IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 33806e7cb8d50379f55c3e8f335e91e1b359dc7b upstream.
A recent change in LLVM made CONFIG_EFI_STUB unselectable because it no
longer pretends to support -mabi=ms, breaking the dependency in
Kconfig. Lack of CONFIG_EFI_STUB can prevent kernels from booting via
EFI in certain circumstances.
This check was added by
8f24f8c2fc82 ("efi/libstub: Annotate firmware routines as __efiapi")
to ensure that __attribute__((ms_abi)) was available, as -mabi=ms is
not actually used in any cflags.
According to the GCC documentation, this attribute has been supported
since GCC 4.4.7. The kernel currently requires GCC 5.1 so this check is
not necessary; even when that change landed in 5.6, the kernel required
GCC 4.9 so it was unnecessary then as well.
Clang supports __attribute__((ms_abi)) for all versions that are
supported for building the kernel so no additional check is needed.
Remove the 'depends on' line altogether to allow CONFIG_EFI_STUB to be
selected when CONFIG_EFI is enabled, regardless of compiler.
Fixes: 8f24f8c2fc82 ("efi/libstub: Annotate firmware routines as __efiapi")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Cc: stable@vger.kernel.org
Link: d1ad006a8f
[nathan: Fix conflict due to lack of c6dbd3e5e69c in older trees]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5566e68d829f5d87670d5984c1c2ccb4c518405f ]
arch_rmrr_sanity_check() warns if the RMRR is not covered by an ACPI
Reserved region, but it seems like it should accept an NVS region as
well. The ACPI spec
https://uefi.org/specs/ACPI/6.5/15_System_Address_Map_Interfaces.html
uses similar wording for "Reserved" and "NVS" region types; for NVS
regions it says "This range of addresses is in use or reserved by the
system and must not be used by the operating system."
There is an old comment on this mailing list that also suggests NVS
regions should pass the arch_rmrr_sanity_check() test:
The warnings come from arch_rmrr_sanity_check() since it checks whether
the region is E820_TYPE_RESERVED. However, if the purpose of the check
is to detect RMRR has regions that may be used by OS as free memory,
isn't E820_TYPE_NVS safe, too?
This patch overlaps with another proposed patch that would add the region
type to the log since sometimes the bug reporter sees this log on the
console but doesn't know to include the kernel log:
https://lore.kernel.org/lkml/20220611204859.234975-3-atomlin@redhat.com/
Here's an example of the "Firmware Bug" apparent false positive (wrapped
for line length):
DMAR: [Firmware Bug]: No firmware reserved region can cover this RMRR
[0x000000006f760000-0x000000006f762fff], contact BIOS vendor for
fixes
DMAR: [Firmware Bug]: Your BIOS is broken; bad RMRR
[0x000000006f760000-0x000000006f762fff]
This is the snippet from the e820 table:
BIOS-e820: [mem 0x0000000068bff000-0x000000006ebfefff] reserved
BIOS-e820: [mem 0x000000006ebff000-0x000000006f9fefff] ACPI NVS
BIOS-e820: [mem 0x000000006f9ff000-0x000000006fffefff] ACPI data
Fixes: f036c7fa0ab6 ("iommu/vt-d: Check VT-d RMRR region in BIOS is reported as reserved")
Cc: Will Mortensen <will@extrahop.com>
Link: https://lore.kernel.org/linux-iommu/64a5843d-850d-e58c-4fc2-0a0eeeb656dc@nec.com/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216443
Signed-off-by: Charlotte Tan <charlotte@extrahop.com>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Link: https://lore.kernel.org/r/20220929044449.32515-1-charlotte@extrahop.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 71eac7063698b7d7b8fafb1683ac24a034541141 upstream.
Today, core ID is assumed to be unique within each package.
But an AlderLake-N platform adds a Module level between core and package,
Linux excludes the unknown modules bits from the core ID, resulting in
duplicate core ID's.
To keep core ID unique within a package, Linux must include all APIC-ID
bits for known or unknown levels above the core and below the package
in the core ID.
It is important to understand that core ID's have always come directly
from the APIC-ID encoding, which comes from the BIOS. Thus there is no
guarantee that they start at 0, or that they are contiguous.
