfs_commit_transaction+0x50/0xa50
   ? btrfs_update_reloc_root+0x122/0x220
   prepare_to_merge+0x29f/0x320
   relocate_block_group+0x2b8/0x550
   btrfs_relocate_block_group+0x1a6/0x350
   btrfs_relocate_chunk+0x27/0xe0
   btrfs_balance+0x777/0xe60
   balance_kthread+0x35/0x50
   ? btrfs_balance+0xe60/0xe60
   kthread+0x16b/0x190
   ? set_kthread_struct+0x40/0x40
   ret_from_fork+0x22/0x30
   </TASK>

Normally snapshot deletion and relocation are excluded from running at
the same time by the fs_info->cleaner_mutex.  However if we had a
pending balance waiting to get the ->cleaner_mutex, and a snapshot
deletion was running, and then the box crashed, we would come up in a
state where we have a half deleted snapshot.

Again, in the normal case the snapshot deletion needs to complete before
relocation can start, but in this case relocation could very well start
before the snapshot deletion completes, as we simply add the root to the
dead roots list and wait for the next time the cleaner runs to clean up
the snapshot.

Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that
had a pending drop_progress key.  If they do then we know we were in the
middle of the drop operation and set a flag on the fs_info.  Then
balance can wait until this flag is cleared to start up again.

If there are DEAD_ROOT's that don't have a drop_progress set then we're
safe to start balance right away as we'll be properly protected by the
cleaner_mutex.

CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:12:54 +01:00
Filipe Manana
4aef4c9005 btrfs: add missing run of delayed items after unlink during log replay
commit 4751dc99627e4d1465c5bfa8cb7ab31ed418eff5 upstream.

During log replay, whenever we need to check if a name (dentry) exists in
a directory we do searches on the subvolume tree for inode references or
or directory entries (BTRFS_DIR_INDEX_KEY keys, and BTRFS_DIR_ITEM_KEY
keys as well, before kernel 5.17). However when during log replay we
unlink a name, through btrfs_unlink_inode(), we may not delete inode
references and dir index keys from a subvolume tree and instead just add
the deletions to the delayed inode's delayed items, which will only be
run when we commit the transaction used for log replay. This means that
after an unlink operation during log replay, if we attempt to search for
the same name during log replay, we will not see that the name was already
deleted, since the deletion is recorded only on the delayed items.

We run delayed items after every unlink operation during log replay,
except at unlink_old_inode_refs() and at add_inode_ref(). This was due
to an overlook, as delayed items should be run after evert unlink, for
the reasons stated above.

So fix those two cases.

Fixes: 0d836392cadd5 ("Btrfs: fix mount failure after fsync due to hard link recreation")
Fixes: 1f250e929a9c9 ("Btrfs: fix log replay failure after unlink and link combination")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:12:54 +01:00
Sidong Yang
34146bbadc btrfs: qgroup: fix deadlock between rescan worker and remove qgroup
commit d4aef1e122d8bbdc15ce3bd0bc813d6b44a7d63a upstream.

The commit e804861bd4e6 ("btrfs: fix deadlock between quota disable and
qgroup rescan worker") by Kawasaki resolves deadlock between quota
disable and qgroup rescan worker. But also there is a deadlock case like
it. It's about enabling or disabling quota and creating or removing
qgroup. It can be reproduced in simple script below.

for i in {1..100}
do
    btrfs quota enable /mnt &
    btrfs qgroup create 1/0 /mnt &
    btrfs qgroup destroy 1/0 /mnt &
    btrfs quota disable /mnt &
done

Here's why the deadlock happens:

1) The quota rescan task is running.

2) Task A calls btrfs_quota_disable(), locks the qgroup_ioctl_lock
   mutex, and then calls btrfs_qgroup_wait_for_completion(), to wait for
   the quota rescan task to complete.

3) Task B calls btrfs_remove_qgroup() and it blocks when trying to lock
   the qgroup_ioctl_lock mutex, because it's being held by task A. At that
   point task B is holding a transaction handle for the current transaction.

4) The quota rescan task calls btrfs_commit_transaction(). This results
   in it waiting for all other tasks to release their handles on the
   transaction, but task B is blocked on the qgroup_ioctl_lock mutex
   while holding a handle on the transaction, and that mutex is being held
   by task A, which is waiting for the quota rescan task to complete,
   resulting in a deadlock between these 3 tasks.

To resolve this issue, the thread disabling quota should unlock
qgroup_ioctl_lock before waiting rescan completion. Move
btrfs_qgroup_wait_for_completion() after unlock of qgroup_ioctl_lock.

Fixes: e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Signed-off-by: Sidong Yang <realwakka@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:12:54 +01:00
Josef Bacik
e00077aa43 btrfs: do not WARN_ON() if we have PageError set
commit a50e1fcbc9b85fd4e95b89a75c0884cb032a3e06 upstream.

Whenever we do any extent buffer operations we call
assert_eb_page_uptodate() to complain loudly if we're operating on an
non-uptodate page.  Our overnight tests caught this warning earlier this
week

  WARNING: CPU: 1 PID: 553508 at fs/btrfs/extent_io.c:6849 assert_eb_page_uptodate+0x3f/0x50
  CPU: 1 PID: 553508 Comm: kworker/u4:13 Tainted: G        W         5.17.0-rc3+ #564
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  Workqueue: btrfs-cache btrfs_work_helper
  RIP: 0010:assert_eb_page_uptodate+0x3f/0x50
  RSP: 0018:ffffa961440a7c68 EFLAGS: 00010246
  RAX: 0017ffffc0002112 RBX: ffffe6e74453f9c0 RCX: 0000000000001000
  RDX: ffffe6e74467c887 RSI: ffffe6e74453f9c0 RDI: ffff8d4c5efc2fc0
  RBP: 0000000000000d56 R08: ffff8d4d4a224000 R09: 0000000000000000
  R10: 00015817fa9d1ef0 R11: 000000000000000c R12: 00000000000007b1
  R13: ffff8d4c5efc2fc0 R14: 0000000001500000 R15: 0000000001cb1000
  FS:  0000000000000000(0000) GS:ffff8d4dbbd00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007ff31d3448d8 CR3: 0000000118be8004 CR4: 0000000000370ee0
  Call Trace:

   extent_buffer_test_bit+0x3f/0x70
   free_space_test_bit+0xa6/0xc0
   load_free_space_tree+0x1f6/0x470
   caching_thread+0x454/0x630
   ? rcu_read_lock_sched_held+0x12/0x60
   ? rcu_read_lock_sched_held+0x12/0x60
   ? rcu_read_lock_sched_held+0x12/0x60
   ? lock_release+0x1f0/0x2d0
   btrfs_work_helper+0xf2/0x3e0
   ? lock_release+0x1f0/0x2d0
   ? finish_task_switch.isra.0+0xf9/0x3a0
   process_one_work+0x26d/0x580
   ? process_one_work+0x580/0x580
   worker_thread+0x55/0x3b0
   ? process_one_work+0x580/0x580
   kthread+0xf0/0x120
   ? kthread_complete_and_exit+0x20/0x20
   ret_from_fork+0x1f/0x30

This was partially fixed by c2e39305299f01 ("btrfs: clear extent buffer
uptodate when we fail to write it"), however all that fix did was keep
us from finding extent buffers after a failed writeout.  It didn't keep
us from continuing to use a buffer that we already had found.

In this case we're searching the commit root to cache the block group,
so we can start committing the transaction and switch the commit root
and then start writing.  After the switch we can look up an extent
buffer that hasn't been written yet and start processing that block
group.  Then we fail to write that block out and clear Uptodate on the
page, and then we start spewing these errors.

Normally we're protected by the tree lock to a certain degree here.  If
we read a block we have that block read locked, and we block the writer
from locking the block before we submit it for the write.  However this
isn't necessarily fool proof because the read could happen before we do
the submit_bio and after we locked and unlocked the extent buffer.

Also in this particular case we have path->skip_locking set, so that
won't save us here.  We'll simply get a block that was valid when we
read it, but became invalid while we were using it.

What we really want is to catch the case where we've "read" a block but
it's not marked Uptodate.  On read we ClearPageError(), so if we're
!Uptodate and !Error we know we didn't do the right thing for reading
the page.

Fix this by checking !Uptodate && !Error, this way we will not complain
if our buffer gets invalidated while we're using it, and we'll maintain
the spirit of the check which is to make sure we have a fully in-cache
block while we're messing with it.

CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:12:54 +01:00
Omar Sandoval
725a6ac389 btrfs: fix relocation crash due to premature return from btrfs_commit_transaction()
commit 5fd76bf31ccfecc06e2e6b29f8c809e934085b99 upstream.

We are seeing crashes similar to the following trace:

[38.969182] WARNING: CPU: 20 PID: 2105 at fs/btrfs/relocation.c:4070 btrfs_relocate_block_group+0x2dc/0x340 [btrfs]
[38.973556] CPU: 20 PID: 2105 Comm: btrfs Not tainted 5.17.0-rc4 #54
[38.974580] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[38.976539] RIP: 0010:btrfs_relocate_block_group+0x2dc/0x340 [btrfs]
[38.980336] RSP: 0000:ffffb0dd42e03c20 EFLAGS: 00010206
[38.981218] RAX: ffff96cfc4ede800 RBX: ffff96cfc3ce0000 RCX: 000000000002ca14
[38.982560] RDX: 0000000000000000 RSI: 4cfd109a0bcb5d7f RDI: ffff96cfc3ce0360
[38.983619] RBP: ffff96cfc309c000 R08: 0000000000000000 R09: 0000000000000000
[38.984678] R10: ffff96cec0000001 R11: ffffe84c80000000 R12: ffff96cfc4ede800
[38.985735] R13: 0000000000000000 R14: 0000000000000000 R15: ffff96cfc3ce0360
[38.987146] FS:  00007f11c15218c0(0000) GS:ffff96d6dfb00000(0000) knlGS:0000000000000000
[38.988662] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[38.989398] CR2: 00007ffc922c8e60 CR3: 00000001147a6001 CR4: 0000000000370ee0
[38.990279] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[38.991219] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[38.992528] Call Trace:
[38.992854]  <TASK>
[38.993148]  btrfs_relocate_chunk+0x27/0xe0 [btrfs]
[38.993941]  btrfs_balance+0x78e/0xea0 [btrfs]
[38.994801]  ? vsnprintf+0x33c/0x520
[38.995368]  ? __kmalloc_track_caller+0x351/0x440
[38.996198]  btrfs_ioctl_balance+0x2b9/0x3a0 [btrfs]
[38.997084]  btrfs_ioctl+0x11b0/0x2da0 [btrfs]
[38.997867]  ? mod_objcg_state+0xee/0x340
[38.998552]  ? seq_release+0x24/0x30
[38.999184]  ? proc_nr_files+0x30/0x30
[38.999654]  ? call_rcu+0xc8/0x2f0
[39.000228]  ? __x64_sys_ioctl+0x84/0xc0
[39.000872]  ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[39.001973]  __x64_sys_ioctl+0x84/0xc0
[39.002566]  do_syscall_64+0x3a/0x80
[39.003011]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[39.003735] RIP: 0033:0x7f11c166959b
[39.007324] RSP: 002b:00007fff2543e998 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[39.008521] RAX: ffffffffffffffda RBX: 00007f11c1521698 RCX: 00007f11c166959b
[39.009833] RDX: 00007fff2543ea40 RSI: 00000000c4009420 RDI: 0000000000000003
[39.011270] RBP: 0000000000000003 R08: 0000000000000013 R09: 00007f11c16f94e0
[39.012581] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fff25440df3
[39.014046] R13: 0000000000000000 R14: 00007fff2543ea40 R15: 0000000000000001
[39.015040]  </TASK>
[39.015418] ---[ end trace 0000000000000000 ]---
[43.131559] ------------[ cut here ]------------
[43.132234] kernel BUG at fs/btrfs/extent-tree.c:2717!
[43.133031] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[43.133702] CPU: 1 PID: 1839 Comm: btrfs Tainted: G        W         5.17.0-rc4 #54
[43.134863] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[43.136426] RIP: 0010:unpin_extent_range+0x37a/0x4f0 [btrfs]
[43.139913] RSP: 0000:ffffb0dd4216bc70 EFLAGS: 00010246
[43.140629] RAX: 0000000000000000 RBX: ffff96cfc34490f8 RCX: 0000000000000001
[43.141604] RDX: 0000000080000001 RSI: 0000000051d00000 RDI: 00000000ffffffff
[43.142645] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff96cfd07dca50
[43.143669] R10: ffff96cfc46e8a00 R11: fffffffffffec000 R12: 0000000041d00000
[43.144657] R13: ffff96cfc3ce0000 R14: ffffb0dd4216bd08 R15: 0000000000000000
[43.145686] FS:  00007f7657dd68c0(0000) GS:ffff96d6df640000(0000) knlGS:0000000000000000
[43.146808] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[43.147584] CR2: 00007f7fe81bf5b0 CR3: 00000001093ee004 CR4: 0000000000370ee0
[43.148589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[43.149581] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[43.150559] Call Trace:
[43.150904]  <TASK>
[43.151253]  btrfs_finish_extent_commit+0x88/0x290 [btrfs]
[43.152127]  btrfs_commit_transaction+0x74f/0xaa0 [btrfs]
[43.152932]  ? btrfs_attach_transaction_barrier+0x1e/0x50 [btrfs]
[43.153786]  btrfs_ioctl+0x1edc/0x2da0 [btrfs]
[43.154475]  ? __check_object_size+0x150/0x170
[43.155170]  ? preempt_count_add+0x49/0xa0
[43.155753]  ? __x64_sys_ioctl+0x84/0xc0
[43.156437]  ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[43.157456]  __x64_sys_ioctl+0x84/0xc0
[43.157980]  do_syscall_64+0x3a/0x80
[43.158543]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[43.159231] RIP: 0033:0x7f7657f1e59b
[43.161819] RSP: 002b:00007ffda5cd1658 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[43.162702] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f7657f1e59b
[43.163526] RDX: 0000000000000000 RSI: 0000000000009408 RDI: 0000000000000003
[43.164358] RBP: 0000000000000003 R08: 0000000000000000 R09: 0000000000000000
[43.165208] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[43.166029] R13: 00005621b91c3232 R14: 00005621b91ba580 R15: 00007ffda5cd1800
[43.166863]  </TASK>
[43.167125] Modules linked in: btrfs blake2b_generic xor pata_acpi ata_piix libata raid6_pq scsi_mod libcrc32c virtio_net virtio_rng net_failover rng_core failover scsi_common
[43.169552] ---[ end trace 0000000000000000 ]---
[43.171226] RIP: 0010:unpin_extent_range+0x37a/0x4f0 [btrfs]
[43.174767] RSP: 0000:ffffb0dd4216bc70 EFLAGS: 00010246
[43.175600] RAX: 0000000000000000 RBX: ffff96cfc34490f8 RCX: 0000000000000001
[43.176468] RDX: 0000000080000001 RSI: 0000000051d00000 RDI: 00000000ffffffff
[43.177357] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff96cfd07dca50
[43.178271] R10: ffff96cfc46e8a00 R11: fffffffffffec000 R12: 0000000041d00000
[43.179178] R13: ffff96cfc3ce0000 R14: ffffb0dd4216bd08 R15: 0000000000000000
[43.180071] FS:  00007f7657dd68c0(0000) GS:ffff96d6df800000(0000) knlGS:0000000000000000
[43.181073] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[43.181808] CR2: 00007fe09905f010 CR3: 00000001093ee004 CR4: 0000000000370ee0
[43.182706] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[43.183591] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

We first hit the WARN_ON(rc->block_group->pinned > 0) in
btrfs_relocate_block_group() and then the BUG_ON(!cache) in
unpin_extent_range(). This tells us that we are exiting relocation and
removing the block group with bytes still pinned for that block group.
This is supposed to be impossible: the last thing relocate_block_group()
does is commit the transaction to get rid of pinned extents.

