IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 37b4599547e324589e011c20f74b021d6d25cb7f upstream.
Clang static analysis reports this problem
ioctl.c:3333:8: warning: 3rd function call argument is an
uninitialized value
ret = exclop_start_or_cancel_reloc(fs_info,
cancel is only set in one branch of an if-check and is always used. So
initialize to false.
Fixes: 1a15eb724aae ("btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d815b3f2f273537cb8afaf5ab11a46851f6c03e5 upstream.
If memdup_user() fails the error handing will crash when it tries
to kfree() an error pointer. Just return directly because there is
no cleanup required.
Fixes: 1a15eb724aae ("btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e445976537ad139162980bee015b7364e5b64fff upstream.
This ASSERT in xfs_rename is a) incorrect, because
(RENAME_WHITEOUT|RENAME_NOREPLACE) is a valid combination, and
b) unnecessary, because actual invalid flag combinations are already
handled at the vfs level in do_renameat2() before we get called.
So, remove it.
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Fixes: 7dcf5c3e4527 ("xfs: add RENAME_WHITEOUT support")
Reported-by: Ayushman Dutta <ayudutta@amazon.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ad25f5cb39872ca14bcbe00816ae65c22fe04b89 ]
There's a locking issue with the per-netns list of calls in rxrpc. The
pieces of code that add and remove a call from the list use write_lock()
and the calls procfile uses read_lock() to access it. However, the timer
callback function may trigger a removal by trying to queue a call for
processing and finding that it's already queued - at which point it has a
spare refcount that it has to do something with. Unfortunately, if it puts
the call and this reduces the refcount to 0, the call will be removed from
the list. Unfortunately, since the _bh variants of the locking functions
aren't used, this can deadlock.
================================
WARNING: inconsistent lock state
5.18.0-rc3-build4+ #10 Not tainted
--------------------------------
inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
ksoftirqd/2/25 [HC0[0]:SC1[1]:HE1:SE0] takes:
ffff888107ac4038 (&rxnet->call_lock){+.?.}-{2:2}, at: rxrpc_put_call+0x103/0x14b
{SOFTIRQ-ON-W} state was registered at:
...
Possible unsafe locking scenario:
CPU0
----
lock(&rxnet->call_lock);
<Interrupt>
lock(&rxnet->call_lock);
*** DEADLOCK ***
1 lock held by ksoftirqd/2/25:
#0: ffff8881008ffdb0 ((&call->timer)){+.-.}-{0:0}, at: call_timer_fn+0x5/0x23d
Changes
=======
ver #2)
- Changed to using list_next_rcu() rather than rcu_dereference() directly.
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e0deb6a025ae8c850dc8685be39fb27b06c88736 ]
If an opcode handler semi-reliably returns -EAGAIN, io_wq_submit_work()
might continue busily hammer the same handler over and over again, which
is not ideal. The -EAGAIN handling in question was put there only for
IOPOLL, so restrict it to IOPOLL mode only where there is no other
recourse than to retry as we cannot wait.
Fixes: def596e9557c9 ("io_uring: support for IO polling")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/f168b4f24181942f3614dd8ff648221736f572e6.1652433740.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5f0addf7b89085f8e0a2593faa419d6111612b9b ]
Currently, we use btrfs_inode_{lock,unlock}() to grant an exclusive
writeback of the relocation data inode in
btrfs_zoned_data_reloc_{lock,unlock}(). However, that can cause a deadlock
in the following path.
Thread A takes btrfs_inode_lock() and waits for metadata reservation by
e.g, waiting for writeback:
prealloc_file_extent_cluster()
- btrfs_inode_lock(&inode->vfs_inode, 0);
- btrfs_prealloc_file_range()
...
- btrfs_replace_file_extents()
- btrfs_start_transaction
...
- btrfs_reserve_metadata_bytes()
Thread B (e.g, doing a writeback work) needs to wait for the inode lock to
continue writeback process:
do_writepages
- btrfs_writepages
- extent_writpages
- btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
- btrfs_inode_lock()
The deadlock is caused by relying on the vfs_inode's lock. By using it, we
introduced unnecessary exclusion of writeback and
btrfs_prealloc_file_range(). Also, the lock at this point is useless as we
don't have any dirty pages in the inode yet.
Introduce fs_info->zoned_data_reloc_io_lock and use it for the exclusive
writeback.
Fixes: 35156d852762 ("btrfs: zoned: only allow one process to add pages to a relocation inode")
CC: stable@vger.kernel.org # 5.16.x: 869f4cdc73f9: btrfs: zoned: encapsulate inode locking for zoned relocation
CC: stable@vger.kernel.org # 5.16.x
CC: stable@vger.kernel.org # 5.17
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 869f4cdc73f9378986755030c684c011f0b71517 ]
Encapsulate the inode lock needed for serializing the data relocation
writes on a zoned filesystem into a helper.
This streamlines the code reading flow and hides special casing for
zoned filesystems.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 79c9234ba596e903907de20573fd4bcc85315b06 ]
Syzbot reported a possible use-after-free in printing information
in device_list_add.
Very similar with the bug fixed by commit 0697d9a61099 ("btrfs: don't
access possibly stale fs_info data for printing duplicate device"),
but this time the use occurs in btrfs_info_in_rcu.
Call Trace:
kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
btrfs_printk+0x395/0x425 fs/btrfs/super.c:244
device_list_add.cold+0xd7/0x2ed fs/btrfs/volumes.c:957
btrfs_scan_one_device+0x4c7/0x5c0 fs/btrfs/volumes.c:1387
btrfs_control_ioctl+0x12a/0x2d0 fs/btrfs/super.c:2409
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix this by modifying device->fs_info to NULL too.
Reported-and-tested-by: syzbot+82650a4e0ed38f218363@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3f965021c8bc38965ecb1924f570c4842b33d408 ]
Since, well, forever, the Linux NFS server's nfsd_commit() function
has returned nfserr_inval when the passed-in byte range arguments
were non-sensical.
However, according to RFC 1813 section 3.3.21, NFSv3 COMMIT requests
are permitted to return only the following non-zero status codes:
NFS3ERR_IO
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_SERVERFAULT
NFS3ERR_INVAL is not included in that list. Likewise, NFS4ERR_INVAL
is not listed in the COMMIT row of Table 6 in RFC 8881.
RFC 7530 does permit COMMIT to return NFS4ERR_INVAL, but does not
specify when it can or should be used.
Instead of dropping or failing a COMMIT request in a byte range that
is not supported, turn it into a valid request by treating one or
both arguments as zero. Offset zero means start-of-file, count zero
means until-end-of-file, so we only ever extend the commit range.
NFS servers are always allowed to commit more and sooner than
requested.
The range check is no longer bounded by NFS_OFFSET_MAX, but rather
by the value that is returned in the maxfilesize field of the NFSv3
FSINFO procedure or the NFSv4 maxfilesize file attribute.
Note that this change results in a new pynfs failure:
CMT4 st_commit.testCommitOverflow : RUNNING
CMT4 st_commit.testCommitOverflow : FAILURE
COMMIT with offset + count overflow should return
NFS4ERR_INVAL, instead got NFS4_OK
IMO the test is not correct as written: RFC 8881 does not allow the
COMMIT operation to return NFS4ERR_INVAL.
Reported-by: Dan Aloni <dan.aloni@vastdata.com>
Cc: stable@vger.kernel.org
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Bruce Fields <bfields@fieldses.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2c445a0e72cb1fbfbdb7f9473c53556ee27c1d90 ]
Since this pointer is used repeatedly, move it to a stack variable.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bbac58698a55cc0a6f0c0d69a6dcd3f9f3134c11 ]
[BUG]
There is a report that a btrfs has a bad super block num devices.