As such, naively using them for array indexes can be problematic.
[ dhansen: un-known -> unknown ]
Fixes: 7745f03eb395 ("x86/topology: Add CPUID.1F multi-die/package support")
Suggested-by: Len Brown <len.brown@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221014090147.1836-5-rui.zhang@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2b12a7a126d62bdbd81f4923c21bf6e9a7fbd069 upstream.
CPUID.1F/B does not enumerate Package level explicitly, instead, all the
APIC-ID bits above the enumerated levels are assumed to be package ID
bits.
Current code gets package ID by shifting out all the APIC-ID bits that
Linux supports, rather than shifting out all the APIC-ID bits that
CPUID.1F enumerates. This introduces problems when CPUID.1F enumerates a
level that Linux does not support.
For example, on a single package AlderLake-N, there are 2 Ecore Modules
with 4 atom cores in each module. Linux does not support the Module
level and interprets the Module ID bits as package ID and erroneously
reports a multi module system as a multi-package system.
Fix this by using APIC-ID bits above all the CPUID.1F enumerated levels
as package ID.
[ dhansen: spelling fix ]
Fixes: 7745f03eb395 ("x86/topology: Add CPUID.1F multi-die/package support")
Suggested-by: Len Brown <len.brown@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221014090147.1836-4-rui.zhang@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 67bf6493449b09590f9f71d7df29efb392b12d25 upstream.
AMD systems support zero CBM (capacity bit mask) for cache allocation.
That is reflected in rdt_init_res_defs_amd() by:
r->cache.arch_has_empty_bitmaps = true;
However given the unified code in cbm_validate(), checking for:
val == 0 && !arch_has_empty_bitmaps
is not enough because of another check in cbm_validate():
if ((zero_bit - first_bit) < r->cache.min_cbm_bits)
The default value of r->cache.min_cbm_bits = 1.
Leading to:
$ cd /sys/fs/resctrl
$ mkdir foo
$ cd foo
$ echo L3:0=0 > schemata
-bash: echo: write error: Invalid argument
$ cat /sys/fs/resctrl/info/last_cmd_status
Need at least 1 bits in the mask
Initialize the min_cbm_bits to 0 for AMD. Also, remove the default
setting of min_cbm_bits and initialize it separately.
After the fix:
$ cd /sys/fs/resctrl
$ mkdir foo
$ cd foo
$ echo L3:0=0 > schemata
$ cat /sys/fs/resctrl/info/last_cmd_status
ok
Fixes: 316e7f901f5a ("x86/resctrl: Add struct rdt_cache::arch_has_{sparse, empty}_bitmaps")
Co-developed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/lkml/20220517001234.3137157-1-eranian@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e7ad18d1169c62e6c78c01ff693fd362d9d65278 upstream.
Currently, the patch application logic checks whether the revision
needs to be applied on each logical CPU (SMT thread). Therefore, on SMT
designs where the microcode engine is shared between the two threads,
the application happens only on one of them as that is enough to update
the shared microcode engine.
However, there are microcode patches which do per-thread modification,
see Link tag below.
Therefore, drop the revision check and try applying on each thread. This
is what the BIOS does too so this method is very much tested.
Btw, change only the early paths. On the late loading paths, there's no
point in doing per-thread modification because if is it some case like
in the bugzilla below - removing a CPUID flag - the kernel cannot go and
un-use features it has detected are there early. For that, one should
use early loading anyway.
[ bp: Fixes does not contain the oldest commit which did check for
equality but that is good enough. ]
Fixes: 8801b3fcb574 ("x86/microcode/AMD: Rework container parsing")
Reported-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
Cc: <stable@vger.kernel.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216211
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c243cecb58e3905baeace8827201c14df8481e2a upstream.
The requirement for 64-bit address filters is that they are canonical
addresses. In other respects any address range is allowed which would
include user space addresses.