Commit d0c2f4fa555e ("btrfs: make concurrent fsyncs wait less when
waiting for a transaction commit") introduced an optimization so that
commits from fsync don't have to wait for the previous commit to unpin
extents. This was only intended to affect fsync, but it inadvertently
made it possible for any commit to skip waiting for the previous commit
to unpin. This is because if a call to btrfs_commit_transaction() finds
that another thread is already committing the transaction, it waits for
the other thread to complete the commit and then returns. If that other
thread was in fsync, then it completes the commit without completing the
previous commit. This makes the following sequence of events possible:

Thread 1____________________|Thread 2 (fsync)_____________________|Thread 3 (balance)___________________
btrfs_commit_transaction(N) |                                     |
  btrfs_run_delayed_refs    |                                     |
    pin extents             |                                     |
  ...                       |                                     |
  state = UNBLOCKED         |btrfs_sync_file                      |
                            |  btrfs_start_transaction(N + 1)     |relocate_block_group
                            |                                     |  btrfs_join_transaction(N + 1)
                            |  btrfs_commit_transaction(N + 1)    |
  ...                       |  trans->state = COMMIT_START        |
                            |                                     |  btrfs_commit_transaction(N + 1)
                            |                                     |    wait_for_commit(N + 1, COMPLETED)
                            |  wait_for_commit(N, SUPER_COMMITTED)|
  state = SUPER_COMMITTED   |  ...                                |
  btrfs_finish_extent_commit|                                     |
    unpin_extent_range()    |  trans->state = COMPLETED           |
                            |                                     |    return
                            |                                     |
    ...                     |                                     |Thread 1 isn't done, so pinned > 0
                            |                                     |and we WARN
                            |                                     |
                            |                                     |btrfs_remove_block_group
    unpin_extent_range()    |                                     |
      Thread 3 removed the  |                                     |
      block group, so we BUG|                                     |

There are other sequences involving SUPER_COMMITTED transactions that
can cause a similar outcome.

We could fix this by making relocation explicitly wait for unpinning,
but there may be other cases that need it. Josef mentioned ENOSPC
flushing and the free space cache inode as other potential victims.
Rather than playing whack-a-mole, this fix is conservative and makes all
commits not in fsync wait for all previous transactions, which is what
the optimization intended.

Fixes: d0c2f4fa555e ("btrfs: make concurrent fsyncs wait less when waiting for a transaction commit")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:12:54 +01:00
Filipe Manana
5342e9f3da btrfs: fix lost prealloc extents beyond eof after full fsync
commit d99478874355d3a7b9d86dfb5d7590d5b1754b1f upstream.

When doing a full fsync, if we have prealloc extents beyond (or at) eof,
and the leaves that contain them were not modified in the current
transaction, we end up not logging them. This results in losing those
extents when we replay the log after a power failure, since the inode is
truncated to the current value of the logged i_size.

Just like for the fast fsync path, we need to always log all prealloc
extents starting at or beyond i_size. The fast fsync case was fixed in
commit 471d557afed155 ("Btrfs: fix loss of prealloc extents past i_size
after fsync log replay") but it missed the full fsync path. The problem
exists since the very early days, when the log tree was added by
commit e02119d5a7b439 ("Btrfs: Add a write ahead tree log to optimize
synchronous operations").

Example reproducer:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt

  # Create our test file with many file extent items, so that they span
  # several leaves of metadata, even if the node/page size is 64K. Use
  # direct IO and not fsync/O_SYNC because it's both faster and it avoids
  # clearing the full sync flag from the inode - we want the fsync below
  # to trigger the slow full sync code path.
  $ xfs_io -f -d -c "pwrite -b 4K 0 16M" /mnt/foo

  # Now add two preallocated extents to our file without extending the
  # file's size. One right at i_size, and another further beyond, leaving
  # a gap between the two prealloc extents.
  $ xfs_io -c "falloc -k 16M 1M" /mnt/foo
  $ xfs_io -c "falloc -k 20M 1M" /mnt/foo

  # Make sure everything is durably persisted and the transaction is
  # committed. This makes all created extents to have a generation lower
  # than the generation of the transaction used by the next write and
  # fsync.
  sync

  # Now overwrite only the first extent, which will result in modifying
  # only the first leaf of metadata for our inode. Then fsync it. This
  # fsync will use the slow code path (inode full sync bit is set) because
  # it's the first fsync since the inode was created/loaded.
  $ xfs_io -c "pwrite 0 4K" -c "fsync" /mnt/foo

  # Extent list before power failure.
  $ xfs_io -c "fiemap -v" /mnt/foo
  /mnt/foo:
   EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
     0: [0..7]:          2178048..2178055     8   0x0
     1: [8..16383]:      26632..43007     16376   0x0
     2: [16384..32767]:  2156544..2172927 16384   0x0
     3: [32768..34815]:  2172928..2174975  2048 0x800
     4: [34816..40959]:  hole              6144
     5: [40960..43007]:  2174976..2177023  2048 0x801

  <power fail>

  # Mount fs again, trigger log replay.
  $ mount /dev/sdc /mnt

  # Extent list after power failure and log replay.
  $ xfs_io -c "fiemap -v" /mnt/foo
  /mnt/foo:
   EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
     0: [0..7]:          2178048..2178055     8   0x0
     1: [8..16383]:      26632..43007     16376   0x0
     2: [16384..32767]:  2156544..2172927 16384   0x1

  # The prealloc extents at file offsets 16M and 20M are missing.

So fix this by calling btrfs_log_prealloc_extents() when we are doing a
full fsync, so that we always log all prealloc extents beyond eof.

A test case for fstests will follow soon.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:12:54 +01:00
Filipe Manana
5afd80c393 btrfs: fix ENOSPC failure when attempting direct IO write into NOCOW range
commit f0bfa76a11e93d0fe2c896fcb566568c5e8b5d3f upstream.

When doing a direct IO write against a file range that either has
preallocated extents in that range or has regular extents and the file
has the NOCOW attribute set, the write fails with -ENOSPC when all of
the following conditions are met:

1) There are no data blocks groups with enough free space matching
   the size of the write;

2) There's not enough unallocated space for allocating a new data block
   group;

3) The extents in the target file range are not shared, neither through
   snapshots nor through reflinks.

This is wrong because a NOCOW write can be done in such case, and in fact
it's possible to do it using a buffered IO write, since when failing to
allocate data space, the buffered IO path checks if a NOCOW write is
possible.

The failure in direct IO write path comes from the fact that early on,
at btrfs_dio_iomap_begin(), we try to allocate data space for the write
and if it that fails we return the error and stop - we never check if we
can do NOCOW. But later, at btrfs_get_blocks_direct_write(), we check
if we can do a NOCOW write into the range, or a subset of the range, and
then release the previously reserved data space.

Fix this by doing the data reservation only if needed, when we must COW,
at btrfs_get_blocks_direct_write() instead of doing it at
btrfs_dio_iomap_begin(). This also simplifies a bit the logic and removes
the inneficiency of doing unnecessary data reservations.

The following example test script reproduces the problem:

  $ cat dio-nocow-enospc.sh
  #!/bin/bash

  DEV=/dev/sdj
  MNT=/mnt/sdj

  # Use a small fixed size (1G) filesystem so that it's quick to fill
  # it up.
  # Make sure the mixed block groups feature is not enabled because we
  # later want to not have more space available for allocating data
  # extents but still have enough metadata space free for the file writes.
  mkfs.btrfs -f -b $((1024 * 1024 * 1024)) -O ^mixed-bg $DEV
  mount $DEV $MNT

  # Create our test file with the NOCOW attribute set.
  touch $MNT/foobar
  chattr +C $MNT/foobar

  # Now fill in all unallocated space with data for our test file.
  # This will allocate a data block group that will be full and leave
  # no (or a very small amount of) unallocated space in the device, so
  # that it will not be possible to allocate a new block group later.
  echo
  echo "Creating test file with initial data..."
  xfs_io -c "pwrite -S 0xab -b 1M 0 900M" $MNT/foobar

  # Now try a direct IO write against file range [0, 10M[.
  # This should succeed since this is a NOCOW file and an extent for the
  # range was previously allocated.
  echo
  echo "Trying direct IO write over allocated space..."
  xfs_io -d -c "pwrite -S 0xcd -b 10M 0 10M" $MNT/foobar

  umount $MNT

When running the test:

  $ ./dio-nocow-enospc.sh
  (...)

  Creating test file with initial data...
  wrote 943718400/943718400 bytes at offset 0
  900 MiB, 900 ops; 0:00:01.43 (625.526 MiB/sec and 625.5265 ops/sec)

  Trying direct IO write over allocated space...
  pwrite: No space left on device

A test case for fstests will follow, testing both this direct IO write
scenario as well as the buffered IO write scenario to make it less likely
to get future regressions on the buffered IO case.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:12:46 +01:00
Filipe Manana
850a77c999 btrfs: get rid of warning on transaction commit when using flushoncommit
[ Upstream commit a0f0cf8341e34e5d2265bfd3a7ad68342da1e2aa ]

When using the flushoncommit mount option, during almost every transaction
commit we trigger a warning from __writeback_inodes_sb_nr():

  $ cat fs/fs-writeback.c:
  (...)
  static void __writeback_inodes_sb_nr(struct super_block *sb, ...
  {
        (...)
        WARN_ON(!rwsem_is_locked(&sb->s_umount));
        (...)
  }
  (...)

The trace produced in dmesg looks like the following:

  [947.473890] WARNING: CPU: 5 PID: 930 at fs/fs-writeback.c:2610 __writeback_inodes_sb_nr+0x7e/0xb3
  [947.481623] Modules linked in: nfsd nls_cp437 cifs asn1_decoder cifs_arc4 fscache cifs_md4 ipmi_ssif
  [947.489571] CPU: 5 PID: 930 Comm: btrfs-transacti Not tainted 95.16.3-srb-asrock-00001-g36437ad63879 #186
  [947.497969] RIP: 0010:__writeback_inodes_sb_nr+0x7e/0xb3
  [947.502097] Code: 24 10 4c 89 44 24 18 c6 (...)
  [947.519760] RSP: 0018:ffffc90000777e10 EFLAGS: 00010246
  [947.523818] RAX: 0000000000000000 RBX: 0000000000963300 RCX: 0000000000000000
  [947.529765] RDX: 0000000000000000 RSI: 000000000000fa51 RDI: ffffc90000777e50
  [947.535740] RBP: ffff888101628a90 R08: ffff888100955800 R09: ffff888100956000
  [947.541701] R10: 0000000000000002 R11: 0000000000000001 R12: ffff888100963488
  [947.547645] R13: ffff888100963000 R14: ffff888112fb7200 R15: ffff888100963460
  [947.553621] FS:  0000000000000000(0000) GS:ffff88841fd40000(0000) knlGS:0000000000000000
  [947.560537] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [947.565122] CR2: 0000000008be50c4 CR3: 000000000220c000 CR4: 00000000001006e0
  [947.571072] Call Trace:
  [947.572354]  <TASK>
  [947.573266]  btrfs_commit_transaction+0x1f1/0x998
  [947.576785]  ? start_transaction+0x3ab/0x44e
  [947.579867]  ? schedule_timeout+0x8a/0xdd
  [947.582716]  transaction_kthread+0xe9/0x156
  [947.585721]  ? btrfs_cleanup_transaction.isra.0+0x407/0x407
  [947.590104]  kthread+0x131/0x139
  [947.592168]  ? set_kthread_struct+0x32/0x32
  [947.595174]  ret_from_fork+0x22/0x30
  [947.597561]  </TASK>
  [947.598553] ---[ end trace 644721052755541c ]---

This is because we started using writeback_inodes_sb() to flush delalloc
when committing a transaction (when using -o flushoncommit), in order to
avoid deadlocks with filesystem freeze operations. This change was made
by commit ce8ea7cc6eb313 ("btrfs: don't call btrfs_start_delalloc_roots
in flushoncommit"). After that change we started producing that warning,
and every now and then a user reports this since the warning happens too
often, it spams dmesg/syslog, and a user is unsure if this reflects any
problem that might compromise the filesystem's reliability.

We can not just lock the sb->s_umount semaphore before calling
writeback_inodes_sb(), because that would at least deadlock with
filesystem freezing, since at fs/super.c:freeze_super() sync_filesystem()
is called while we are holding that semaphore in write mode, and that can
trigger a transaction commit, resulting in a deadlock. It would also
trigger the same type of deadlock in the unmount path. Possibly, it could
also introduce some other locking dependencies that lockdep would report.