This makes btrfs to reject the fs completely.
BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here
BTRFS error (device sdd3): failed to read chunk tree: -22
BTRFS error (device sdd3): open_ctree failed
[CAUSE]
During btrfs device removal, chunk tree and super block num devs are
updated in two different transactions:
btrfs_rm_device()
|- btrfs_rm_dev_item(device)
| |- trans = btrfs_start_transaction()
| | Now we got transaction X
| |
| |- btrfs_del_item()
| | Now device item is removed from chunk tree
| |
| |- btrfs_commit_transaction()
| Transaction X got committed, super num devs untouched,
| but device item removed from chunk tree.
| (AKA, super num devs is already incorrect)
|
|- cur_devices->num_devices--;
|- cur_devices->total_devices--;
|- btrfs_set_super_num_devices()
All those operations are not in transaction X, thus it will
only be written back to disk in next transaction.
So after the transaction X in btrfs_rm_dev_item() committed, but before
transaction X+1 (which can be minutes away), a power loss happen, then
we got the super num mismatch.
[FIX]
Instead of starting and committing a transaction inside
btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and
pass it to btrfs_rm_dev_item().
And only commit the transaction after everything is done.
Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1a15eb724aaef8656f8cc01d9355797cfe7c618e ]
For device removal and replace we call btrfs_find_device_by_devspec,
which if we give it a device path and nothing else will call
btrfs_get_dev_args_from_path, which opens the block device and reads the
super block and then looks up our device based on that.
However at this point we're holding the sb write "lock", so reading the
block device pulls in the dependency of ->open_mutex, which produces the
following lockdep splat
======================================================
WARNING: possible circular locking dependency detected
5.14.0-rc2+ #405 Not tainted
------------------------------------------------------
losetup/11576 is trying to acquire lock:
ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0
but task is already holding lock:
ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (&lo->lo_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
lo_open+0x28/0x60 [loop]
blkdev_get_whole+0x25/0xf0
blkdev_get_by_dev.part.0+0x168/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x161/0x390
path_openat+0x3cc/0xa20
do_filp_open+0x96/0x120
do_sys_openat2+0x7b/0x130
__x64_sys_openat+0x46/0x70
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #3 (&disk->open_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
blkdev_get_by_dev.part.0+0x56/0x3c0
blkdev_get_by_path+0x98/0xa0
btrfs_get_bdev_and_sb+0x1b/0xb0
btrfs_find_device_by_devspec+0x12b/0x1c0
btrfs_rm_device+0x127/0x610
btrfs_ioctl+0x2a31/0x2e70
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #2 (sb_writers#12){.+.+}-{0:0}:
lo_write_bvec+0xc2/0x240 [loop]
loop_process_work+0x238/0xd00 [loop]
process_one_work+0x26b/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
process_one_work+0x245/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
flush_workqueue+0x91/0x5e0
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
(wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&lo->lo_mutex);
lock(&disk->open_mutex);
lock(&lo->lo_mutex);
lock((wq_completion)loop0);
*** DEADLOCK ***
1 lock held by losetup/11576:
#0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
stack backtrace:
CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x57/0x72
check_noncircular+0xcf/0xf0
? stack_trace_save+0x3b/0x50
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
? flush_workqueue+0x67/0x5e0
? lockdep_init_map_type+0x47/0x220
flush_workqueue+0x91/0x5e0
? flush_workqueue+0x67/0x5e0
? verify_cpu+0xf0/0x100
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
? blkdev_ioctl+0x8d/0x2a0
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f31b02404cb
Instead what we want to do is populate our device lookup args before we
grab any locks, and then pass these args into btrfs_rm_device(). From
there we can find the device and do the appropriate removal.
Suggested-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit faa775c41d655a4786e9d53cb075a77bb5a75f66 ]
We are going to want to populate our device lookup args outside of any
locks and then do the actual device lookup later, so add a helper to do
this work and make btrfs_find_device_by_devspec() use this helper for
now.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 562d7b1512f7369a19bca2883e2e8672d78f0481 ]
We have a lot of device lookup functions that all do something slightly
different. Clean this up by adding a struct to hold the different
lookup criteria, and then pass this around to btrfs_find_device() so it
can do the proper matching based on the lookup criteria.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f63cf5192fe3418ad5ae1a4412eba5694b145f79 ]
Ensure that we call fsnotify_modify() if we write a file, and that we
do fsnotify_access() if we read it. This enables anyone using inotify
on the file to get notified.
Ditto for fallocate, ensure that fsnotify_modify() is called.
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2bb2e00ed9787e52580bb651264b8d6a2b7a9dd2 ]
When a task is doing some modification to the chunk btree and it is not in
the context of a chunk allocation or a chunk removal, it can deadlock with
another task that is currently allocating a new data or metadata chunk.
These contexts are the following:
* When relocating a system chunk, when we need to COW the extent buffers
that belong to the chunk btree;
* When adding a new device (ioctl), where we need to add a new device item
to the chunk btree;
* When removing a device (ioctl), where we need to remove a device item
from the chunk btree;
* When resizing a device (ioctl), where we need to update a device item in
the chunk btree and may need to relocate a system chunk that lies beyond
the new device size when shrinking a device.
The problem happens due to a sequence of steps like the following:
1) Task A starts a data or metadata chunk allocation and it locks the
chunk mutex;
2) Task B is relocating a system chunk, and when it needs to COW an extent
buffer of the chunk btree, it has locked both that extent buffer as
well as its parent extent buffer;
3) Since there is not enough available system space, either because none
of the existing system block groups have enough free space or because
the only one with enough free space is in RO mode due to the relocation,
task B triggers a new system chunk allocation. It blocks when trying to
acquire the chunk mutex, currently held by task A;
4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert
the new chunk item into the chunk btree and update the existing device
items there. But in order to do that, it has to lock the extent buffer
that task B locked at step 2, or its parent extent buffer, but task B
is waiting on the chunk mutex, which is currently locked by task A,
therefore resulting in a deadlock.
One example report when the deadlock happens with system chunk relocation:
INFO: task kworker/u9:5:546 blocked for more than 143 seconds.
Not tainted 5.15.0-rc3+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993
__down_read_common kernel/locking/rwsem.c:1214 [inline]
__down_read kernel/locking/rwsem.c:1223 [inline]
down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590
__btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47
btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline]
btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191
btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline]
btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728
btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794
btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504
do_chunk_alloc fs/btrfs/block-group.c:3408 [inline]
btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653
flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670
btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953
process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297
worker_thread+0x90/0xed0 kernel/workqueue.c:2444
kthread+0x3e5/0x4d0 kernel/kthread.c:319
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
INFO: task syz-executor:9107 blocked for more than 143 seconds.
Not tainted 5.15.0-rc3+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425
__mutex_lock_common kernel/locking/mutex.c:669 [inline]
__mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729
btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631
find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline]
find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335
btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415
btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813
__btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415
btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570
btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768
relocate_tree_block fs/btrfs/relocation.c:2694 [inline]
relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757
relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673
btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070
btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181
__btrfs_balance fs/btrfs/volumes.c:3911 [inline]
btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301
btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137
btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
So fix this by making sure that whenever we try to modify the chunk btree
and we are neither in a chunk allocation context nor in a chunk remove
context, we reserve system space before modifying the chunk btree.
Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/
Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array")
CC: stable@vger.kernel.org # 5.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7a1636089acfee7562fe79aff7d1b4c57869896d ]
When creating a subvolume, at ioctl.c:create_subvol(), if we fail to
insert the new root's root item into the root tree, we are freeing the
metadata extent we reserved for the new root to prevent a metadata
extent leak, as we don't abort the transaction at that point (since
there is nothing at that point that is irreversible).
However we allocated the metadata extent for the new root which we are
creating for the new subvolume, so its delayed reference refers to the
ID of this new root. But when we free the metadata extent we pass the
root of the subvolume where the new subvolume is located to
btrfs_free_tree_block() - this is incorrect because this will generate
a delayed reference that refers to the ID of the parent subvolume's root,
and not to ID of the new root.
This results in a failure when running delayed references that leads to
a transaction abort and a trace like the following:
[3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs]
[3868.739857] Code: 68 0f 85 e6 fb ff (...)
[3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246
[3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002
[3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88
[3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88
[3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000
[3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88
[3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000
[3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0
[3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[3868.757803] Call Trace:
[3868.758281] <TASK>
[3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs]
[3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs]
[3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs]
[3868.762069] ? lock_acquired+0x19f/0x420
[3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs]
[3868.763860] ? _raw_spin_unlock+0x29/0x40
[3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs]
[3868.765870] create_subvol+0x1d8/0x9a0 [btrfs]
[3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs]
[3868.767669] ? preempt_count_add+0x49/0xa0
[3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs]
[3868.769639] ? _copy_from_user+0x66/0xa0
[3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs]
[3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs]
[3868.772364] ? __slab_free+0x10a/0x360
[3868.773198] ? rcu_read_lock_sched_held+0x12/0x60
[3868.774121] ? lock_release+0x223/0x4a0
[3868.774863] ? lock_acquired+0x19f/0x420
[3868.775634] ? rcu_read_lock_sched_held+0x12/0x60
[3868.776530] ? trace_hardirqs_on+0x1b/0xe0
[3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[3868.778280] ? kmem_cache_free+0x321/0x3c0
[3868.779011] ? __x64_sys_ioctl+0x83/0xb0
[3868.779718] __x64_sys_ioctl+0x83/0xb0
[3868.780387] do_syscall_64+0x3b/0xc0
[3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae
[3868.781953] RIP: 0033:0x7f281c59e957
[3868.782585] Code: 3c 1c 48 f7 d8 4c (...)
[3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957
[3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003
[3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36
[3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003
[3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc
[3868.793765] </TASK>
[3868.794037] irq event stamp: 0
[3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0
[3868.799284] ---[ end trace be24c7002fe27747 ]---
[3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2
[3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627
[3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33
[3868.802863] extent refs 1 gen 1265 flags 2
[3868.803447] ref#0: tree block backref root 1610
(...)
[3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33
[3869.065421] extent refs 1 gen 1268 flags 2
[3869.066115] ref#0: tree block backref root 1689
(...)
[3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0
[3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry
[3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry
Fix this by passing the new subvolume's root ID to btrfs_free_tree_block().
This requires changing the root argument of btrfs_free_tree_block() from
struct btrfs_root * to a u64, since at this point during the subvolume
creation we have not yet created the struct btrfs_root for the new
subvolume, and btrfs_free_tree_block() only needs a root ID and nothing
else from a struct btrfs_root.
This was triggered by test case generic/475 from fstests.
Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f42c5da6c12e990d8ec415199600b4d593c63bf5 ]
In order to make 'real_root' used only in ref-verify it's required to
have the necessary context to perform the same checks that this member
is used for. So add 'mod_root' which will contain the root on behalf of
which a delayed ref was created and a 'skip_group' parameter which
will contain callsite-specific override of skip_qgroup.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f6f39f7a0add4e7fd120a709545b57586a1d0393 ]
The user facing function used to allocate new chunks is
btrfs_chunk_alloc, unfortunately there is yet another similar sounding
function - btrfs_alloc_chunk. This creates confusion, especially since
the latter function can be considered "private" in the sense that it
implements the first stage of chunk creation and as such is called by
btrfs_chunk_alloc.
To avoid the awkwardness that comes with having similarly named but
distinctly different in their purpose function rename btrfs_alloc_chunk
to btrfs_create_chunk, given that the main purpose of this function is
to orchestrate the whole process of allocating a chunk - reserving space
into devices, deciding on characteristics of the stripe size and
creating the in-memory structures.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 73911426aaaadbae54fa72359b33a7b6a56947db upstream.
All other opcodes correctly check if this is set and -EINVAL if it is
and they don't support that field, for some reason the these were
forgotten.
This was unified a bit differently in the upstream tree, but had the
same effect as making sure we error on this field. Rather than have
a painful backport of the upstream commit, just fixup the mentioned
opcodes.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 868f9f2f8e004bfe0d3935b1976f625b2924893b upstream.
A regression has been reported by Nicolas Boichat, found while using the
copy_file_range syscall to copy a tracefs file.
Before commit 5dae222a5ff0 ("vfs: allow copy_file_range to copy across
devices") the kernel would return -EXDEV to userspace when trying to
copy a file across different filesystems. After this commit, the
syscall doesn't fail anymore and instead returns zero (zero bytes
copied), as this file's content is generated on-the-fly and thus reports
a size of zero.
Another regression has been reported by He Zhe - the assertion of
WARN_ON_ONCE(ret == -EOPNOTSUPP) can be triggered from userspace when
copying from a sysfs file whose read operation may return -EOPNOTSUPP.
Since we do not have test coverage for copy_file_range() between any two
types of filesystems, the best way to avoid these sort of issues in the
future is for the kernel to be more picky about filesystems that are
allowed to do copy_file_range().
This patch restores some cross-filesystem copy restrictions that existed
prior to commit 5dae222a5ff0 ("vfs: allow copy_file_range to copy across
devices"), namely, cross-sb copy is not allowed for filesystems that do
not implement ->copy_file_range().
Filesystems that do implement ->copy_file_range() have full control of
the result - if this method returns an error, the error is returned to
the user. Before this change this was only true for fs that did not
implement the ->remap_file_range() operation (i.e. nfsv3).
Filesystems that do not implement ->copy_file_range() still fall-back to
the generic_copy_file_range() implementation when the copy is within the
same sb. This helps the kernel can maintain a more consistent story
about which filesystems support copy_file_range().
nfsd and ksmbd servers are modified to fall-back to the
generic_copy_file_range() implementation in case vfs_copy_file_range()
fails with -EOPNOTSUPP or -EXDEV, which preserves behavior of
server-side-copy.
fall-back to generic_copy_file_range() is not implemented for the smb
operation FSCTL_DUPLICATE_EXTENTS_TO_FILE, which is arguably a correct
change of behavior.
Fixes: 5dae222a5ff0 ("vfs: allow copy_file_range to copy across devices")
Link: https://lore.kernel.org/linux-fsdevel/20210212044405.4120619-1-drinkcat@chromium.org/
Link: https://lore.kernel.org/linux-fsdevel/CANMq1KDZuxir2LM5jOTm0xx+BnvW=ZmpsG47CyHFJwnw7zSX6Q@mail.gmail.com/
Link: https://lore.kernel.org/linux-fsdevel/20210126135012.1.If45b7cdc3ff707bc1efa17f5366057d60603c45f@changeid/
Link: https://lore.kernel.org/linux-fsdevel/20210630161320.29006-1-lhenriques@suse.de/
Reported-by: Nicolas Boichat <drinkcat@chromium.org>
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Luis Henriques <lhenriques@suse.de>
Fixes: 64bf5ff58dff ("vfs: no fallback for ->copy_file_range")
Link: https://lore.kernel.org/linux-fsdevel/20f17f64-88cb-4e80-07c1-85cb96c83619@windriver.com/
Reported-by: He Zhe <zhe.he@windriver.com>
Tested-by: Namjae Jeon <linkinjeon@kernel.org>
Tested-by: Luis Henriques <lhenriques@suse.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8a9ffb8c857c2c99403bd6483a5a005fed5c0773 upstream.
commit 555dbf1a9aac ("nfsd: Replace use of rwsem with errseq_t")
incidentally broke translation of -EINVAL to nfserr_notsupp.