That can be useful for tracing virtual machine guests because address
filtering can be used to advantage in place of current privilege level
(CPL) filtering.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220131072453.2839535-2-adrian.hunter@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f9781bb18ed828e7b83b7bac4a4ad7cd497ee7d7 ]
When memory poison consumption machine checks fire, MCE notifier
handlers like nfit_handle_mce() record the impacted physical address
range which is reported by the hardware in the MCi_MISC MSR. The error
information includes data about blast radius, i.e. how many cachelines
did the hardware determine are impacted. A recent change
7917f9cdb503 ("acpi/nfit: rely on mce->misc to determine poison granularity")
updated nfit_handle_mce() to stop hard coding the blast radius value of
1 cacheline, and instead rely on the blast radius reported in 'struct
mce' which can be up to 4K (64 cachelines).
It turns out that apei_mce_report_mem_error() had a similar problem in
that it hard coded a blast radius of 4K rather than reading the blast
radius from the error information. Fix apei_mce_report_mem_error() to
convey the proper poison granularity.
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/7ed50fd8-521e-cade-77b1-738b8bfb8502@oracle.com
Link: https://lore.kernel.org/r/20220826233851.1319100-1-jane.chu@oracle.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3e1730842f142add55dc658929221521a9ea62b6 ]
Clang produces a false positive when building with CONFIG_FORTIFY_SOURCE=y
and CONFIG_UBSAN_BOUNDS=y when operating on an array with a dynamic
offset. Work around this by using a direct assignment of an empty
instance. Avoids this warning:
../include/linux/fortify-string.h:309:4: warning: call to __write_overflow_field declared with 'warn
ing' attribute: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wat
tribute-warning]
__write_overflow_field(p_size_field, size);
^
which was isolated to the memset() call in xen_load_idt().
Note that this looks very much like another bug that was worked around:
https://github.com/ClangBuiltLinux/linux/issues/1592
Cc: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: xen-devel@lists.xenproject.org
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/lkml/41527d69-e8ab-3f86-ff37-6b298c01d5bc@oracle.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ea9da788a61e47e7ab9cbad397453e51cd82ac0d ]
Section 1.9 of TLFS v6.0b says:
"All structures are padded in such a way that fields are aligned
naturally (that is, an 8-byte field is aligned to an offset of 8 bytes
and so on)".
'struct enlightened_vmcs' has a glitch:
...
struct {
u32 nested_flush_hypercall:1; /* 836: 0 4 */
u32 msr_bitmap:1; /* 836: 1 4 */
u32 reserved:30; /* 836: 2 4 */
} hv_enlightenments_control; /* 836 4 */
u32 hv_vp_id; /* 840 4 */
u64 hv_vm_id; /* 844 8 */
u64 partition_assist_page; /* 852 8 */
...
And the observed values in 'partition_assist_page' make no sense at
all. Fix the layout by padding the structure properly.
Fixes: 68d1eb72ee99 ("x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220830133737.1539624-2-vkuznets@redhat.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 30ea703a38ef76ca119673cd8bdd05c6e068e2ac ]
Include the header containing the prototype of init_ia32_feat_ctl(),
solving the following warning:
$ make W=1 arch/x86/kernel/cpu/feat_ctl.o
arch/x86/kernel/cpu/feat_ctl.c:112:6: warning: no previous prototype for ‘init_ia32_feat_ctl’ [-Wmissing-prototypes]
112 | void init_ia32_feat_ctl(struct cpuinfo_x86 *c)
This warning appeared after commit
5d5103595e9e5 ("x86/cpu: Reinitialize IA32_FEAT_CTL MSR on BSP during wakeup")
had moved the function init_ia32_feat_ctl()'s prototype from
arch/x86/kernel/cpu/cpu.h to arch/x86/include/asm/cpu.h.
Note that, before the commit mentioned above, the header include "cpu.h"
(arch/x86/kernel/cpu/cpu.h) was added by commit
0e79ad863df43 ("x86/cpu: Fix a -Wmissing-prototypes warning for init_ia32_feat_ctl()")
solely to fix init_ia32_feat_ctl()'s missing prototype. So, the header
include "cpu.h" is no longer necessary.