To fix this call try_to_writeback_inodes_sb() instead of
writeback_inodes_sb(), because that will try to read lock sb->s_umount
and then will only call writeback_inodes_sb() if it was able to lock it.
This is fine because the cases where it can't read lock sb->s_umount
are during a filesystem unmount or during a filesystem freeze - in those
cases sb->s_umount is write locked and sync_filesystem() is called, which
calls writeback_inodes_sb(). In other words, in all cases where we can't
take a read lock on sb->s_umount, writeback is already being triggered
elsewhere.

An alternative would be to call btrfs_start_delalloc_roots() with a
number of pages different from LONG_MAX, for example matching the number
of delalloc bytes we currently have, in which case we would end up
starting all delalloc with filemap_fdatawrite_wbc() and not with an
async flush via filemap_flush() - that is only possible after the rather
recent commit e076ab2a2ca70a ("btrfs: shrink delalloc pages instead of
full inodes"). However that creates a whole new can of worms due to new
lock dependencies, which lockdep complains, like for example:

[ 8948.247280] ======================================================
[ 8948.247823] WARNING: possible circular locking dependency detected
[ 8948.248353] 5.17.0-rc1-btrfs-next-111 #1 Not tainted
[ 8948.248786] ------------------------------------------------------
[ 8948.249320] kworker/u16:18/933570 is trying to acquire lock:
[ 8948.249812] ffff9b3de1591690 (sb_internal#2){.+.+}-{0:0}, at: find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.250638]
               but task is already holding lock:
[ 8948.251140] ffff9b3e09c717d8 (&root->delalloc_mutex){+.+.}-{3:3}, at: start_delalloc_inodes+0x78/0x400 [btrfs]
[ 8948.252018]
               which lock already depends on the new lock.

[ 8948.252710]
               the existing dependency chain (in reverse order) is:
[ 8948.253343]
               -> #2 (&root->delalloc_mutex){+.+.}-{3:3}:
[ 8948.253950]        __mutex_lock+0x90/0x900
[ 8948.254354]        start_delalloc_inodes+0x78/0x400 [btrfs]
[ 8948.254859]        btrfs_start_delalloc_roots+0x194/0x2a0 [btrfs]
[ 8948.255408]        btrfs_commit_transaction+0x32f/0xc00 [btrfs]
[ 8948.255942]        btrfs_mksubvol+0x380/0x570 [btrfs]
[ 8948.256406]        btrfs_mksnapshot+0x81/0xb0 [btrfs]
[ 8948.256870]        __btrfs_ioctl_snap_create+0x17f/0x190 [btrfs]
[ 8948.257413]        btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs]
[ 8948.257961]        btrfs_ioctl+0x1196/0x3630 [btrfs]
[ 8948.258418]        __x64_sys_ioctl+0x83/0xb0
[ 8948.258793]        do_syscall_64+0x3b/0xc0
[ 8948.259146]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 8948.259709]
               -> #1 (&fs_info->delalloc_root_mutex){+.+.}-{3:3}:
[ 8948.260330]        __mutex_lock+0x90/0x900
[ 8948.260692]        btrfs_start_delalloc_roots+0x97/0x2a0 [btrfs]
[ 8948.261234]        btrfs_commit_transaction+0x32f/0xc00 [btrfs]
[ 8948.261766]        btrfs_set_free_space_cache_v1_active+0x38/0x60 [btrfs]
[ 8948.262379]        btrfs_start_pre_rw_mount+0x119/0x180 [btrfs]
[ 8948.262909]        open_ctree+0x1511/0x171e [btrfs]
[ 8948.263359]        btrfs_mount_root.cold+0x12/0xde [btrfs]
[ 8948.263863]        legacy_get_tree+0x30/0x50
[ 8948.264242]        vfs_get_tree+0x28/0xc0
[ 8948.264594]        vfs_kern_mount.part.0+0x71/0xb0
[ 8948.265017]        btrfs_mount+0x11d/0x3a0 [btrfs]
[ 8948.265462]        legacy_get_tree+0x30/0x50
[ 8948.265851]        vfs_get_tree+0x28/0xc0
[ 8948.266203]        path_mount+0x2d4/0xbe0
[ 8948.266554]        __x64_sys_mount+0x103/0x140
[ 8948.266940]        do_syscall_64+0x3b/0xc0
[ 8948.267300]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 8948.267790]
               -> #0 (sb_internal#2){.+.+}-{0:0}:
[ 8948.268322]        __lock_acquire+0x12e8/0x2260
[ 8948.268733]        lock_acquire+0xd7/0x310
[ 8948.269092]        start_transaction+0x44c/0x6e0 [btrfs]
[ 8948.269591]        find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.270087]        btrfs_reserve_extent+0x14b/0x280 [btrfs]
[ 8948.270588]        cow_file_range+0x17e/0x490 [btrfs]
[ 8948.271051]        btrfs_run_delalloc_range+0x345/0x7a0 [btrfs]
[ 8948.271586]        writepage_delalloc+0xb5/0x170 [btrfs]
[ 8948.272071]        __extent_writepage+0x156/0x3c0 [btrfs]
[ 8948.272579]        extent_write_cache_pages+0x263/0x460 [btrfs]
[ 8948.273113]        extent_writepages+0x76/0x130 [btrfs]
[ 8948.273573]        do_writepages+0xd2/0x1c0
[ 8948.273942]        filemap_fdatawrite_wbc+0x68/0x90
[ 8948.274371]        start_delalloc_inodes+0x17f/0x400 [btrfs]
[ 8948.274876]        btrfs_start_delalloc_roots+0x194/0x2a0 [btrfs]
[ 8948.275417]        flush_space+0x1f2/0x630 [btrfs]
[ 8948.275863]        btrfs_async_reclaim_data_space+0x108/0x1b0 [btrfs]
[ 8948.276438]        process_one_work+0x252/0x5a0
[ 8948.276829]        worker_thread+0x55/0x3b0
[ 8948.277189]        kthread+0xf2/0x120
[ 8948.277506]        ret_from_fork+0x22/0x30
[ 8948.277868]
               other info that might help us debug this:

[ 8948.278548] Chain exists of:
                 sb_internal#2 --> &fs_info->delalloc_root_mutex --> &root->delalloc_mutex

[ 8948.279601]  Possible unsafe locking scenario:

[ 8948.280102]        CPU0                    CPU1
[ 8948.280508]        ----                    ----
[ 8948.280915]   lock(&root->delalloc_mutex);
[ 8948.281271]                                lock(&fs_info->delalloc_root_mutex);
[ 8948.281915]                                lock(&root->delalloc_mutex);
[ 8948.282487]   lock(sb_internal#2);
[ 8948.282800]
                *** DEADLOCK ***

[ 8948.283333] 4 locks held by kworker/u16:18/933570:
[ 8948.283750]  #0: ffff9b3dc00a9d48 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x1d2/0x5a0
[ 8948.284609]  #1: ffffa90349dafe70 ((work_completion)(&fs_info->async_data_reclaim_work)){+.+.}-{0:0}, at: process_one_work+0x1d2/0x5a0
[ 8948.285637]  #2: ffff9b3e14db5040 (&fs_info->delalloc_root_mutex){+.+.}-{3:3}, at: btrfs_start_delalloc_roots+0x97/0x2a0 [btrfs]
[ 8948.286674]  #3: ffff9b3e09c717d8 (&root->delalloc_mutex){+.+.}-{3:3}, at: start_delalloc_inodes+0x78/0x400 [btrfs]
[ 8948.287596]
              stack backtrace:
[ 8948.287975] CPU: 3 PID: 933570 Comm: kworker/u16:18 Not tainted 5.17.0-rc1-btrfs-next-111 #1
[ 8948.288677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 8948.289649] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
[ 8948.290298] Call Trace:
[ 8948.290517]  <TASK>
[ 8948.290700]  dump_stack_lvl+0x59/0x73
[ 8948.291026]  check_noncircular+0xf3/0x110
[ 8948.291375]  ? start_transaction+0x228/0x6e0 [btrfs]
[ 8948.291826]  __lock_acquire+0x12e8/0x2260
[ 8948.292241]  lock_acquire+0xd7/0x310
[ 8948.292714]  ? find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.293241]  ? lock_is_held_type+0xea/0x140
[ 8948.293601]  start_transaction+0x44c/0x6e0 [btrfs]
[ 8948.294055]  ? find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.294518]  find_free_extent+0x141e/0x1590 [btrfs]
[ 8948.294957]  ? _raw_spin_unlock+0x29/0x40
[ 8948.295312]  ? btrfs_get_alloc_profile+0x124/0x290 [btrfs]
[ 8948.295813]  btrfs_reserve_extent+0x14b/0x280 [btrfs]
[ 8948.296270]  cow_file_range+0x17e/0x490 [btrfs]
[ 8948.296691]  btrfs_run_delalloc_range+0x345/0x7a0 [btrfs]
[ 8948.297175]  ? find_lock_delalloc_range+0x247/0x270 [btrfs]
[ 8948.297678]  writepage_delalloc+0xb5/0x170 [btrfs]
[ 8948.298123]  __extent_writepage+0x156/0x3c0 [btrfs]
[ 8948.298570]  extent_write_cache_pages+0x263/0x460 [btrfs]
[ 8948.299061]  extent_writepages+0x76/0x130 [btrfs]
[ 8948.299495]  do_writepages+0xd2/0x1c0
[ 8948.299817]  ? sched_clock_cpu+0xd/0x110
[ 8948.300160]  ? lock_release+0x155/0x4a0
[ 8948.300494]  filemap_fdatawrite_wbc+0x68/0x90
[ 8948.300874]  ? do_raw_spin_unlock+0x4b/0xa0
[ 8948.301243]  start_delalloc_inodes+0x17f/0x400 [btrfs]
[ 8948.301706]  ? lock_release+0x155/0x4a0
[ 8948.302055]  btrfs_start_delalloc_roots+0x194/0x2a0 [btrfs]
[ 8948.302564]  flush_space+0x1f2/0x630 [btrfs]
[ 8948.302970]  btrfs_async_reclaim_data_space+0x108/0x1b0 [btrfs]
[ 8948.303510]  process_one_work+0x252/0x5a0
[ 8948.303860]  ? process_one_work+0x5a0/0x5a0
[ 8948.304221]  worker_thread+0x55/0x3b0
[ 8948.304543]  ? process_one_work+0x5a0/0x5a0
[ 8948.304904]  kthread+0xf2/0x120
[ 8948.305184]  ? kthread_complete_and_exit+0x20/0x20
[ 8948.305598]  ret_from_fork+0x22/0x30
[ 8948.305921]  </TASK>

It all comes from the fact that btrfs_start_delalloc_roots() takes the
delalloc_root_mutex, in the transaction commit path we are holding a
read lock on one of the superblock's freeze semaphores (via
sb_start_intwrite()), the async reclaim task can also do a call to
btrfs_start_delalloc_roots(), which ends up triggering writeback with
calls to filemap_fdatawrite_wbc(), resulting in extent allocation which
in turn can call btrfs_start_transaction(), which will result in taking
the freeze semaphore via sb_start_intwrite(), forming a nasty dependency
on all those locks which can be taken in different orders by different
code paths.

So just adopt the simple approach of calling try_to_writeback_inodes_sb()
at btrfs_start_delalloc_flush().

Link: https://lore.kernel.org/linux-btrfs/20220130005258.GA7465@cuci.nl/
Link: https://lore.kernel.org/linux-btrfs/43acc426-d683-d1b6-729d-c6bc4a2fff4d@gmail.com/
Link: https://lore.kernel.org/linux-btrfs/6833930a-08d7-6fbc-0141-eb9cdfd6bb4d@gmail.com/
Link: https://lore.kernel.org/linux-btrfs/20190322041731.GF16651@hungrycats.org/
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[ add more link reports ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-03-08 19:12:29 +01:00
Dāvis Mosāns
8df508b7a4 btrfs: prevent copying too big compressed lzo segment
commit 741b23a970a79d5d3a1db2d64fa2c7b375a4febb upstream.

Compressed length can be corrupted to be a lot larger than memory
we have allocated for buffer.
This will cause memcpy in copy_compressed_segment to write outside
of allocated memory.

This mostly results in stuck read syscall but sometimes when using
btrfs send can get #GP

  kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI
  kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P           OE     5.17.0-rc2-1 #12
  kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs]
  kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs
  Code starting with the faulting instruction
  ===========================================
     0:*  48 8b 06                mov    (%rsi),%rax              <-- trapping instruction
     3:   48 8d 79 08             lea    0x8(%rcx),%rdi
     7:   48 83 e7 f8             and    $0xfffffffffffffff8,%rdi
     b:   48 89 01                mov    %rax,(%rcx)
     e:   44 89 f0                mov    %r14d,%eax
    11:   48 8b 54 06 f8          mov    -0x8(%rsi,%rax,1),%rdx
  kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212
  kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8
  kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d
  kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000
  kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000
  kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000
  kernel: FS:  0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000
  kernel: CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0
  kernel: Call Trace:
  kernel:  <TASK>
  kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs
  kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs
  kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs
  kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312)
  kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455)
  kernel: ? process_one_work (kernel/workqueue.c:2397)
  kernel: kthread (kernel/kthread.c:377)
  kernel: ? kthread_complete_and_exit (kernel/kthread.c:332)
  kernel: ret_from_fork (arch/x86/entry/entry_64.S:301)
  kernel:  </TASK>

CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Dāvis Mosāns <davispuh@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-02 11:48:07 +01:00
Su Yue
b80fbc20f3 btrfs: tree-checker: check item_size for dev_item
commit ea1d1ca4025ac6c075709f549f9aa036b5b6597d upstream.

Check item size before accessing the device item to avoid out of bound
access, similar to inode_item check.

Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-02 11:47:48 +01:00
Su Yue
7e80846a99 btrfs: tree-checker: check item_size for inode_item
commit 0c982944af27d131d3b74242f3528169f66950ad upstream.

while mounting the crafted image, out-of-bounds access happens:

  [350.429619] UBSAN: array-index-out-of-bounds in fs/btrfs/struct-funcs.c:161:1
  [350.429636] index 1048096 is out of range for type 'page *[16]'
  [350.429650] CPU: 0 PID: 9 Comm: kworker/u8:1 Not tainted 5.16.0-rc4 #1
  [350.429652] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
  [350.429653] Workqueue: btrfs-endio-meta btrfs_work_helper [btrfs]
  [350.429772] Call Trace:
  [350.429774]  <TASK>
  [350.429776]  dump_stack_lvl+0x47/0x5c
  [350.429780]  ubsan_epilogue+0x5/0x50
  [350.429786]  __ubsan_handle_out_of_bounds+0x66/0x70
  [350.429791]  btrfs_get_16+0xfd/0x120 [btrfs]
  [350.429832]  check_leaf+0x754/0x1a40 [btrfs]
  [350.429874]  ? filemap_read+0x34a/0x390
  [350.429878]  ? load_balance+0x175/0xfc0
  [350.429881]  validate_extent_buffer+0x244/0x310 [btrfs]
  [350.429911]  btrfs_validate_metadata_buffer+0xf8/0x100 [btrfs]
  [350.429935]  end_bio_extent_readpage+0x3af/0x850 [btrfs]
  [350.429969]  ? newidle_balance+0x259/0x480
  [350.429972]  end_workqueue_fn+0x29/0x40 [btrfs]
  [350.429995]  btrfs_work_helper+0x71/0x330 [btrfs]
  [350.430030]  ? __schedule+0x2fb/0xa40
  [350.430033]  process_one_work+0x1f6/0x400
  [350.430035]  ? process_one_work+0x400/0x400
  [350.430036]  worker_thread+0x2d/0x3d0
  [350.430037]  ? process_one_work+0x400/0x400
  [350.430038]  kthread+0x165/0x190
  [350.430041]  ? set_kthread_struct+0x40/0x40
  [350.430043]  ret_from_fork+0x1f/0x30
  [350.430047]  </TASK>
  [350.430077] BTRFS warning (device loop0): bad eb member start: ptr 0xffe20f4e start 20975616 member offset 4293005178 size 2

check_leaf() is checking the leaf:

  corrupt leaf: root=4 block=29396992 slot=1, bad key order, prev (16140901064495857664 1 0) current (1 204 12582912)
  leaf 29396992 items 6 free space 3565 generation 6 owner DEV_TREE
  leaf 29396992 flags 0x1(WRITTEN) backref revision 1
  fs uuid a62e00e8-e94e-4200-8217-12444de93c2e
  chunk uuid cecbd0f7-9ca0-441e-ae9f-f782f9732bd8
	  item 0 key (16140901064495857664 INODE_ITEM 0) itemoff 3955 itemsize 40
		  generation 0 transid 0 size 0 nbytes 17592186044416
		  block group 0 mode 52667 links 33 uid 0 gid 2104132511 rdev 94223634821136
		  sequence 100305 flags 0x2409000(none)
		  atime 0.0 (1970-01-01 08:00:00)
		  ctime 2973280098083405823.4294967295 (-269783007-01-01 21:37:03)
		  mtime 18446744071572723616.4026825121 (1902-04-16 12:40:00)
		  otime 9249929404488876031.4294967295 (622322949-04-16 04:25:58)
	  item 1 key (1 DEV_EXTENT 12582912) itemoff 3907 itemsize 48
		  dev extent chunk_tree 3
		  chunk_objectid 256 chunk_offset 12582912 length 8388608
		  chunk_tree_uuid cecbd0f7-9ca0-441e-ae9f-f782f9732bd8

The corrupted leaf of device tree has an inode item. The leaf passed
checksum and others checks in validate_extent_buffer until check_leaf_item().
Because of the key type BTRFS_INODE_ITEM, check_inode_item() is called even we
are in the device tree. Since the
item offset + sizeof(struct btrfs_inode_item) > eb->len, out-of-bounds access
is triggered.

The item end vs leaf boundary check has been done before
check_leaf_item(), so fix it by checking item size in check_inode_item()
before access of the inode item in extent buffer.

Other check functions except check_dev_item() in check_leaf_item()
have their item size checks.
The commit for check_dev_item() is followed.

No regression observed during running fstests.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=215299
CC: stable@vger.kernel.org # 5.10+
CC: Wenqing Liu <wenqingliu0120@gmail.com>
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-02 11:47:47 +01:00
Dāvis Mosāns
7e234c47fd btrfs: send: in case of IO error log it
commit 2e7be9db125a0bf940c5d65eb5c40d8700f738b5 upstream.

Currently if we get IO error while doing send then we abort without
logging information about which file caused issue.  So log it to help
with debugging.

CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Dāvis Mosāns <davispuh@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-23 12:03:04 +01:00
Naohiro Aota
ae6ca63439 btrfs: zoned: cache reported zone during mount
commit 16beac87e95e2fb278b552397c8260637f8a63f7 upstream.

When mounting a device, we are reporting the zones twice: once for
checking the zone attributes in btrfs_get_dev_zone_info and once for
loading block groups' zone info in
btrfs_load_block_group_zone_info(). With a lot of block groups, that
leads to a lot of REPORT ZONE commands and slows down the mount
process.

This patch introduces a zone info cache in struct
btrfs_zoned_device_info. The cache is populated while in
btrfs_get_dev_zone_info() and used for
btrfs_load_block_group_zone_info() to reduce the number of REPORT ZONE
commands. The zone cache is then released after loading the block
groups, as it will not be much effective during the run time.

Benchmark: Mount an HDD with 57,007 block groups
Before patch: 171.368 seconds
After patch: 64.064 seconds

While it still takes a minute due to the slowness of loading all the
block groups, the patch reduces the mount time by 1/3.

Link: https://lore.kernel.org/linux-btrfs/CAHQ7scUiLtcTqZOMMY5kbWUBOhGRwKo6J6wYPT5WY+C=cD49nQ@mail.gmail.com/
Fixes: 5b316468983d ("btrfs: get zone information of zoned block devices")
CC: stable@vger.kernel.org
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-23 12:03:02 +01:00
Filipe Manana
a7b717fa15 btrfs: fix use-after-free after failure to create a snapshot
commit 28b21c558a3753171097193b6f6602a94169093a upstream.

At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and
then attach it to the transaction's list of pending snapshots. After that
we call btrfs_commit_transaction(), and if that returns an error we jump
to 'fail' label, where we kfree() the pending snapshot structure. This can
result in a later use-after-free of the pending snapshot:

1) We allocated the pending snapshot and added it to the transaction's
   list of pending snapshots;

2) We call btrfs_commit_transaction(), and it fails either at the first
   call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups().
   In both cases, we don't abort the transaction and we release our
   transaction handle. We jump to the 'fail' label and free the pending
   snapshot structure. We return with the pending snapshot still in the
   transaction's list;

3) Another task commits the transaction. This time there's no error at
   all, and then during the transaction commit it accesses a pointer
   to the pending snapshot structure that the snapshot creation task
   has already freed, resulting in a user-after-free.

This issue could actually be detected by smatch, which produced the
following warning:

  fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list

So fix this by not having the snapshot creation ioctl directly add the
pending snapshot to the transaction's list. Instead add the pending
snapshot to the transaction handle, and then at btrfs_commit_transaction()
we add the snapshot to the list only when we can guarantee that any error
returned after that point will result in a transaction abort, in which
case the ioctl code can safely free the pending snapshot and no one can
access it anymore.

CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-08 18:34:04 +01:00
Shin'ichiro Kawasaki
89d4cca583 btrfs: fix deadlock between quota disable and qgroup rescan worker
commit e804861bd4e69cc5fe1053eedcb024982dde8e48 upstream.

Quota disable ioctl starts a transaction before waiting for the qgroup
rescan worker completes. However, this wait can be infinite and results
in deadlock because of circular dependency among the quota disable
ioctl, the qgroup rescan worker and the other task with transaction such
as block group relocation task.

The deadlock happens with the steps following:

1) Task A calls ioctl to disable quota. It starts a transaction and
   waits for qgroup rescan worker completes.
2) Task B such as block group relocation task starts a transaction and
   joins to the transaction that task A started. Then task B commits to
   the transaction. In this commit, task B waits for a commit by task A.
3) Task C as the qgroup rescan worker starts its job and starts a
   transaction. In this transaction start, task C waits for completion
   of the transaction that task A started and task B committed.

This deadlock was found with fstests test case btrfs/115 and a zoned
null_blk device. The test case enables and disables quota, and the
block group reclaim was triggered during the quota disable by chance.
The deadlock was also observed by running quota enable and disable in
parallel with 'btrfs balance' command on regular null_blk devices.

An example report of the deadlock:

  [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds.
  [372.479944]       Not tainted 5.16.0-rc8 #7
  [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [372.493898] task:kworker/u16:6   state:D stack:    0 pid:  103 ppid:     2 flags:0x00004000
  [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs]
  [372.510782] Call Trace:
  [372.514092]  <TASK>
  [372.521684]  __schedule+0xb56/0x4850
  [372.530104]  ? io_schedule_timeout+0x190/0x190
  [372.538842]  ? lockdep_hardirqs_on+0x7e/0x100
  [372.547092]  ? _raw_spin_unlock_irqrestore+0x3e/0x60
  [372.555591]  schedule+0xe0/0x270
  [372.561894]  btrfs_commit_transaction+0x18bb/0x2610 [btrfs]
  [372.570506]  ? btrfs_apply_pending_changes+0x50/0x50 [btrfs]
  [372.578875]  ? free_unref_page+0x3f2/0x650
  [372.585484]  ? finish_wait+0x270/0x270
  [372.591594]  ? release_extent_buffer+0x224/0x420 [btrfs]
  [372.599264]  btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs]
  [372.607157]  ? lock_release+0x3a9/0x6d0
  [372.613054]  ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs]
  [372.620960]  ? do_raw_spin_lock+0x11e/0x250
  [372.627137]  ? rwlock_bug.part.0+0x90/0x90
  [372.633215]  ? lock_is_held_type+0xe4/0x140
  [372.639404]  btrfs_work_helper+0x1ae/0xa90 [btrfs]
  [372.646268]  process_one_work+0x7e9/0x1320
  [372.652321]  ? lock_release+0x6d0/0x6d0
  [372.658081]  ? pwq_dec_nr_in_flight+0x230/0x230
  [372.664513]  ? rwlock_bug.part.0+0x90/0x90
  [372.670529]  worker_thread+0x59e/0xf90
  [372.676172]  ? process_one_work+0x1320/0x1320
  [372.682440]  kthread+0x3b9/0x490
  [372.687550]  ? _raw_spin_unlock_irq+0x24/0x50
  [372.693811]  ? set_kthread_struct+0x100/0x100
  [372.700052]  ret_from_fork+0x22/0x30
  [372.705517]  </TASK>
  [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds.
  [372.729827]       Not tainted 5.16.0-rc8 #7
  [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [372.767106] task:btrfs-transacti state:D stack:    0 pid: 2347 ppid:     2 flags:0x00004000
  [372.787776] Call Trace:
  [372.801652]  <TASK>
  [372.812961]  __schedule+0xb56/0x4850
  [372.830011]  ? io_schedule_timeout+0x190/0x190
  [372.852547]  ? lockdep_hardirqs_on+0x7e/0x100
  [372.871761]  ? _raw_spin_unlock_irqrestore+0x3e/0x60
  [372.886792]  schedule+0xe0/0x270
  [372.901685]  wait_current_trans+0x22c/0x310 [btrfs]
  [372.919743]  ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs]
  [372.938923]  ? finish_wait+0x270/0x270
  [372.959085]  ? join_transaction+0xc75/0xe30 [btrfs]
  [372.977706]  start_transaction+0x938/0x10a0 [btrfs]
  [372.997168]  transaction_kthread+0x19d/0x3c0 [btrfs]
  [373.013021]  ? btrfs_cleanup_transaction.isra.0+0xfc0/0xfc0 [btrfs]
  [373.031678]  kthread+0x3b9/0x490
  [373.047420]  ? _raw_spin_unlock_irq+0x24/0x50
  [373.064645]  ? set_kthread_struct+0x100/0x100
  [373.078571]  ret_from_fork+0x22/0x30
  [373.091197]  </TASK>
  [373.105611] INFO: task btrfs:3145 blocked for more than 123 seconds.
  [373.114147]       Not tainted 5.16.0-rc8 #7
  [373.120401] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [373.130393] task:btrfs           state:D stack:    0 pid: 3145 ppid:  3141 flags:0x00004000
  [373.140998] Call Trace:
  [373.145501]  <TASK>
  [373.149654]  __schedule+0xb56/0x4850
  [373.155306]  ? io_schedule_timeout+0x190/0x190
  [373.161965]  ? lockdep_hardirqs_on+0x7e/0x100
  [373.168469]  ? _raw_spin_unlock_irqrestore+0x3e/0x60
  [373.175468]  schedule+0xe0/0x270
  [373.180814]  wait_for_commit+0x104/0x150 [btrfs]
  [373.187643]  ? test_and_set_bit+0x20/0x20 [btrfs]
  [373.194772]  ? kmem_cache_free+0x124/0x550
  [373.201191]  ? btrfs_put_transaction+0x69/0x3d0 [btrfs]
  [373.208738]  ? finish_wait+0x270/0x270
  [373.214704]  ? __btrfs_end_transaction+0x347/0x7b0 [btrfs]
  [373.222342]  btrfs_commit_transaction+0x44d/0x2610 [btrfs]
  [373.230233]  ? join_transaction+0x255/0xe30 [btrfs]
  [373.237334]  ? btrfs_record_root_in_trans+0x4d/0x170 [btrfs]
  [373.245251]  ? btrfs_apply_pending_changes+0x50/0x50 [btrfs]
  [373.253296]  relocate_block_group+0x105/0xc20 [btrfs]
  [373.260533]  ? mutex_lock_io_nested+0x1270/0x1270
  [373.267516]  ? btrfs_wait_nocow_writers+0x85/0x180 [btrfs]
  [373.275155]  ? merge_reloc_roots+0x710/0x710 [btrfs]
  [373.283602]  ? btrfs_wait_ordered_extents+0xd30/0xd30 [btrfs]
  [373.291934]  ? kmem_cache_free+0x124/0x550
  [373.298180]  btrfs_relocate_block_group+0x35c/0x930 [btrfs]
  [373.306047]  btrfs_relocate_chunk+0x85/0x210 [btrfs]
  [373.313229]  btrfs_balance+0x12f4/0x2d20 [btrfs]
  [373.320227]  ? lock_release+0x3a9/0x6d0
  [373.326206]  ? btrfs_relocate_chunk+0x210/0x210 [btrfs]
  [373.333591]  ? lock_is_held_type+0xe4/0x140
  [373.340031]  ? rcu_read_lock_sched_held+0x3f/0x70
  [373.346910]  btrfs_ioctl_balance+0x548/0x700 [btrfs]
  [373.354207]  btrfs_ioctl+0x7f2/0x71b0 [btrfs]
  [373.360774]  ? lockdep_hardirqs_on_prepare+0x410/0x410
  [373.367957]  ? lockdep_hardirqs_on_prepare+0x410/0x410
  [373.375327]  ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs]
  [373.383841]  ? find_held_lock+0x2c/0x110
  [373.389993]  ? lock_release+0x3a9/0x6d0
  [373.395828]  ? mntput_no_expire+0xf7/0xad0
  [373.402083]  ? lock_is_held_type+0xe4/0x140
  [373.408249]  ? vfs_fileattr_set+0x9f0/0x9f0
  [373.414486]  ? selinux_file_ioctl+0x349/0x4e0
  [373.420938]  ? trace_raw_output_lock+0xb4/0xe0
  [373.427442]  ? selinux_inode_getsecctx+0x80/0x80
  [373.434224]  ? lockdep_hardirqs_on+0x7e/0x100
  [373.440660]  ? force_qs_rnp+0x2a0/0x6b0
  [373.446534]  ? lock_is_held_type+0x9b/0x140
  [373.452763]  ? __blkcg_punt_bio_submit+0x1b0/0x1b0
  [373.459732]  ? security_file_ioctl+0x50/0x90
  [373.466089]  __x64_sys_ioctl+0x127/0x190
  [373.472022]  do_syscall_64+0x3b/0x90
  [373.477513]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [373.484823] RIP: 0033:0x7f8f4af7e2bb
  [373.490493] RSP: 002b:00007ffcbf936178 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [373.500197] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8f4af7e2bb
  [373.509451] RDX: 00007ffcbf936220 RSI: 00000000c4009420 RDI: 0000000000000003
  [373.518659] RBP: 00007ffcbf93774a R08: 0000000000000013 R09: 00007f8f4b02d4e0
  [373.527872] R10: 00007f8f4ae87740 R11: 0000000000000246 R12: 0000000000000001
  [373.537222] R13: 00007ffcbf936220 R14: 0000000000000000 R15: 0000000000000002
  [373.546506]  </TASK>
  [373.550878] INFO: task btrfs:3146 blocked for more than 123 seconds.
  [373.559383]       Not tainted 5.16.0-rc8 #7
  [373.565748] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [373.575748] task:btrfs           state:D stack:    0 pid: 3146 ppid:  2168 flags:0x00000000
  [373.586314] Call Trace:
  [373.590846]  <TASK>
  [373.595121]  __schedule+0xb56/0x4850
  [373.600901]  ? __lock_acquire+0x23db/0x5030
  [373.607176]  ? io_schedule_timeout+0x190/0x190
  [373.613954]  schedule+0xe0/0x270
  [373.619157]  schedule_timeout+0x168/0x220
  [373.625170]  ? usleep_range_state+0x150/0x150
  [373.631653]  ? mark_held_locks+0x9e/0xe0
  [373.637767]  ? do_raw_spin_lock+0x11e/0x250
  [373.643993]  ? lockdep_hardirqs_on_prepare+0x17b/0x410
  [373.651267]  ? _raw_spin_unlock_irq+0x24/0x50
  [373.657677]  ? lockdep_hardirqs_on+0x7e/0x100
  [373.664103]  wait_for_completion+0x163/0x250
  [373.670437]  ? bit_wait_timeout+0x160/0x160
  [373.676585]  btrfs_quota_disable+0x176/0x9a0 [btrfs]
  [373.683979]  ? btrfs_quota_enable+0x12f0/0x12f0 [btrfs]
  [373.691340]  ? down_write+0xd0/0x130
  [373.696880]  ? down_write_killable+0x150/0x150
  [373.703352]  btrfs_ioctl+0x3945/0x71b0 [btrfs]
  [373.710061]  ? find_held_lock+0x2c/0x110
  [373.716192]  ? lock_release+0x3a9/0x6d0
  [373.722047]  ? __handle_mm_fault+0x23cd/0x3050
  [373.728486]  ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs]
  [373.737032]  ? set_pte+0x6a/0x90
  [373.742271]  ? do_raw_spin_unlock+0x55/0x1f0
  [373.748506]  ? lock_is_held_type+0xe4/0x140
  [373.754792]  ? vfs_fileattr_set+0x9f0/0x9f0
  [373.761083]  ? selinux_file_ioctl+0x349/0x4e0
  [373.767521]  ? selinux_inode_getsecctx+0x80/0x80
  [373.774247]  ? __up_read+0x182/0x6e0
  [373.780026]  ? count_memcg_events.constprop.0+0x46/0x60
  [373.787281]  ? up_write+0x460/0x460
  [373.792932]  ? security_file_ioctl+0x50/0x90
  [373.799232]  __x64_sys_ioctl+0x127/0x190
  [373.805237]  do_syscall_64+0x3b/0x90
  [373.810947]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [373.818102] RIP: 0033:0x7f1383ea02bb
  [373.823847] RSP: 002b:00007fffeb4d71f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
  [373.833641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1383ea02bb
  [373.842961] RDX: 00007fffeb4d7210 RSI: 00000000c0109428 RDI: 0000000000000003
  [373.852179] RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078
  [373.861408] R10: 00007f1383daec78 R11: 0000000000000202 R12: 00007fffeb4d874a
  [373.870647] R13: 0000000000493099 R14: 0000000000000001 R15: 0000000000000000
  [373.879838]  </TASK>
  [373.884018]
               Showing all locks held in the system:
  [373.894250] 3 locks held by kworker/4:1/58:
  [373.900356] 1 lock held by khungtaskd/63:
  [373.906333]  #0: ffffffff8945ff60 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260
  [373.917307] 3 locks held by kworker/u16:6/103:
  [373.923938]  #0: ffff888127b4f138 ((wq_completion)btrfs-qgroup-rescan){+.+.}-{0:0}, at: process_one_work+0x712/0x1320
  [373.936555]  #1: ffff88810b817dd8 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x73f/0x1320
  [373.951109]  #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_qgroup_rescan_worker+0x1f6/0x10c0 [btrfs]
  [373.964027] 2 locks held by less/1803:
  [373.969982]  #0: ffff88813ed56098 (&tty->ldisc_sem){++++}-{0:0}, at: tty_ldisc_ref_wait+0x24/0x80
  [373.981295]  #1: ffffc90000b3b2e8 (&ldata->atomic_read_lock){+.+.}-{3:3}, at: n_tty_read+0x9e2/0x1060
  [373.992969] 1 lock held by btrfs-transacti/2347:
  [373.999893]  #0: ffff88813d4887a8 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0xe3/0x3c0 [btrfs]
  [374.015872] 3 locks held by btrfs/3145:
  [374.022298]  #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl_balance+0xc3/0x700 [btrfs]
  [374.034456]  #1: ffff88813d48a0a0 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0xfe5/0x2d20 [btrfs]
  [374.047646]  #2: ffff88813d488838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x354/0x930 [btrfs]
  [374.063295] 4 locks held by btrfs/3146:
  [374.069647]  #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl+0x38b1/0x71b0 [btrfs]
  [374.081601]  #1: ffff88813d488bb8 (&fs_info->subvol_sem){+.+.}-{3:3}, at: btrfs_ioctl+0x38fd/0x71b0 [btrfs]
  [374.094283]  #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_disable+0xc8/0x9a0 [btrfs]
  [374.106885]  #3: ffff88813d489800 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_disable+0xd5/0x9a0 [btrfs]

  [374.126780] =============================================

To avoid the deadlock, wait for the qgroup rescan worker to complete
before starting the transaction for the quota disable ioctl. Clear
BTRFS_FS_QUOTA_ENABLE flag before the wait and the transaction to
request the worker to complete. On transaction start failure, set the
BTRFS_FS_QUOTA_ENABLE flag again. These BTRFS_FS_QUOTA_ENABLE flag
changes can be done safely since the function btrfs_quota_disable is not
called concurrently because of fs_info->subvol_sem.

Also check the BTRFS_FS_QUOTA_ENABLE flag in qgroup_rescan_init to avoid
another qgroup rescan worker to start after the previous qgroup worker
completed.

CC: stable@vger.kernel.org # 5.4+
Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-08 18:34:04 +01:00
Qu Wenruo
f4b2736eeb btrfs: don't start transaction for scrub if the fs is mounted read-only
commit 2d192fc4c1abeb0d04d1c8cd54405ff4a0b0255b upstream.

[BUG]
The following super simple script would crash btrfs at unmount time, if
CONFIG_BTRFS_ASSERT() is set.

 mkfs.btrfs -f $dev
 mount $dev $mnt
 xfs_io -f -c "pwrite 0 4k" $mnt/file
 umount $mnt
 mount -r ro $dev $mnt
 btrfs scrub start -Br $mnt
 umount $mnt

This will trigger the following ASSERT() introduced by commit
0a31daa4b602 ("btrfs: add assertion for empty list of transactions at
late stage of umount").

That patch is definitely not the cause, it just makes enough noise for
developers.

[CAUSE]
We will start transaction for the following call chain during scrub:

  scrub_enumerate_chunks()
  |- btrfs_inc_block_group_ro()
     |- btrfs_join_transaction()

However for RO mount, there is no running transaction at all, thus
btrfs_join_transaction() will start a new transaction.

Furthermore, since it's read-only mount, btrfs_sync_fs() will not call
btrfs_commit_super() to commit the new but empty transaction.

And leads to the ASSERT().

The bug has been there for a long time. Only the new ASSERT() makes it
noisy enough to be noticed.

[FIX]
For read-only scrub on read-only mount, there is no need to start a
transaction nor to allocate new chunks in btrfs_inc_block_group_ro().

Just do extra read-only mount check in btrfs_inc_block_group_ro(), and
if it's read-only, skip all chunk allocation and go inc_block_group_ro()
directly.

CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-08 18:34:04 +01:00
Amir Goldstein
3d7b7272ce fsnotify: invalidate dcache before IN_DELETE event
commit a37d9a17f099072fe4d3a9048b0321978707a918 upstream.

Apparently, there are some applications that use IN_DELETE event as an
invalidation mechanism and expect that if they try to open a file with
the name reported with the delete event, that it should not contain the
content of the deleted file.

Commit 49246466a989 ("fsnotify: move fsnotify_nameremove() hook out of
d_delete()") moved the fsnotify delete hook before d_delete() so fsnotify
will have access to a positive dentry.

This allowed a race where opening the deleted file via cached dentry
is now possible after receiving the IN_DELETE event.

To fix the regression, create a new hook fsnotify_delete() that takes
the unlinked inode as an argument and use a helper d_delete_notify() to
pin the inode, so we can pass it to fsnotify_delete() after d_delete().

Backporting hint: this regression is from v5.3. Although patch will
apply with only trivial conflicts to v5.4 and v5.10, it won't build,
because fsnotify_delete() implementation is different in each of those
versions (see fsnotify_link()).

A follow up patch will fix the fsnotify_unlink/rmdir() calls in pseudo
filesystem that do not need to call d_delete().

Link: https://lore.kernel.org/r/20220120215305.282577-1-amir73il@gmail.com
Reported-by: Ivan Delalande <colona@arista.com>
Link: https://lore.kernel.org/linux-fsdevel/YeNyzoDM5hP5LtGW@visor/
Fixes: 49246466a989 ("fsnotify: move fsnotify_nameremove() hook out of d_delete()")
Cc: stable@vger.kernel.org # v5.3+
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-01 17:27:15 +01:00
Filipe Manana
5237c93d58 btrfs: respect the max size in the header when activating swap file
commit c2f822635df873c510bda6fb7fd1b10b7c31be2d upstream.

If we extended the size of a swapfile after its header was created (by the
mkswap utility) and then try to activate it, we will map the entire file
when activating the swap file, instead of limiting to the max size defined
in the swap file's header.

Currently test case generic/643 from fstests fails because we do not
respect that size limit defined in the swap file's header.

So fix this by not mapping file ranges beyond the max size defined in the
swap header.

This is the same type of bug that iomap used to have, and was fixed in
commit 36ca7943ac18ae ("mm/swap: consider max pages in
iomap_swapfile_add_extent").

Fixes: ed46ff3d423780 ("Btrfs: support swap files")
CC: stable@vger.kernel.org # 5.4+
Reviewed-and-tested-by: Josef Bacik <josef@toxicpanda.com
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-27 11:05:15 +01:00
Josef Bacik
724d9fa55c btrfs: check the root node for uptodate before returning it
commit 120de408e4b97504a2d9b5ca534b383de2c73d49 upstream.

Now that we clear the extent buffer uptodate if we fail to write it out
we need to check to see if our root node is uptodate before we search
down it.  Otherwise we could return stale data (or potentially corrupt
data that was caught by the write verification step) and think that the
path is OK to search down.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-27 11:05:15 +01:00
Filipe Manana
ef383621b1 btrfs: fix deadlock between quota enable and other quota operations
commit 232796df8c1437c41d308d161007f0715bac0a54 upstream.

When enabling quotas, we attempt to commit a transaction while holding the
mutex fs_info->qgroup_ioctl_lock. This can result on a deadlock with other
quota operations such as:

- qgroup creation and deletion, ioctl BTRFS_IOC_QGROUP_CREATE;

- adding and removing qgroup relations, ioctl BTRFS_IOC_QGROUP_ASSIGN.

This is because these operations join a transaction and after that they
attempt to lock the mutex fs_info->qgroup_ioctl_lock. Acquiring that mutex
after joining or starting a transaction is a pattern followed everywhere
in qgroups, so the quota enablement operation is the one at fault here,
and should not commit a transaction while holding that mutex.

Fix this by making the transaction commit while not holding the mutex.
We are safe from two concurrent tasks trying to enable quotas because
we are serialized by the rw semaphore fs_info->subvol_sem at
btrfs_ioctl_quota_ctl(), which is the only call site for enabling
quotas.