The patch restores that.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
Fixes: 555dbf1a9aac ("nfsd: Replace use of rwsem with errseq_t")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 067baa9a37b32b95fdeabccde4b0cb6a2cf95f96 upstream.
By not checking whether llseek is NULL, this might jump to NULL. Also,
it doesn't check FMODE_LSEEK. Fix this by using vfs_llseek(), which
always does the right thing.
Fixes: f44158485826 ("cifsd: add file operations")
Cc: stable@vger.kernel.org
Cc: linux-cifs@vger.kernel.org
Cc: Ronnie Sahlberg <lsahlber@redhat.com>
Cc: Hyunchul Lee <hyc.lee@gmail.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Namjae Jeon <linkinjeon@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b5e5f9dfc915ff05b41dff56181e1dae101712bd upstream.
FileOffset should not be greater than BeyondFinalZero in FSCTL_ZERO_DATA.
And don't call ksmbd_vfs_zero_data() if length is zero.
Cc: stable@vger.kernel.org
Reviewed-by: Hyunchul Lee <hyc.lee@gmail.com>
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 18e39fb960e6a908ac5230b57e3d0d6c25232368 upstream.
generic/091, 263 test failed since commit f66f8b94e7f2 ("cifs: when
extending a file with falloc we should make files not-sparse").
FSCTL_ZERO_DATA sets the range of bytes to zero without extending file
size. The VFS_FALLOCATE_FL_KEEP_SIZE flag should be used even on
non-sparse files.
Cc: stable@vger.kernel.org
Reviewed-by: Hyunchul Lee <hyc.lee@gmail.com>
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 05b538c1765f8d14a71ccf5f85258dcbeaf189f7 upstream.
We can look inside the fixed buffer table only while holding
->uring_lock, however in some cases we don't do the right async prep for
IORING_OP_{WRITE,READ}_FIXED ending up with NULL req->imu forcing making
an io-wq worker to try to resolve the fixed buffer without proper
locking.
Move req->imu setup into early req init paths, i.e. io_prep_rw(), which
is called unconditionally for rw requests and under uring_lock.
Fixes: 634d00df5e1cf ("io_uring: add full-fledged dynamic buffers support")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 168f912893407a5acb798a4a58613b5f1f98c717 upstream.
When calling setattr_prepare() to determine the validity of the
attributes the ia_{g,u}id fields contain the value that will be written
to inode->i_{g,u}id. This is exactly the same for idmapped and
non-idmapped mounts and allows callers to pass in the values they want
to see written to inode->i_{g,u}id.
When group ownership is changed a caller whose fsuid owns the inode can
change the group of the inode to any group they are a member of. When
searching through the caller's groups we need to use the gid mapped
according to the idmapped mount otherwise we will fail to change
ownership for unprivileged users.
Consider a caller running with fsuid and fsgid 1000 using an idmapped
mount that maps id 65534 to 1000 and 65535 to 1001. Consequently, a file
owned by 65534:65535 in the filesystem will be owned by 1000:1001 in the
idmapped mount.
The caller now requests the gid of the file to be changed to 1000 going
through the idmapped mount. In the vfs we will immediately map the
requested gid to the value that will need to be written to inode->i_gid
and place it in attr->ia_gid. Since this idmapped mount maps 65534 to
1000 we place 65534 in attr->ia_gid.
When we check whether the caller is allowed to change group ownership we
first validate that their fsuid matches the inode's uid. The
inode->i_uid is 65534 which is mapped to uid 1000 in the idmapped mount.
Since the caller's fsuid is 1000 we pass the check.
We now check whether the caller is allowed to change inode->i_gid to the
requested gid by calling in_group_p(). This will compare the passed in
gid to the caller's fsgid and search the caller's additional groups.
Since we're dealing with an idmapped mount we need to pass in the gid
mapped according to the idmapped mount. This is akin to checking whether
a caller is privileged over the future group the inode is owned by. And
that needs to take the idmapped mount into account. Note, all helpers
are nops without idmapped mounts.
New regression test sent to xfstests.
Link: https://github.com/lxc/lxd/issues/10537
Link: https://lore.kernel.org/r/20220613111517.2186646-1-brauner@kernel.org
Fixes: 2f221d6f7b88 ("attr: handle idmapped mounts")
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@vger.kernel.org # 5.15+
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 705191b03d507744c7e097f78d583621c14988ac upstream.
Last cycle we extended the idmapped mounts infrastructure to support
idmapped mounts of idmapped filesystems (No such filesystem yet exist.).
Since then, the meaning of an idmapped mount is a mount whose idmapping
is different from the filesystems idmapping.
While doing that work we missed to adapt the acl translation helpers.
They still assume that checking for the identity mapping is enough. But
they need to use the no_idmapping() helper instead.
Note, POSIX ACLs are always translated right at the userspace-kernel
boundary using the caller's current idmapping and the initial idmapping.
The order depends on whether we're coming from or going to userspace.
The filesystem's idmapping doesn't matter at the border.
Consequently, if a non-idmapped mount is passed we need to make sure to
always pass the initial idmapping as the mount's idmapping and not the
filesystem idmapping. Since it's irrelevant here it would yield invalid
ids and prevent setting acls for filesystems that are mountable in a
userns and support posix acls (tmpfs and fuse).
I verified the regression reported in [1] and verified that this patch
fixes it. A regression test will be added to xfstests in parallel.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215849 [1]
Fixes: bd303368b776 ("fs: support mapped mounts of mapped filesystems")
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: <stable@vger.kernel.org> # 5.15+
Cc: <regressions@lists.linux.dev>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bd303368b776eead1c29e6cdda82bde7128b82a7 upstream.
In previous patches we added new and modified existing helpers to handle
idmapped mounts of filesystems mounted with an idmapping. In this final
patch we convert all relevant places in the vfs to actually pass the
filesystem's idmapping into these helpers.
With this the vfs is in shape to handle idmapped mounts of filesystems
mounted with an idmapping. Note that this is just the generic
infrastructure. Actually adding support for idmapped mounts to a
filesystem mountable with an idmapping is follow-up work.
In this patch we extend the definition of an idmapped mount from a mount
that that has the initial idmapping attached to it to a mount that has
an idmapping attached to it which is not the same as the idmapping the
filesystem was mounted with.
As before we do not allow the initial idmapping to be attached to a
mount. In addition this patch prevents that the idmapping the filesystem
was mounted with can be attached to a mount created based on this
filesystem.
This has multiple reasons and advantages. First, attaching the initial
idmapping or the filesystem's idmapping doesn't make much sense as in
both cases the values of the i_{g,u}id and other places where k{g,u}ids
are used do not change. Second, a user that really wants to do this for
whatever reason can just create a separate dedicated identical idmapping
to attach to the mount. Third, we can continue to use the initial
idmapping as an indicator that a mount is not idmapped allowing us to
continue to keep passing the initial idmapping into the mapping helpers
to tell them that something isn't an idmapped mount even if the
filesystem is mounted with an idmapping.
Link: https://lore.kernel.org/r/20211123114227.3124056-11-brauner@kernel.org (v1)
Link: https://lore.kernel.org/r/20211130121032.3753852-11-brauner@kernel.org (v2)
Link: https://lore.kernel.org/r/20211203111707.3901969-11-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 209188ce75d0d357c292f6bb81d712acdd4e7db7 upstream.
Enable the mapped_fs{g,u}id() helpers to support filesystems mounted
with an idmapping. Apart from core mapping helpers that use
mapped_fs{g,u}id() to initialize struct inode's i_{g,u}id fields xfs is
the only place that uses these low-level helpers directly.
The patch only extends the helpers to be able to take the filesystem
idmapping into account. Since we don't actually yet pass the
filesystem's idmapping in no functional changes happen. This will happen
in a final patch.
Link: https://lore.kernel.org/r/20211123114227.3124056-9-brauner@kernel.org (v1)
Link: https://lore.kernel.org/r/20211130121032.3753852-9-brauner@kernel.org (v2)
Link: https://lore.kernel.org/r/20211203111707.3901969-9-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4472071331549e911a5abad41aea6e3be855a1a4 upstream.
In a few places the vfs needs to interact with bare k{g,u}ids directly
instead of struct inode. These are just a few. In previous patches we
introduced low-level mapping helpers that are able to support
filesystems mounted an idmapping. This patch simply converts the places
to use these new helpers.
Link: https://lore.kernel.org/r/20211123114227.3124056-7-brauner@kernel.org (v1)
Link: https://lore.kernel.org/r/20211130121032.3753852-7-brauner@kernel.org (v2)
Link: https://lore.kernel.org/r/20211203111707.3901969-7-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a793d79ea3e041081cd7cbd8ee43d0b5e4914a2b upstream.
The low-level mapping helpers were so far crammed into fs.h. They are
out of place there. The fs.h header should just contain the higher-level
mapping helpers that interact directly with vfs objects such as struct
super_block or struct inode and not the bare mapping helpers. Similarly,
only vfs and specific fs code shall interact with low-level mapping
helpers. And so they won't be made accessible automatically through
regular {g,u}id helpers.
Link: https://lore.kernel.org/r/20211123114227.3124056-3-brauner@kernel.org (v1)
Link: https://lore.kernel.org/r/20211130121032.3753852-3-brauner@kernel.org (v2)
Link: https://lore.kernel.org/r/20211203111707.3901969-3-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bb49e9e730c2906a958eee273a7819f401543d6c upstream.
Multiple places open-code the same check to determine whether a given
mount is idmapped. Introduce a simple helper function that can be used
instead. This allows us to get rid of the fragile open-coding. We will
later change the check that is used to determine whether a given mount
is idmapped. Introducing a helper allows us to do this in a single
place instead of doing it for multiple places.
Link: https://lore.kernel.org/r/20211123114227.3124056-2-brauner@kernel.org (v1)
Link: https://lore.kernel.org/r/20211130121032.3753852-2-brauner@kernel.org (v2)
Link: https://lore.kernel.org/r/20211203111707.3901969-2-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b97cca3ba9098522e5a1c3388764ead42640c1a5 ]
In commit 02b9984d6408, we pushed a sync_filesystem() call from the VFS
into xfs_fs_remount. The only time that we ever need to push dirty file
data or metadata to disk for a remount is if we're remounting the
filesystem read only, so this really could be moved to xfs_remount_ro.
Once we've moved the call site, actually check the return value from
sync_filesystem.
Fixes: 02b9984d6408 ("fs: push sync_filesystem() down to the file system's remount_fs()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f8d92a66e810acbef6ddbc0bd0cbd9b117ce8acd ]
While I was running with KASAN and lockdep enabled, I stumbled upon an
KASAN report about a UAF to a freed CIL checkpoint. Looking at the
comment for xfs_log_item_in_current_chkpt, it seems pretty obvious to me
that the original patch to xfs_defer_finish_noroll should have done
something to lock the CIL to prevent it from switching the CIL contexts
while the predicate runs.
For upper level code that needs to know if a given log item is new
enough not to need relogging, add a new wrapper that takes the CIL
context lock long enough to sample the current CIL context. This is
kind of racy in that the CIL can switch the contexts immediately after
sampling, but that's ok because the consequence is that the defer ops
code is a little slow to relog items.
==================================================================
BUG: KASAN: use-after-free in xfs_log_item_in_current_chkpt+0x139/0x160 [xfs]
Read of size 8 at addr ffff88804ea5f608 by task fsstress/527999
CPU: 1 PID: 527999 Comm: fsstress Tainted: G D 5.16.0-rc4-xfsx #rc4
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x140
kasan_report.cold+0x83/0xdf
xfs_log_item_in_current_chkpt+0x139/0x160
xfs_defer_finish_noroll+0x3bb/0x1e30
__xfs_trans_commit+0x6c8/0xcf0
xfs_reflink_remap_extent+0x66f/0x10e0
xfs_reflink_remap_blocks+0x2dd/0xa90
xfs_file_remap_range+0x27b/0xc30
vfs_dedupe_file_range_one+0x368/0x420
vfs_dedupe_file_range+0x37c/0x5d0
do_vfs_ioctl+0x308/0x1260
__x64_sys_ioctl+0xa1/0x170
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f2c71a2950b
Code: 0f 1e fa 48 8b 05 85 39 0d 00 64 c7 00 26 00 00 00 48 c7 c0 ff ff
ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01
f0 ff ff 73 01 c3 48 8b 0d 55 39 0d 00 f7 d8 64 89 01 48
RSP: 002b:00007ffe8c0e03c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00005600862a8740 RCX: 00007f2c71a2950b
RDX: 00005600862a7be0 RSI: 00000000c0189436 RDI: 0000000000000004
RBP: 000000000000000b R08: 0000000000000027 R09: 0000000000000003
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000005a
R13: 00005600862804a8 R14: 0000000000016000 R15: 00005600862a8a20
</TASK>
Allocated by task 464064:
kasan_save_stack+0x1e/0x50
__kasan_kmalloc+0x81/0xa0
kmem_alloc+0xcd/0x2c0 [xfs]
xlog_cil_ctx_alloc+0x17/0x1e0 [xfs]
xlog_cil_push_work+0x141/0x13d0 [xfs]
process_one_work+0x7f6/0x1380
worker_thread+0x59d/0x1040
kthread+0x3b0/0x490
ret_from_fork+0x1f/0x30
Freed by task 51:
kasan_save_stack+0x1e/0x50
kasan_set_track+0x21/0x30
kasan_set_free_info+0x20/0x30
__kasan_slab_free+0xed/0x130
slab_free_freelist_hook+0x7f/0x160
kfree+0xde/0x340
xlog_cil_committed+0xbfd/0xfe0 [xfs]
xlog_cil_process_committed+0x103/0x1c0 [xfs]
xlog_state_do_callback+0x45d/0xbd0 [xfs]
xlog_ioend_work+0x116/0x1c0 [xfs]
process_one_work+0x7f6/0x1380
worker_thread+0x59d/0x1040
kthread+0x3b0/0x490
ret_from_fork+0x1f/0x30
Last potentially related work creation:
kasan_save_stack+0x1e/0x50
__kasan_record_aux_stack+0xb7/0xc0
insert_work+0x48/0x2e0
__queue_work+0x4e7/0xda0
queue_work_on+0x69/0x80
xlog_cil_push_now.isra.0+0x16b/0x210 [xfs]
xlog_cil_force_seq+0x1b7/0x850 [xfs]
xfs_log_force_seq+0x1c7/0x670 [xfs]
xfs_file_fsync+0x7c1/0xa60 [xfs]
__x64_sys_fsync+0x52/0x80
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The buggy address belongs to the object at ffff88804ea5f600
which belongs to the cache kmalloc-256 of size 256
The buggy address is located 8 bytes inside of
256-byte region [ffff88804ea5f600, ffff88804ea5f700)
The buggy address belongs to the page:
page:ffffea00013a9780 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88804ea5ea00 pfn:0x4ea5e
head:ffffea00013a9780 order:1 compound_mapcount:0
flags: 0x4fff80000010200(slab|head|node=1|zone=1|lastcpupid=0xfff)
raw: 04fff80000010200 ffffea0001245908 ffffea00011bd388 ffff888004c42b40
raw: ffff88804ea5ea00 0000000000100009 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88804ea5f500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88804ea5f580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88804ea5f600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff88804ea5f680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88804ea5f700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Fixes: 4e919af7827a ("xfs: periodically relog deferred intent items")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 09654ed8a18cfd45027a67d6cbca45c9ea54feab ]
Got a report that a repeated crash test of a container host would
eventually fail with a log recovery error preventing the system from
mounting the root filesystem. It manifested as a directory leaf node
corruption on writeback like so:
XFS (loop0): Mounting V5 Filesystem
XFS (loop0): Starting recovery (logdev: internal)
XFS (loop0): Metadata corruption detected at xfs_dir3_leaf_check_int+0x99/0xf0, xfs_dir3_leaf1 block 0x12faa158
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3d f1 00 00 e1 9e d5 8b ........=.......