When this deadlock happens, it produces a trace like the following:

  INFO: task syz-executor:25604 blocked for more than 143 seconds.
  Not tainted 5.15.0-rc6 #4
  "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  task:syz-executor state:D stack:24800 pid:25604 ppid: 24873 flags:0x00004004
  Call Trace:
  context_switch kernel/sched/core.c:4940 [inline]
  __schedule+0xcd9/0x2530 kernel/sched/core.c:6287
  schedule+0xd3/0x270 kernel/sched/core.c:6366
  btrfs_commit_transaction+0x994/0x2e90 fs/btrfs/transaction.c:2201
  btrfs_quota_enable+0x95c/0x1790 fs/btrfs/qgroup.c:1120
  btrfs_ioctl_quota_ctl fs/btrfs/ioctl.c:4229 [inline]
  btrfs_ioctl+0x637e/0x7b70 fs/btrfs/ioctl.c:5010
  vfs_ioctl fs/ioctl.c:51 [inline]
  __do_sys_ioctl fs/ioctl.c:874 [inline]
  __se_sys_ioctl fs/ioctl.c:860 [inline]
  __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
  do_syscall_x64 arch/x86/entry/common.c:50 [inline]
  do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
  entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x7f86920b2c4d
  RSP: 002b:00007f868f61ac58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  RAX: ffffffffffffffda RBX: 00007f86921d90a0 RCX: 00007f86920b2c4d
  RDX: 0000000020005e40 RSI: 00000000c0109428 RDI: 0000000000000008
  RBP: 00007f869212bd80 R08: 0000000000000000 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000000246 R12: 00007f86921d90a0
  R13: 00007fff6d233e4f R14: 00007fff6d233ff0 R15: 00007f868f61adc0
  INFO: task syz-executor:25628 blocked for more than 143 seconds.
  Not tainted 5.15.0-rc6 #4
  "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  task:syz-executor state:D stack:29080 pid:25628 ppid: 24873 flags:0x00004004
  Call Trace:
  context_switch kernel/sched/core.c:4940 [inline]
  __schedule+0xcd9/0x2530 kernel/sched/core.c:6287
  schedule+0xd3/0x270 kernel/sched/core.c:6366
  schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425
  __mutex_lock_common kernel/locking/mutex.c:669 [inline]
  __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729
  btrfs_remove_qgroup+0xb7/0x7d0 fs/btrfs/qgroup.c:1548
  btrfs_ioctl_qgroup_create fs/btrfs/ioctl.c:4333 [inline]
  btrfs_ioctl+0x683c/0x7b70 fs/btrfs/ioctl.c:5014
  vfs_ioctl fs/ioctl.c:51 [inline]
  __do_sys_ioctl fs/ioctl.c:874 [inline]
  __se_sys_ioctl fs/ioctl.c:860 [inline]
  __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
  do_syscall_x64 arch/x86/entry/common.c:50 [inline]
  do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
  entry_SYSCALL_64_after_hwframe+0x44/0xae

Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsZQF19bQ1C6=yetF3BvL10OSORpFUcWXTP6HErshDB4dQ@mail.gmail.com/
Fixes: 340f1aa27f36 ("btrfs: qgroups: Move transaction management inside btrfs_quota_enable/disable")
CC: stable@vger.kernel.org # 4.19
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-27 11:05:15 +01:00
Josef Bacik
a3fdfe36c3 btrfs: remove BUG_ON(!eie) in find_parent_nodes
[ Upstream commit 9f05c09d6baef789726346397438cca4ec43c3ee ]

If we're looking for leafs that point to a data extent we want to record
the extent items that point at our bytenr.  At this point we have the
reference and we know for a fact that this leaf should have a reference
to our bytenr.  However if there's some sort of corruption we may not
find any references to our leaf, and thus could end up with eie == NULL.
Replace this BUG_ON() with an ASSERT() and then return -EUCLEAN for the
mortals.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:04:52 +01:00
Josef Bacik
b667d77ca7 btrfs: remove BUG_ON() in find_parent_nodes()
[ Upstream commit fcba0120edf88328524a4878d1d6f4ad39f2ec81 ]

We search for an extent entry with .offset = -1, which shouldn't be a
thing, but corruption happens.  Add an ASSERT() for the developers,
return -EUCLEAN for mortals.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:04:52 +01:00
Shin'ichiro Kawasaki
210ab4e3c0 btrfs: fix missing blkdev_put() call in btrfs_scan_one_device()
commit 4989d4a0aed3fb30f5b48787a689d7090de6f86d upstream.

The function btrfs_scan_one_device() calls blkdev_get_by_path() and
blkdev_put() to get and release its target block device. However, when
btrfs_sb_log_location_bdev() fails, blkdev_put() is not called and the
block device is left without clean up. This triggered failure of fstests
generic/085. Fix the failure path of btrfs_sb_log_location_bdev() to
call blkdev_put().

Fixes: 12659251ca5df ("btrfs: implement log-structured superblock for ZONED mode")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:47 +01:00
Josef Bacik
8848395975 btrfs: check WRITE_ERR when trying to read an extent buffer
commit 651740a502411793327e2f0741104749c4eedcd1 upstream.

Filipe reported a hang when we have errors on btrfs.  This turned out to
be a side-effect of my fix c2e39305299f01 ("btrfs: clear extent buffer
uptodate when we fail to write it") which made it so we clear
EXTENT_BUFFER_UPTODATE on an eb when we fail to write it out.

Below is a paste of Filipe's analysis he got from using drgn to debug
the hang

"""
btree readahead code calls read_extent_buffer_pages(), sets ->io_pages to
a value while writeback of all pages has not yet completed:
   --> writeback for the first 3 pages finishes, we clear
       EXTENT_BUFFER_UPTODATE from eb on the first page when we get an
       error.
   --> at this point eb->io_pages is 1 and we cleared Uptodate bit from the
       first 3 pages
   --> read_extent_buffer_pages() does not see EXTENT_BUFFER_UPTODATE() so
       it continues, it's able to lock the pages since we obviously don't
       hold the pages locked during writeback
   --> read_extent_buffer_pages() then computes 'num_reads' as 3, and sets
       eb->io_pages to 3, since only the first page does not have Uptodate
       bit set at this point
   --> writeback for the remaining page completes, we ended decrementing
       eb->io_pages by 1, resulting in eb->io_pages == 2, and therefore
       never calling end_extent_buffer_writeback(), so
       EXTENT_BUFFER_WRITEBACK remains in the eb's flags
   --> of course, when the read bio completes, it doesn't and shouldn't
       call end_extent_buffer_writeback()
   --> we should clear EXTENT_BUFFER_UPTODATE only after all pages of
       the eb finished writeback?  or maybe make the read pages code
       wait for writeback of all pages of the eb to complete before
       checking which pages need to be read, touch ->io_pages, submit
       read bio, etc

writeback bit never cleared means we can hang when aborting a
transaction, at:

    btrfs_cleanup_one_transaction()
       btrfs_destroy_marked_extents()
         wait_on_extent_buffer_writeback()
"""

This is a problem because our writes are not synchronized with reads in
any way.  We clear the UPTODATE flag and then we can easily come in and
try to read the EB while we're still waiting on other bio's to
complete.

We have two options here, we could lock all the pages, and then check to
see if eb->io_pages != 0 to know if we've already got an outstanding
write on the eb.

Or we can simply check to see if we have WRITE_ERR set on this extent
buffer.  We set this bit _before_ we clear UPTODATE, so if the read gets
triggered because we aren't UPTODATE because of a write error we're
guaranteed to have WRITE_ERR set, and in this case we can simply return
-EIO.  This will fix the reported hang.

Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: c2e39305299f01 ("btrfs: clear extent buffer uptodate when we fail to write it")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:47 +01:00
Filipe Manana
bbdaa7a48f btrfs: fix double free of anon_dev after failure to create subvolume
commit 33fab972497ae66822c0b6846d4f9382938575b6 upstream.

When creating a subvolume, at create_subvol(), we allocate an anonymous
device and later call btrfs_get_new_fs_root(), which in turn just calls
btrfs_get_root_ref(). There we call btrfs_init_fs_root() which assigns
the anonymous device to the root, but if after that call there's an error,
when we jump to 'fail' label, we call btrfs_put_root(), which frees the
anonymous device and then returns an error that is propagated back to
create_subvol(). Than create_subvol() frees the anonymous device again.

When this happens, if the anonymous device was not reallocated after
the first time it was freed with btrfs_put_root(), we get a kernel
message like the following:

  (...)
  [13950.282466] BTRFS: error (device dm-0) in create_subvol:663: errno=-5 IO failure
  [13950.283027] ida_free called for id=65 which is not allocated.
  [13950.285974] BTRFS info (device dm-0): forced readonly
  (...)

If the anonymous device gets reallocated by another btrfs filesystem
or any other kernel subsystem, then bad things can happen.

So fix this by setting the root's anonymous device to 0 at
btrfs_get_root_ref(), before we call btrfs_put_root(), if an error
happened.

Fixes: 2dfb1e43f57dd3 ("btrfs: preallocate anon block device at first phase of snapshot creation")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:47 +01:00
Jianglei Nie
493ff661d4 btrfs: fix memory leak in __add_inode_ref()
commit f35838a6930296fc1988764cfa54cb3f705c0665 upstream.

Line 1169 (#3) allocates a memory chunk for victim_name by kmalloc(),
but  when the function returns in line 1184 (#4) victim_name allocated
by line 1169 (#3) is not freed, which will lead to a memory leak.
There is a similar snippet of code in this function as allocating a memory
chunk for victim_name in line 1104 (#1) as well as releasing the memory
in line 1116 (#2).

We should kfree() victim_name when the return value of backref_in_log()
is less than zero and before the function returns in line 1184 (#4).

1057 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1058 				  struct btrfs_root *root,
1059 				  struct btrfs_path *path,
1060 				  struct btrfs_root *log_root,
1061 				  struct btrfs_inode *dir,
1062 				  struct btrfs_inode *inode,
1063 				  u64 inode_objectid, u64 parent_objectid,
1064 				  u64 ref_index, char *name, int namelen,
1065 				  int *search_done)
1066 {

1104 	victim_name = kmalloc(victim_name_len, GFP_NOFS);
	// #1: kmalloc (victim_name-1)
1105 	if (!victim_name)
1106 		return -ENOMEM;

1112	ret = backref_in_log(log_root, &search_key,
1113			parent_objectid, victim_name,
1114			victim_name_len);
1115	if (ret < 0) {
1116		kfree(victim_name); // #2: kfree (victim_name-1)
1117		return ret;
1118	} else if (!ret) {

1169 	victim_name = kmalloc(victim_name_len, GFP_NOFS);
	// #3: kmalloc (victim_name-2)
1170 	if (!victim_name)
1171 		return -ENOMEM;

1180 	ret = backref_in_log(log_root, &search_key,
1181 			parent_objectid, victim_name,
1182 			victim_name_len);
1183 	if (ret < 0) {
1184 		return ret; // #4: missing kfree (victim_name-2)
1185 	} else if (!ret) {

1241 	return 0;
1242 }

Fixes: d3316c8233bb ("btrfs: Properly handle backref_in_log retval")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Jianglei Nie <niejianglei2021@163.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:47 +01:00
Anand Jain
af9b9c8bfe btrfs: remove stale comment about the btrfs_show_devname
Commit cdccc03a8a369b59cff5e7ea3292511cfa551120 upstream.

There were few lockdep warnings because btrfs_show_devname() was using
device_list_mutex as recorded in the commits:

  0ccd05285e7f ("btrfs: fix a possible umount deadlock")
  779bf3fefa83 ("btrfs: fix lock dep warning, move scratch dev out of device_list_mutex and uuid_mutex")

And finally, commit 88c14590cdd6 ("btrfs: use RCU in btrfs_show_devname
for device list traversal") removed the device_list_mutex from
btrfs_show_devname for performance reasons.

This patch removes a stale comment about the function
btrfs_show_devname and device_list_mutex.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:37 +01:00
Anand Jain
a6e7e218a4 btrfs: update latest_dev when we create a sprout device
Commit b7cb29e666fe79dda5dbe5f57fb7c92413bf161c upstream.

When we add a device to the seed filesystem (sprouting) it is a new
filesystem (and fsid) on the device added. Update the latest_dev so
that /proc/self/mounts shows the correct device.

Example:

  $ btrfstune -S1 /dev/vg/seed
  $ mount /dev/vg/seed /btrfs
  mount: /btrfs: WARNING: device write-protected, mounted read-only.

  $ cat /proc/self/mounts | grep btrfs
  /dev/mapper/vg-seed /btrfs btrfs ro,relatime,space_cache,subvolid=5,subvol=/ 0 0

  $ btrfs dev add -f /dev/vg/new /btrfs

Before:

  $ cat /proc/self/mounts | grep btrfs
  /dev/mapper/vg-seed /btrfs btrfs ro,relatime,space_cache,subvolid=5,subvol=/ 0 0

After:

  $ cat /proc/self/mounts | grep btrfs
  /dev/mapper/vg-new /btrfs btrfs ro,relatime,space_cache,subvolid=5,subvol=/ 0 0

Tested-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:37 +01:00
Anand Jain
e342c25580 btrfs: use latest_dev in btrfs_show_devname
Commit 6605fd2f394bba0a0059df2b6cfc87b0b6d393a2 upstream.

The test case btrfs/238 reports the warning below:

 WARNING: CPU: 3 PID: 481 at fs/btrfs/super.c:2509 btrfs_show_devname+0x104/0x1e8 [btrfs]
 CPU: 2 PID: 1 Comm: systemd Tainted: G        W  O 5.14.0-rc1-custom #72
 Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
 Call trace:
   btrfs_show_devname+0x108/0x1b4 [btrfs]
   show_mountinfo+0x234/0x2c4
   m_show+0x28/0x34
   seq_read_iter+0x12c/0x3c4
   vfs_read+0x29c/0x2c8
   ksys_read+0x80/0xec
   __arm64_sys_read+0x28/0x34
   invoke_syscall+0x50/0xf8
   do_el0_svc+0x88/0x138
   el0_svc+0x2c/0x8c
   el0t_64_sync_handler+0x84/0xe4
   el0t_64_sync+0x198/0x19c

Reason:
While btrfs_prepare_sprout() moves the fs_devices::devices into
fs_devices::seed_list, the btrfs_show_devname() searches for the devices
and found none, leading to the warning as in above.

Fix:
latest_dev is updated according to the changes to the device list.
That means we could use the latest_dev->name to show the device name in
/proc/self/mounts, the pointer will be always valid as it's assigned
before the device is deleted from the list in remove or replace.
The RCU protection is sufficient as the device structure is freed after
synchronization.

Reported-by: Su Yue <l@damenly.su>
Tested-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:37 +01:00
Anand Jain
5c460192c2 btrfs: convert latest_bdev type to btrfs_device and rename
Commit d24fa5c1da08026be9959baca309fa0adf8708bf upstream.

In preparation to fix a bug in btrfs_show_devname().

Convert fs_devices::latest_bdev type from struct block_device to struct
btrfs_device and, rename the member to fs_devices::latest_dev.
So that btrfs_show_devname() can use fs_devices::latest_dev::name.

Tested-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:37 +01:00
Johannes Thumshirn
ca06c5cb1b btrfs: free exchange changeset on failures
commit da5e817d9d75422eaaa05490d0b9a5e328fc1a51 upstream.

Fstests runs on my VMs have show several kmemleak reports like the following.

  unreferenced object 0xffff88811ae59080 (size 64):
    comm "xfs_io", pid 12124, jiffies 4294987392 (age 6.368s)
    hex dump (first 32 bytes):
      00 c0 1c 00 00 00 00 00 ff cf 1c 00 00 00 00 00  ................
      90 97 e5 1a 81 88 ff ff 90 97 e5 1a 81 88 ff ff  ................
    backtrace:
      [<00000000ac0176d2>] ulist_add_merge+0x60/0x150 [btrfs]
      [<0000000076e9f312>] set_state_bits+0x86/0xc0 [btrfs]
      [<0000000014fe73d6>] set_extent_bit+0x270/0x690 [btrfs]
      [<000000004f675208>] set_record_extent_bits+0x19/0x20 [btrfs]
      [<00000000b96137b1>] qgroup_reserve_data+0x274/0x310 [btrfs]
      [<0000000057e9dcbb>] btrfs_check_data_free_space+0x5c/0xa0 [btrfs]
      [<0000000019c4511d>] btrfs_delalloc_reserve_space+0x1b/0xa0 [btrfs]
      [<000000006d37e007>] btrfs_dio_iomap_begin+0x415/0x970 [btrfs]
      [<00000000fb8a74b8>] iomap_iter+0x161/0x1e0
      [<0000000071dff6ff>] __iomap_dio_rw+0x1df/0x700
      [<000000002567ba53>] iomap_dio_rw+0x5/0x20
      [<0000000072e555f8>] btrfs_file_write_iter+0x290/0x530 [btrfs]
      [<000000005eb3d845>] new_sync_write+0x106/0x180
      [<000000003fb505bf>] vfs_write+0x24d/0x2f0
      [<000000009bb57d37>] __x64_sys_pwrite64+0x69/0xa0
      [<000000003eba3fdf>] do_syscall_64+0x43/0x90

In case brtfs_qgroup_reserve_data() or btrfs_delalloc_reserve_metadata()
fail the allocated extent_changeset will not be freed.

So in btrfs_check_data_free_space() and btrfs_delalloc_reserve_space()
free the allocated extent_changeset to get rid of the allocated memory.

The issue currently only happens in the direct IO write path, but only
after 65b3c08606e5 ("btrfs: fix ENOSPC failure when attempting direct IO
write into NOCOW range"), and also at defrag_one_locked_target(). Every
other place is always calling extent_changeset_free() even if its call
to btrfs_delalloc_reserve_space() or btrfs_check_data_free_space() has
failed.

CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-14 10:57:13 +01:00
Qu Wenruo
32d4054cb3 btrfs: replace the BUG_ON in btrfs_del_root_ref with proper error handling
commit 8289ed9f93bef2762f9184e136d994734b16d997 upstream.

I hit the BUG_ON() with generic/475 test case, and to my surprise, all
callers of btrfs_del_root_ref() are already aborting transaction, thus
there is not need for such BUG_ON(), just go to @out label and caller
will properly handle the error.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-14 10:57:13 +01:00
Naohiro Aota
477675049c btrfs: fix re-dirty process of tree-log nodes
commit 84c25448929942edacba905cecc0474e91114e7a upstream.

There is a report of a transaction abort of -EAGAIN with the following
script.

  #!/bin/sh

  for d in sda sdb; do
          mkfs.btrfs -d single -m single -f /dev/\${d}
  done

  mount /dev/sda /mnt/test
  mount /dev/sdb /mnt/scratch

  for dir in test scratch; do
          echo 3 >/proc/sys/vm/drop_caches
          fio --directory=/mnt/\${dir} --name=fio.\${dir} --rw=read --size=50G --bs=64m \
                  --numjobs=$(nproc) --time_based --ramp_time=5 --runtime=480 \
                  --group_reporting |& tee /dev/shm/fio.\${dir}
          echo 3 >/proc/sys/vm/drop_caches
  done

  for d in sda sdb; do
          umount /dev/\${d}
  done

The stack trace is shown in below.

  [3310.967991] BTRFS: error (device sda) in btrfs_commit_transaction:2341: errno=-11 unknown (Error while writing out transaction)
  [3310.968060] BTRFS info (device sda): forced readonly
  [3310.968064] BTRFS warning (device sda): Skipping commit of aborted transaction.
  [3310.968065] ------------[ cut here ]------------
  [3310.968066] BTRFS: Transaction aborted (error -11)
  [3310.968074] WARNING: CPU: 14 PID: 1684 at fs/btrfs/transaction.c:1946 btrfs_commit_transaction.cold+0x209/0x2c8
  [3310.968131] CPU: 14 PID: 1684 Comm: fio Not tainted 5.14.10-300.fc35.x86_64 #1
  [3310.968135] Hardware name: DIAWAY Tartu/Tartu, BIOS V2.01.B10 04/08/2021
  [3310.968137] RIP: 0010:btrfs_commit_transaction.cold+0x209/0x2c8
  [3310.968144] RSP: 0018:ffffb284ce393e10 EFLAGS: 00010282
  [3310.968147] RAX: 0000000000000026 RBX: ffff973f147b0f60 RCX: 0000000000000027
  [3310.968149] RDX: ffff974ecf098a08 RSI: 0000000000000001 RDI: ffff974ecf098a00
  [3310.968150] RBP: ffff973f147b0f08 R08: 0000000000000000 R09: ffffb284ce393c48
  [3310.968151] R10: ffffb284ce393c40 R11: ffffffff84f47468 R12: ffff973f101bfc00
  [3310.968153] R13: ffff971f20cf2000 R14: 00000000fffffff5 R15: ffff973f147b0e58
  [3310.968154] FS:  00007efe65468740(0000) GS:ffff974ecf080000(0000) knlGS:0000000000000000
  [3310.968157] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [3310.968158] CR2: 000055691bcbe260 CR3: 000000105cfa4001 CR4: 0000000000770ee0
  [3310.968160] PKRU: 55555554
  [3310.968161] Call Trace:
  [3310.968167]  ? dput+0xd4/0x300
  [3310.968174]  btrfs_sync_file+0x3f1/0x490
  [3310.968180]  __x64_sys_fsync+0x33/0x60
  [3310.968185]  do_syscall_64+0x3b/0x90
  [3310.968190]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [3310.968194] RIP: 0033:0x7efe6557329b
  [3310.968200] RSP: 002b:00007ffe0236ebc0 EFLAGS: 00000293 ORIG_RAX: 000000000000004a
  [3310.968203] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007efe6557329b
  [3310.968204] RDX: 0000000000000000 RSI: 00007efe58d77010 RDI: 0000000000000006
  [3310.968205] RBP: 0000000004000000 R08: 0000000000000000 R09: 00007efe58d77010
  [3310.968207] R10: 0000000016cacc0c R11: 0000000000000293 R12: 00007efe5ce95980
  [3310.968208] R13: 0000000000000000 R14: 00007efe6447c790 R15: 0000000c80000000
  [3310.968212] ---[ end trace 1a346f4d3c0d96ba ]---
  [3310.968214] BTRFS: error (device sda) in cleanup_transaction:1946: errno=-11 unknown

The abort occurs because of a write hole while writing out freeing tree
nodes of a tree-log tree. For zoned btrfs, we re-dirty a freed tree
node to ensure btrfs can write the region and does not leave a hole on
write on a zoned device. The current code fails to re-dirty a node
when the tree-log tree's depth is greater or equal to 2. That leads to
a transaction abort with -EAGAIN.

Fix the issue by properly re-dirtying a node on walking up the tree.

Fixes: d3575156f662 ("btrfs: zoned: redirty released extent buffers")
CC: stable@vger.kernel.org # 5.12+
Link: https://github.com/kdave/btrfs-progs/issues/415
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-14 10:57:12 +01:00
Josef Bacik
0338e448b9 btrfs: clear extent buffer uptodate when we fail to write it
commit c2e39305299f0118298c2201f6d6cc7d3485f29e upstream.

I got dmesg errors on generic/281 on our overnight fstests.  Looking at
the history this happens occasionally, with errors like this

  WARNING: CPU: 0 PID: 673217 at fs/btrfs/extent_io.c:6848 assert_eb_page_uptodate+0x3f/0x50
  CPU: 0 PID: 673217 Comm: kworker/u4:13 Tainted: G        W         5.16.0-rc2+ #469
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  Workqueue: btrfs-cache btrfs_work_helper
  RIP: 0010:assert_eb_page_uptodate+0x3f/0x50
  RSP: 0018:ffffae598230bc60 EFLAGS: 00010246
  RAX: 0017ffffc0002112 RBX: ffffebaec4100900 RCX: 0000000000001000
  RDX: ffffebaec45733c7 RSI: ffffebaec4100900 RDI: ffff9fd98919f340
  RBP: 0000000000000d56 R08: ffff9fd98e300000 R09: 0000000000000000
  R10: 0001207370a91c50 R11: 0000000000000000 R12: 00000000000007b0
  R13: ffff9fd98919f340 R14: 0000000001500000 R15: 0000000001cb0000
  FS:  0000000000000000(0000) GS:ffff9fd9fbc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f549fcf8940 CR3: 0000000114908004 CR4: 0000000000370ef0
  Call Trace:

   extent_buffer_test_bit+0x3f/0x70
   free_space_test_bit+0xa6/0xc0
   load_free_space_tree+0x1d6/0x430
   caching_thread+0x454/0x630
   ? rcu_read_lock_sched_held+0x12/0x60
   ? rcu_read_lock_sched_held+0x12/0x60
   ? rcu_read_lock_sched_held+0x12/0x60
   ? lock_release+0x1f0/0x2d0
   btrfs_work_helper+0xf2/0x3e0
   ? lock_release+0x1f0/0x2d0
   ? finish_task_switch.isra.0+0xf9/0x3a0
   process_one_work+0x270/0x5a0
   worker_thread+0x55/0x3c0
   ? process_one_work+0x5a0/0x5a0
   kthread+0x174/0x1a0
   ? set_kthread_struct+0x40/0x40
   ret_from_fork+0x1f/0x30

This happens because we're trying to read from a extent buffer page that
is !PageUptodate.  This happens because we will clear the page uptodate
when we have an IO error, but we don't clear the extent buffer uptodate.
If we do a read later and find this extent buffer we'll think its valid
and not return an error, and then trip over this warning.

Fix this by also clearing uptodate on the extent buffer when this
happens, so that we get an error when we do a btrfs_search_slot() and
find this block later.

CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-14 10:57:12 +01:00
Wang Yugui
7440613439 btrfs: check-integrity: fix a warning on write caching disabled disk
[ Upstream commit a91cf0ffbc244792e0b3ecf7d0fddb2f344b461f ]

When a disk has write caching disabled, we skip submission of a bio with
flush and sync requests before writing the superblock, since it's not
needed. However when the integrity checker is enabled, this results in
reports that there are metadata blocks referred by a superblock that
were not properly flushed. So don't skip the bio submission only when
the integrity checker is enabled for the sake of simplicity, since this
is a debug tool and not meant for use in non-debug builds.

fstests/btrfs/220 trigger a check-integrity warning like the following
when CONFIG_BTRFS_FS_CHECK_INTEGRITY=y and the disk with WCE=0.

  btrfs: attempt to write superblock which references block M @5242880 (sdb2/5242880/0) which is not flushed out of disk's write cache (block flush_gen=1, dev->flush_gen=0)!
  ------------[ cut here ]------------
  WARNING: CPU: 28 PID: 843680 at fs/btrfs/check-integrity.c:2196 btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
  CPU: 28 PID: 843680 Comm: umount Not tainted 5.15.0-0.rc5.39.el8.x86_64 #1
  Hardware name: Dell Inc. Precision T7610/0NK70N, BIOS A18 09/11/2019
  RIP: 0010:btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
  RSP: 0018:ffffb642afb47940 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
  RDX: 00000000ffffffff RSI: ffff8b722fc97d00 RDI: ffff8b722fc97d00
  RBP: ffff8b5601c00000 R08: 0000000000000000 R09: c0000000ffff7fff
  R10: 0000000000000001 R11: ffffb642afb476f8 R12: ffffffffffffffff
  R13: ffffb642afb47974 R14: ffff8b5499254c00 R15: 0000000000000003
  FS:  00007f00a06d4080(0000) GS:ffff8b722fc80000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fff5cff5ff0 CR3: 00000001c0c2a006 CR4: 00000000001706e0
  Call Trace:
   btrfsic_process_written_block+0x2f7/0x850 [btrfs]
   __btrfsic_submit_bio.part.19+0x310/0x330 [btrfs]
   ? bio_associate_blkg_from_css+0xa4/0x2c0
   btrfsic_submit_bio+0x18/0x30 [btrfs]
   write_dev_supers+0x81/0x2a0 [btrfs]
   ? find_get_pages_range_tag+0x219/0x280
   ? pagevec_lookup_range_tag+0x24/0x30
   ? __filemap_fdatawait_range+0x6d/0xf0
   ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
   ? find_first_extent_bit+0x9b/0x160 [btrfs]
   ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
   write_all_supers+0x1b3/0xa70 [btrfs]
   ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
   btrfs_commit_transaction+0x59d/0xac0 [btrfs]
   close_ctree+0x11d/0x339 [btrfs]
   generic_shutdown_super+0x71/0x110
   kill_anon_super+0x14/0x30
   btrfs_kill_super+0x12/0x20 [btrfs]
   deactivate_locked_super+0x31/0x70
   cleanup_mnt+0xb8/0x140
   task_work_run+0x6d/0xb0
   exit_to_user_mode_prepare+0x1f0/0x200
   syscall_exit_to_user_mode+0x12/0x30
   do_syscall_64+0x46/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x7f009f711dfb
  RSP: 002b:00007fff5cff7928 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
  RAX: 0000000000000000 RBX: 000055b68c6c9970 RCX: 00007f009f711dfb
  RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055b68c6c9b50
  RBP: 0000000000000000 R08: 000055b68c6ca900 R09: 00007f009f795580
  R10: 0000000000000000 R11: 0000000000000246 R12: 000055b68c6c9b50
  R13: 00007f00a04bf184 R14: 0000000000000000 R15: 00000000ffffffff
  ---[ end trace 2c4b82abcef9eec4 ]---
  S-65536(sdb2/65536/1)
   -->
  M-1064960(sdb2/1064960/1)

Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Wang Yugui <wangyugui@e16-tech.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-12-08 09:04:39 +01:00
Filipe Manana
e26605497f btrfs: silence lockdep when reading chunk tree during mount
[ Upstream commit 4d9380e0da7be2351437cdac71673a9cd94e50fd ]

Often some test cases like btrfs/161 trigger lockdep splats that complain
about possible unsafe lock scenario due to the fact that during mount,
when reading the chunk tree we end up calling blkdev_get_by_path() while
holding a read lock on a leaf of the chunk tree. That produces a lockdep
splat like the following:

[ 3653.683975] ======================================================
[ 3653.685148] WARNING: possible circular locking dependency detected
[ 3653.686301] 5.15.0-rc7-btrfs-next-103 #1 Not tainted
[ 3653.687239] ------------------------------------------------------
[ 3653.688400] mount/447465 is trying to acquire lock:
[ 3653.689320] ffff8c6b0c76e528 (&disk->open_mutex){+.+.}-{3:3}, at: blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.691054]
               but task is already holding lock:
[ 3653.692155] ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.693978]
               which lock already depends on the new lock.

[ 3653.695510]
               the existing dependency chain (in reverse order) is:
[ 3653.696915]
               -> #3 (btrfs-chunk-00){++++}-{3:3}:
[ 3653.698053]        down_read_nested+0x4b/0x140
[ 3653.698893]        __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.699988]        btrfs_read_lock_root_node+0x31/0x40 [btrfs]
[ 3653.701205]        btrfs_search_slot+0x537/0xc00 [btrfs]
[ 3653.702234]        btrfs_insert_empty_items+0x32/0x70 [btrfs]
[ 3653.703332]        btrfs_init_new_device+0x563/0x15b0 [btrfs]
[ 3653.704439]        btrfs_ioctl+0x2110/0x3530 [btrfs]
[ 3653.705405]        __x64_sys_ioctl+0x83/0xb0
[ 3653.706215]        do_syscall_64+0x3b/0xc0
[ 3653.706990]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.708040]
               -> #2 (sb_internal#2){.+.+}-{0:0}:
[ 3653.708994]        lock_release+0x13d/0x4a0
[ 3653.709533]        up_write+0x18/0x160
[ 3653.710017]        btrfs_sync_file+0x3f3/0x5b0 [btrfs]
[ 3653.710699]        __loop_update_dio+0xbd/0x170 [loop]
[ 3653.711360]        lo_ioctl+0x3b1/0x8a0 [loop]
[ 3653.711929]        block_ioctl+0x48/0x50
[ 3653.712442]        __x64_sys_ioctl+0x83/0xb0
[ 3653.712991]        do_syscall_64+0x3b/0xc0
[ 3653.713519]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.714233]
               -> #1 (&lo->lo_mutex){+.+.}-{3:3}:
[ 3653.715026]        __mutex_lock+0x92/0x900
[ 3653.715648]        lo_open+0x28/0x60 [loop]
[ 3653.716275]        blkdev_get_whole+0x28/0x90
[ 3653.716867]        blkdev_get_by_dev.part.0+0x142/0x320
[ 3653.717537]        blkdev_open+0x5e/0xa0
[ 3653.718043]        do_dentry_open+0x163/0x390
[ 3653.718604]        path_openat+0x3f0/0xa80
[ 3653.719128]        do_filp_open+0xa9/0x150
[ 3653.719652]        do_sys_openat2+0x97/0x160
[ 3653.720197]        __x64_sys_openat+0x54/0x90
[ 3653.720766]        do_syscall_64+0x3b/0xc0
[ 3653.721285]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.721986]
               -> #0 (&disk->open_mutex){+.+.}-{3:3}:
[ 3653.722775]        __lock_acquire+0x130e/0x2210
[ 3653.723348]        lock_acquire+0xd7/0x310
[ 3653.723867]        __mutex_lock+0x92/0x900
[ 3653.724394]        blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.725041]        blkdev_get_by_path+0xb8/0xd0
[ 3653.725614]        btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
[ 3653.726332]        open_fs_devices+0xd7/0x2c0 [btrfs]
[ 3653.726999]        btrfs_read_chunk_tree+0x3ad/0x870 [btrfs]
[ 3653.727739]        open_ctree+0xb8e/0x17bf [btrfs]
[ 3653.728384]        btrfs_mount_root.cold+0x12/0xde [btrfs]
[ 3653.729130]        legacy_get_tree+0x30/0x50
[ 3653.729676]        vfs_get_tree+0x28/0xc0
[ 3653.730192]        vfs_kern_mount.part.0+0x71/0xb0
[ 3653.730800]        btrfs_mount+0x11d/0x3a0 [btrfs]
[ 3653.731427]        legacy_get_tree+0x30/0x50
[ 3653.731970]        vfs_get_tree+0x28/0xc0
[ 3653.732486]        path_mount+0x2d4/0xbe0
[ 3653.732997]        __x64_sys_mount+0x103/0x140
[ 3653.733560]        do_syscall_64+0x3b/0xc0
[ 3653.734080]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.734782]
               other info that might help us debug this:

[ 3653.735784] Chain exists of:
                 &disk->open_mutex --> sb_internal#2 --> btrfs-chunk-00

[ 3653.737123]  Possible unsafe locking scenario:

[ 3653.737865]        CPU0                    CPU1
[ 3653.738435]        ----                    ----
[ 3653.739007]   lock(btrfs-chunk-00);
[ 3653.739449]                                lock(sb_internal#2);
[ 3653.740193]                                lock(btrfs-chunk-00);
[ 3653.740955]   lock(&disk->open_mutex);
[ 3653.741431]
                *** DEADLOCK ***

[ 3653.742176] 3 locks held by mount/447465:
[ 3653.742739]  #0: ffff8c6acf85c0e8 (&type->s_umount_key#44/1){+.+.}-{3:3}, at: alloc_super+0xd5/0x3b0
[ 3653.744114]  #1: ffffffffc0b28f70 (uuid_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x59/0x870 [btrfs]
[ 3653.745563]  #2: ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.747066]
               stack backtrace:
[ 3653.747723] CPU: 4 PID: 447465 Comm: mount Not tainted 5.15.0-rc7-btrfs-next-103 #1
[ 3653.748873] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 3653.750592] Call Trace:
[ 3653.750967]  dump_stack_lvl+0x57/0x72
[ 3653.751526]  check_noncircular+0xf3/0x110
[ 3653.752136]  ? stack_trace_save+0x4b/0x70
[ 3653.752748]  __lock_acquire+0x130e/0x2210
[ 3653.753356]  lock_acquire+0xd7/0x310
[ 3653.753898]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.754596]  ? lock_is_held_type+0xe8/0x140
[ 3653.755125]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.755729]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.756338]  __mutex_lock+0x92/0x900
[ 3653.756794]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.757400]  ? do_raw_spin_unlock+0x4b/0xa0
[ 3653.757930]  ? _raw_spin_unlock+0x29/0x40
[ 3653.758437]  ? bd_prepare_to_claim+0x129/0x150
[ 3653.758999]  ? trace_module_get+0x2b/0xd0
[ 3653.759508]  ? try_module_get.part.0+0x50/0x80
[ 3653.760072]  blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.760661]  ? devcgroup_check_permission+0xc1/0x1f0
[ 3653.761288]  blkdev_get_by_path+0xb8/0xd0
[ 3653.761797]  btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
[ 3653.762454]  open_fs_devices+0xd7/0x2c0 [btrfs]
[ 3653.763055]  ? clone_fs_devices+0x8f/0x170 [btrfs]
[ 3653.763689]  btrfs_read_chunk_tree+0x3ad/0x870 [btrfs]
[ 3653.764370]  ? kvm_sched_clock_read+0x14/0x40
[ 3653.764922]  open_ctree+0xb8e/0x17bf [btrfs]
[ 3653.765493]  ? super_setup_bdi_name+0x79/0xd0
[ 3653.766043]  btrfs_mount_root.cold+0x12/0xde [btrfs]
[ 3653.766780]  ? rcu_read_lock_sched_held+0x3f/0x80
[ 3653.767488]  ? kfree+0x1f2/0x3c0
[ 3653.767979]  legacy_get_tree+0x30/0x50
[ 3653.768548]  vfs_get_tree+0x28/0xc0
[ 3653.769076]  vfs_kern_mount.part.0+0x71/0xb0
[ 3653.769718]  btrfs_mount+0x11d/0x3a0 [btrfs]
[ 3653.770381]  ? rcu_read_lock_sched_held+0x3f/0x80
[ 3653.771086]  ? kfree+0x1f2/0x3c0
[ 3653.771574]  legacy_get_tree+0x30/0x50
[ 3653.772136]  vfs_get_tree+0x28/0xc0
[ 3653.772673]  path_mount+0x2d4/0xbe0
[ 3653.773201]  __x64_sys_mount+0x103/0x140
[ 3653.773793]  do_syscall_64+0x3b/0xc0
[ 3653.774333]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.775094] RIP: 0033:0x7f648bc45aaa

This happens because through btrfs_read_chunk_tree(), which is called only
during mount, ends up acquiring the mutex open_mutex of a block device
while holding a read lock on a leaf of the chunk tree while other paths
need to acquire other locks before locking extent buffers of the chunk
tree.

Since at mount time when we call btrfs_read_chunk_tree() we know that
we don't have other tasks running in parallel and modifying the chunk
tree, we can simply skip locking of chunk tree extent buffers. So do
that and move the assertion that checks the fs is not yet mounted to the
top block of btrfs_read_chunk_tree(), with a comment before doing it.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-12-08 09:04:39 +01:00
Josef Bacik
f14c857331 btrfs: update device path inode time instead of bd_inode
commit 54fde91f52f515e0b1514f0f0fa146e87a672227 upstream.

Christoph pointed out that I'm updating bdev->bd_inode for the device
time when we remove block devices from a btrfs file system, however this
isn't actually exposed to anything.  The inode we want to update is the
one that's associated with the path to the device, usually on devtmpfs,
so that blkid notices the difference.

We still don't want to do the blkdev_open, so use kern_path() to get the
path to the given device and do the update time on that inode.

Fixes: 8f96a5bfa150 ("btrfs: update the bdev time directly when closing")
Reported-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-25 09:49:08 +01:00
Nikolay Borisov
47e6f9f691 btrfs: fix memory ordering between normal and ordered work functions
commit 45da9c1767ac31857df572f0a909fbe88fd5a7e9 upstream.

Ordered work functions aren't guaranteed to be handled by the same thread
which executed the normal work functions. The only way execution between
normal/ordered functions is synchronized is via the WORK_DONE_BIT,
unfortunately the used bitops don't guarantee any ordering whatsoever.

This manifested as seemingly inexplicable crashes on ARM64, where
async_chunk::inode is seen as non-null in async_cow_submit which causes
submit_compressed_extents to be called and crash occurs because
async_chunk::inode suddenly became NULL. The call trace was similar to:

    pc : submit_compressed_extents+0x38/0x3d0
    lr : async_cow_submit+0x50/0xd0
    sp : ffff800015d4bc20

    <registers omitted for brevity>

    Call trace:
     submit_compressed_extents+0x38/0x3d0
     async_cow_submit+0x50/0xd0
     run_ordered_work+0xc8/0x280
     btrfs_work_helper+0x98/0x250
     process_one_work+0x1f0/0x4ac
     worker_thread+0x188/0x504
     kthread+0x110/0x114
     ret_from_fork+0x10/0x18

Fix this by adding respective barrier calls which ensure that all
accesses preceding setting of WORK_DONE_BIT are strictly ordered before
setting the flag. At the same time add a read barrier after reading of
WORK_DONE_BIT in run_ordered_work which ensures all subsequent loads
would be strictly ordered after reading the bit. This in turn ensures
are all accesses before WORK_DONE_BIT are going to be strictly ordered
before any access that can occur in ordered_func.

Reported-by: Chris Murphy <lists@colorremedies.com>
Fixes: 08a9ff326418 ("btrfs: Added btrfs_workqueue_struct implemented ordered execution based on kernel workqueue")
CC: stable@vger.kernel.org # 4.4+
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2011928
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Chris Murphy <chris@colorremedies.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-25 09:48:46 +01:00
Colin Ian King
9fe0ba3127 btrfs: make 1-bit bit-fields of scrub_page unsigned int
[ Upstream commit d08e38b62327961295be1c63b562cd46ec97cd07 ]

The bitfields have_csum and io_error are currently signed which is not
recommended as the representation is an implementation defined
behaviour. Fix this by making the bit-fields unsigned ints.

Fixes: 2c36395430b0 ("btrfs: scrub: remove the anonymous structure from scrub_page")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-25 09:48:37 +01:00
Johannes Thumshirn
0fc2241ac2 btrfs: zoned: allow preallocation for relocation inodes
commit 960a3166aed015887cd54423a6589ae4d0b65bd5 upstream

Now that we use a dedicated block group and regular writes for data
relocation, we can preallocate the space needed for a relocated inode,
just like we do in regular mode.

Essentially this reverts commit 32430c614844 ("btrfs: zoned: enable
relocation on a zoned filesystem") as it is not needed anymore.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-21 13:44:13 +01:00