00000010: 00 00 00 00 12 fa a1 58 00 00 00 29 00 00 1b cc .......X...)....
00000020: 91 06 78 ff f7 7e 4a 7d 8d 53 86 f2 ac 47 a8 23 ..x..~J}.S...G.#
00000030: 00 00 00 00 17 e0 00 80 00 43 00 00 00 00 00 00 .........C......
00000040: 00 00 00 2e 00 00 00 08 00 00 17 2e 00 00 00 0a ................
00000050: 02 35 79 83 00 00 00 30 04 d3 b4 80 00 00 01 50 .5y....0.......P
00000060: 08 40 95 7f 00 00 02 98 08 41 fe b7 00 00 02 d4 .@.......A......
00000070: 0d 62 ef a7 00 00 01 f2 14 50 21 41 00 00 00 0c .b.......P!A....
XFS (loop0): Corruption of in-memory data (0x8) detected at xfs_do_force_shutdown+0x1a/0x20 (fs/xfs/xfs_buf.c:1514). Shutting down.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed
Tracing indicated that we were recovering changes from a transaction
at LSN 0x29/0x1c16 into a buffer that had an LSN of 0x29/0x1d57.
That is, log recovery was overwriting a buffer with newer changes on
disk than was in the transaction. Tracing indicated that we were
hitting the "recovery immediately" case in
xfs_buf_log_recovery_lsn(), and hence it was ignoring the LSN in the
buffer.
The code was extracting the LSN correctly, then ignoring it because
the UUID in the buffer did not match the superblock UUID. The
problem arises because the UUID check uses the wrong UUID - it
should be checking the sb_meta_uuid, not sb_uuid. This filesystem
has sb_uuid != sb_meta_uuid (which is fine), and the buffer has the
correct matching sb_meta_uuid in it, it's just the code checked it
against the wrong superblock uuid.
The is no corruption in the filesystem, and failing to recover the
buffer due to a write verifier failure means the recovery bug did
not propagate the corruption to disk. Hence there is no corruption
before or after this bug has manifested, the impact is limited
simply to an unmountable filesystem....
This was missed back in 2015 during an audit of incorrect sb_uuid
usage that resulted in commit fcfbe2c4ef42 ("xfs: log recovery needs
to validate against sb_meta_uuid") that fixed the magic32 buffers to
validate against sb_meta_uuid instead of sb_uuid. It missed the
magicda buffers....
Fixes: ce748eaa65f2 ("xfs: create new metadata UUID field and incompat flag")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 089558bc7ba785c03815a49c89e28ad9b8de51f9 ]
As part of multiple customer escalations due to file data corruption
after copy on write operations, I wrote some fstests that use fsstress
to hammer on COW to shake things loose. Regrettably, I caught some
filesystem shutdowns due to incorrect rmap operations with the following
loop:
mount <filesystem> # (0)
fsstress <run only readonly ops> & # (1)
while true; do
fsstress <run all ops>
mount -o remount,ro # (2)
fsstress <run only readonly ops>
mount -o remount,rw # (3)
done
When (2) happens, notice that (1) is still running. xfs_remount_ro will
call xfs_blockgc_stop to walk the inode cache to free all the COW
extents, but the blockgc mechanism races with (1)'s reader threads to
take IOLOCKs and loses, which means that it doesn't clean them all out.
Call such a file (A).
When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which
walks the ondisk refcount btree and frees any COW extent that it finds.
This function does not check the inode cache, which means that incore
COW forks of inode (A) is now inconsistent with the ondisk metadata. If
one of those former COW extents are allocated and mapped into another
file (B) and someone triggers a COW to the stale reservation in (A), A's
dirty data will be written into (B) and once that's done, those blocks
will be transferred to (A)'s data fork without bumping the refcount.
The results are catastrophic -- file (B) and the refcount btree are now
corrupt. Solve this race by forcing the xfs_blockgc_free_space to run
synchronously, which causes xfs_icwalk to return to inodes that were
skipped because the blockgc code couldn't take the IOLOCK. This is safe
to do here because the VFS has already prohibited new writer threads.
Fixes: 10ddf64e420f ("xfs: remove leftover CoW reservations when remounting ro")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a1de97fe296c52eafc6590a3506f4bbd44ecb19a ]
When testing xfstests xfs/126 on lastest upstream kernel, it will hang on some machine.
Adding a getxattr operation after xattr corrupted, I can reproduce it 100%.
The deadlock as below:
[983.923403] task:setfattr state:D stack: 0 pid:17639 ppid: 14687 flags:0x00000080
[ 983.923405] Call Trace:
[ 983.923410] __schedule+0x2c4/0x700
[ 983.923412] schedule+0x37/0xa0
[ 983.923414] schedule_timeout+0x274/0x300
[ 983.923416] __down+0x9b/0xf0
[ 983.923451] ? xfs_buf_find.isra.29+0x3c8/0x5f0 [xfs]
[ 983.923453] down+0x3b/0x50
[ 983.923471] xfs_buf_lock+0x33/0xf0 [xfs]
[ 983.923490] xfs_buf_find.isra.29+0x3c8/0x5f0 [xfs]
[ 983.923508] xfs_buf_get_map+0x4c/0x320 [xfs]
[ 983.923525] xfs_buf_read_map+0x53/0x310 [xfs]
[ 983.923541] ? xfs_da_read_buf+0xcf/0x120 [xfs]
[ 983.923560] xfs_trans_read_buf_map+0x1cf/0x360 [xfs]
[ 983.923575] ? xfs_da_read_buf+0xcf/0x120 [xfs]
[ 983.923590] xfs_da_read_buf+0xcf/0x120 [xfs]
[ 983.923606] xfs_da3_node_read+0x1f/0x40 [xfs]
[ 983.923621] xfs_da3_node_lookup_int+0x69/0x4a0 [xfs]
[ 983.923624] ? kmem_cache_alloc+0x12e/0x270
[ 983.923637] xfs_attr_node_hasname+0x6e/0xa0 [xfs]
[ 983.923651] xfs_has_attr+0x6e/0xd0 [xfs]
[ 983.923664] xfs_attr_set+0x273/0x320 [xfs]
[ 983.923683] xfs_xattr_set+0x87/0xd0 [xfs]
[ 983.923686] __vfs_removexattr+0x4d/0x60
[ 983.923688] __vfs_removexattr_locked+0xac/0x130
[ 983.923689] vfs_removexattr+0x4e/0xf0
[ 983.923690] removexattr+0x4d/0x80
[ 983.923693] ? __check_object_size+0xa8/0x16b
[ 983.923695] ? strncpy_from_user+0x47/0x1a0
[ 983.923696] ? getname_flags+0x6a/0x1e0
[ 983.923697] ? _cond_resched+0x15/0x30
[ 983.923699] ? __sb_start_write+0x1e/0x70
[ 983.923700] ? mnt_want_write+0x28/0x50
[ 983.923701] path_removexattr+0x9b/0xb0
[ 983.923702] __x64_sys_removexattr+0x17/0x20
[ 983.923704] do_syscall_64+0x5b/0x1a0
[ 983.923705] entry_SYSCALL_64_after_hwframe+0x65/0xca
[ 983.923707] RIP: 0033:0x7f080f10ee1b
When getxattr calls xfs_attr_node_get function, xfs_da3_node_lookup_int fails with EFSCORRUPTED in
xfs_attr_node_hasname because we have use blocktrash to random it in xfs/126. So it
free state in internal and xfs_attr_node_get doesn't do xfs_buf_trans release job.
Then subsequent removexattr will hang because of it.
This bug was introduced by kernel commit 07120f1abdff ("xfs: Add xfs_has_attr and subroutines").
It adds xfs_attr_node_hasname helper and said caller will be responsible for freeing the state
in this case. But xfs_attr_node_hasname will free state itself instead of caller if
xfs_da3_node_lookup_int fails.
Fix this bug by moving the step of free state into caller.
Also, use "goto error/out" instead of returning error directly in xfs_attr_node_addname_find_attr and
xfs_attr_node_removename_setup function because we should free state ourselves.
Fixes: 07120f1abdff ("xfs: Add xfs_has_attr and subroutines")
Signed-off-by: Yang Xu <xuyang2018.jy@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5ca5916b6bc93577c360c06cb7cdf71adb9b5faf ]
If writeback I/O to a COW extent fails, the COW fork blocks are
punched out and the data fork blocks left alone. It is possible for
COW fork blocks to overlap non-shared data fork blocks (due to
cowextsz hint prealloc), however, and writeback unconditionally maps
to the COW fork whenever blocks exist at the corresponding offset of
the page undergoing writeback. This means it's quite possible for a
COW fork extent to overlap delalloc data fork blocks, writeback to
convert and map to the COW fork blocks, writeback to fail, and
finally for ioend completion to cancel the COW fork blocks and leave
stale data fork delalloc blocks around in the inode. The blocks are
effectively stale because writeback failure also discards dirty page
state.
If this occurs, it is likely to trigger assert failures, free space
accounting corruption and failures in unrelated file operations. For
example, a subsequent reflink attempt of the affected file to a new
target file will trip over the stale delalloc in the source file and
fail. Several of these issues are occasionally reproduced by
generic/648, but are reproducible on demand with the right sequence
of operations and timely I/O error injection.
To fix this problem, update the ioend failure path to also punch out
underlying data fork delalloc blocks on I/O error. This is analogous
to the writeback submission failure path in xfs_discard_page() where
we might fail to map data fork delalloc blocks and consistent with
the successful COW writeback completion path, which is responsible
for unmapping from the data fork and remapping in COW fork blocks.
Fixes: 787eb485509f ("xfs: fix and streamline error handling in xfs_end_io")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c30a0cbd07ecc0eec7b3cd568f7b1c7bb7913f93 ]
For kmalloc() allocations SLOB prepends the blocks with a 4-byte header,
and it puts the size of the allocated blocks in that header.
Blocks allocated with kmem_cache_alloc() allocations do not have that
header.
SLOB explodes when you allocate memory with kmem_cache_alloc() and then
try to free it with kfree() instead of kmem_cache_free().
SLOB will assume that there is a header when there is none, read some
garbage to size variable and corrupt the adjacent objects, which
eventually leads to hang or panic.
Let's make XFS work with SLOB by using proper free function.
Fixes: 9749fee83f38 ("xfs: enable the xfs_defer mechanism to process extents to free")
Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4cde00d50707c2ef6647b9b96b2cb40b6eb24397 upstream.
This fixes the below corruption.
[345393.335389] F2FS-fs (vdb): sanity_check_inode: inode (ino=6d0, mode=33206) should not have inline_data, run fsck to fix
Cc: <stable@vger.kernel.org>
Fixes: 677a82b44ebf ("f2fs: fix to do sanity check for inline inode")
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bf7ba8ee759b7b7a34787ddd8dc3f190a3d7fa24 upstream.
We are hitting the following deadlock in production occasionally
Task 1 Task 2 Task 3 Task 4 Task 5
fsync(A)
start trans
start commit
falloc(A)
lock 5m-10m
start trans
wait for commit
fiemap(A)
lock 0-10m
wait for 5m-10m
(have 0-5m locked)
have btrfs_need_log_full_commit
!full_sync
wait_ordered_extents
finish_ordered_io(A)
lock 0-5m
DEADLOCK
We have an existing dependency of file extent lock -> transaction.
However in fsync if we tried to do the fast logging, but then had to
fall back to committing the transaction, we will be forced to call
btrfs_wait_ordered_range() to make sure all of our extents are updated.
This creates a dependency of transaction -> file extent lock, because
btrfs_finish_ordered_io() will need to take the file extent lock in
order to run the ordered extents.
Fix this by stopping the transaction if we have to do the full commit
and we attempted to do the fast logging. Then attach to the transaction
and commit it if we need to.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 97e86631bccddfbbe0c13f9a9605cdef11d31296 upstream.
In 196d59ab9ccc "btrfs: switch extent buffer tree lock to rw_semaphore"
the functions for tree read locking were rewritten, and in the process
the read lock functions started setting eb->lock_owner = current->pid.
Previously lock_owner was only set in tree write lock functions.
Read locks are shared, so they don't have exclusive ownership of the
underlying object, so setting lock_owner to any single value for a
read lock makes no sense. It's mostly harmless because write locks
and read locks are mutually exclusive, and none of the existing code
in btrfs (btrfs_init_new_buffer and print_eb_refs_lock) cares what
nonsense is written in lock_owner when no writer is holding the lock.
KCSAN does care, and will complain about the data race incessantly.
Remove the assignments in the read lock functions because they're
useless noise.
Fixes: 196d59ab9ccc ("btrfs: switch extent buffer tree lock to rw_semaphore")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cb78d1b5efffe4cf97e16766329dd7358aed3deb ]
The recent patch to make afs_getattr consult the server didn't account
for the pseudo-inodes employed by the dynamic root-type afs superblock
not having a volume or a server to access, and thus an oops occurs if
such a directory is stat'd.
Fix this by checking to see if the vnode->volume pointer actually points
anywhere before following it in afs_getattr().
This can be tested by stat'ing a directory in /afs. It may be
sufficient just to do "ls /afs" and the oops looks something like:
BUG: kernel NULL pointer dereference, address: 0000000000000020
...
RIP: 0010:afs_getattr+0x8b/0x14b
...
Call Trace:
<TASK>
vfs_statx+0x79/0xf5
vfs_fstatat+0x49/0x62
Fixes: 2aeb8c86d499 ("afs: Fix afs_getattr() to refetch file status if callback break occurred")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/165408450783.1031787.7941404776393751186.stgit@warthog.procyon.org.uk/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e3a4167c880cf889f66887a152799df4d609dd21 upstream.
Almost none of the errors stemming from a valid mount option but wrong
value prints a descriptive message which would help to identify why
mount failed. Like in the linked report:
$ uname -r
v4.19
$ mount -o compress=zstd /dev/sdb /mnt
mount: /mnt: wrong fs type, bad option, bad superblock on
/dev/sdb, missing codepage or helper program, or other error.
$ dmesg
...
BTRFS error (device sdb): open_ctree failed
Errors caused by memory allocation failures are left out as it's not a
user error so reporting that would be confusing.
Link: https://lore.kernel.org/linux-btrfs/9c3fec36-fc61-3a33-4977-a7e207c3fa4e@gmx.de/
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0591f04036218d572d54349ea8c7914ad9c82b2b upstream.
Upstream commit 9f73f1aef98b ("btrfs: force v2 space cache usage for
subpage mount") forces subpage mount to use v2 cache, to avoid
deprecated v1 cache which doesn't support subpage properly.
But there is a loophole that user can still remount to v1 cache.
The existing check will only give users a warning, but does not really
prevent to do the remount.
Although remounting to v1 will not cause any problems since the v1 cache
will always be marked invalid when mounted with a different page size,
it's still better to prevent v1 cache at all for subpage mounts.
Fixes: 9f73f1aef98b ("btrfs: force v2 space cache usage for subpage mount")
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 31e70e527806c546a72262f2fc3d982ee23c42d3 upstream.
When we start an unmount, at close_ctree(), if we have the reclaim task
running and in the middle of a data block group relocation, we can trigger
a deadlock when stopping an async reclaim task, producing a trace like the
following:
[629724.498185] task:kworker/u16:7 state:D stack: 0 pid:681170 ppid: 2 flags:0x00004000
[629724.499760] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[629724.501267] Call Trace:
[629724.501759] <TASK>
[629724.502174] __schedule+0x3cb/0xed0
[629724.502842] schedule+0x4e/0xb0
[629724.503447] btrfs_wait_on_delayed_iputs+0x7c/0xc0 [btrfs]
[629724.504534] ? prepare_to_wait_exclusive+0xc0/0xc0
[629724.505442] flush_space+0x423/0x630 [btrfs]
[629724.506296] ? rcu_read_unlock_trace_special+0x20/0x50
[629724.507259] ? lock_release+0x220/0x4a0
[629724.507932] ? btrfs_get_alloc_profile+0xb3/0x290 [btrfs]
[629724.508940] ? do_raw_spin_unlock+0x4b/0xa0
[629724.509688] btrfs_async_reclaim_metadata_space+0x139/0x320 [btrfs]
[629724.510922] process_one_work+0x252/0x5a0
[629724.511694] ? process_one_work+0x5a0/0x5a0
[629724.512508] worker_thread+0x52/0x3b0
[629724.513220] ? process_one_work+0x5a0/0x5a0
[629724.514021] kthread+0xf2/0x120
[629724.514627] ? kthread_complete_and_exit+0x20/0x20
[629724.515526] ret_from_fork+0x22/0x30
[629724.516236] </TASK>
[629724.516694] task:umount state:D stack: 0 pid:719055 ppid:695412 flags:0x00004000
[629724.518269] Call Trace:
[629724.518746] <TASK>
[629724.519160] __schedule+0x3cb/0xed0
[629724.519835] schedule+0x4e/0xb0
[629724.520467] schedule_timeout+0xed/0x130
[629724.521221] ? lock_release+0x220/0x4a0
[629724.521946] ? lock_acquired+0x19c/0x420
[629724.522662] ? trace_hardirqs_on+0x1b/0xe0
[629724.523411] __wait_for_common+0xaf/0x1f0
[629724.524189] ? usleep_range_state+0xb0/0xb0
[629724.524997] __flush_work+0x26d/0x530
[629724.525698] ? flush_workqueue_prep_pwqs+0x140/0x140
[629724.526580] ? lock_acquire+0x1a0/0x310
[629724.527324] __cancel_work_timer+0x137/0x1c0
[629724.528190] close_ctree+0xfd/0x531 [btrfs]
[629724.529000] ? evict_inodes+0x166/0x1c0
[629724.529510] generic_shutdown_super+0x74/0x120
[629724.530103] kill_anon_super+0x14/0x30
[629724.530611] btrfs_kill_super+0x12/0x20 [btrfs]
[629724.531246] deactivate_locked_super+0x31/0xa0
[629724.531817] cleanup_mnt+0x147/0x1c0
[629724.532319] task_work_run+0x5c/0xa0
[629724.532984] exit_to_user_mode_prepare+0x1a6/0x1b0
[629724.533598] syscall_exit_to_user_mode+0x16/0x40
[629724.534200] do_syscall_64+0x48/0x90
[629724.534667] entry_SYSCALL_64_after_hwframe+0x44/0xae
[629724.535318] RIP: 0033:0x7fa2b90437a7
[629724.535804] RSP: 002b:00007ffe0b7e4458 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[629724.536912] RAX: 0000000000000000 RBX: 00007fa2b9182264 RCX: 00007fa2b90437a7
[629724.538156] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000555d6cf20dd0
[629724.539053] RBP: 0000555d6cf20ba0 R08: 0000000000000000 R09: 00007ffe0b7e3200
[629724.539956] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[629724.540883] R13: 0000555d6cf20dd0 R14: 0000555d6cf20cb0 R15: 0000000000000000
[629724.541796] </TASK>
This happens because:
1) Before entering close_ctree() we have the async block group reclaim
task running and relocating a data block group;
2) There's an async metadata (or data) space reclaim task running;
3) We enter close_ctree() and park the cleaner kthread;
4) The async space reclaim task is at flush_space() and runs all the
existing delayed iputs;
5) Before the async space reclaim task calls
btrfs_wait_on_delayed_iputs(), the block group reclaim task which is
doing the data block group relocation, creates a delayed iput at
replace_file_extents() (called when COWing leaves that have file extent
items pointing to relocated data extents, during the merging phase
of relocation roots);
6) The async reclaim space reclaim task blocks at
btrfs_wait_on_delayed_iputs(), since we have a new delayed iput;
7) The task at close_ctree() then calls cancel_work_sync() to stop the
async space reclaim task, but it blocks since that task is waiting for
the delayed iput to be run;
8) The delayed iput is never run because the cleaner kthread is parked,
and no one else runs delayed iputs, resulting in a hang.
So fix this by stopping the async block group reclaim task before we
park the cleaner kthread.
Fixes: 18bb8bbf13c183 ("btrfs: zoned: automatically reclaim zones")
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e5690f263208c5abce7451370b7786eb25b405eb upstream.
we check for protocol version later than required, after a fid has
been obtained. Just move the version check earlier.
Link: https://lkml.kernel.org/r/20220612085330.1451496-3-asmadeus@codewreck.org
Fixes: 6636b6dcc3db ("9p: add refcount to p9_fid struct")
Cc: stable@vger.kernel.org
Reviewed-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Reviewed-by: Christian Schoenebeck <linux_oss@crudebyte.com>
Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>