[ bp: Massage commit message. ]
Fixes: 5d5103595e9e5 ("x86/cpu: Reinitialize IA32_FEAT_CTL MSR on BSP during wakeup")
Signed-off-by: Luciano Leão <lucianorsleao@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nícolas F. R. A. Prado <n@nfraprado.net>
Link: https://lore.kernel.org/r/20220922200053.1357470-1-lucianorsleao@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 712f210a457d9c32414df246a72781550bc23ef6 ]
In preparation for reducing the use of ksize(), record the actual
allocation size for later memcpy(). This avoids copying extra
(uninitialized!) bytes into the patch buffer when the requested
allocation size isn't exactly the size of a kmalloc bucket.
Additionally, fix potential future issues where runtime bounds checking
will notice that the buffer was allocated to a smaller value than
returned by ksize().
Fixes: 757885e94a22 ("x86, microcode, amd: Early microcode patch loading support for AMD")
Suggested-by: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/lkml/CA+DvKQ+bp7Y7gmaVhacjv9uF6Ar-o4tet872h4Q8RPYPJjcJQA@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 499c8bb4693d1c8d8f3d6dd38e5bdde3ff5bd906 ]
The current pseudo_lock.c code overwrites the value of the
MSR_MISC_FEATURE_CONTROL to 0 even if the original value is not 0.
Therefore, modify it to save and restore the original values.
Fixes: 018961ae5579 ("x86/intel_rdt: Pseudo-lock region creation/removal core")
Fixes: 443810fe6160 ("x86/intel_rdt: Create debugfs files for pseudo-locking testing")
Fixes: 8a2fc0e1bc0c ("x86/intel_rdt: More precise L2 hit/miss measurements")
Signed-off-by: Kohei Tarumizu <tarumizu.kohei@fujitsu.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/eb660f3c2010b79a792c573c02d01e8e841206ad.1661358182.git.reinette.chatre@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit eba9799b5a6efe2993cf92529608e4aa8163d73b upstream.
Deliberately truncate the exception error code when shoving it into the
VMCS (VM-Entry field for vmcs01 and vmcs02, VM-Exit field for vmcs12).
Intel CPUs are incapable of handling 32-bit error codes and will never
generate an error code with bits 31:16, but userspace can provide an
arbitrary error code via KVM_SET_VCPU_EVENTS. Failure to drop the bits
on exception injection results in failed VM-Entry, as VMX disallows
setting bits 31:16. Setting the bits on VM-Exit would at best confuse
L1, and at worse induce a nested VM-Entry failure, e.g. if L1 decided to
reinject the exception back into L2.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-3-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit def9d705c05eab3fdedeb10ad67907513b12038e upstream.
Don't propagate vmcs12's VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL to vmcs02.
KVM doesn't disallow L1 from using VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
even when KVM itself doesn't use the control, e.g. due to the various
CPU errata that where the MSR can be corrupted on VM-Exit.
Preserve KVM's (vmcs01) setting to hopefully avoid having to toggle the
bit in vmcs02 at a later point. E.g. if KVM is loading PERF_GLOBAL_CTRL
when running L1, then odds are good KVM will also load the MSR when
running L2.
Fixes: 8bf00a529967 ("KVM: VMX: add support for switching of PERF_GLOBAL_CTRL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20220830133737.1539624-18-vkuznets@redhat.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d953540430c5af57f5de97ea9e36253908204027 upstream.
Drop pending exceptions and events queued for re-injection when leaving
nested guest mode, even if the "exit" is due to VM-Fail, SMI, or forced
by host userspace. Failure to purge events could result in an event
belonging to L2 being injected into L1.
This _should_ never happen for VM-Fail as all events should be blocked by
nested_run_pending, but it's possible if KVM, not the L1 hypervisor, is
the source of VM-Fail when running vmcs02.
SMI is a nop (barring unknown bugs) as recognition of SMI and thus entry
to SMM is blocked by pending exceptions and re-injected events.
Forced exit is definitely buggy, but has likely gone unnoticed because
userspace probably follows the forced exit with KVM_SET_VCPU_EVENTS (or
some other ioctl() that purges the queue).
Fixes: 4f350c6dbcb9 ("kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-2-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6aa5c47c351b22c21205c87977c84809cd015fcf upstream.
The emulator checks the wrong variable while setting the CPU
interruptibility state, the target segment is embedded in the instruction
opcode, not the ModR/M register. Fix the condition.
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Fixes: a5457e7bcf9a ("KVM: emulate: POP SS triggers a MOV SS shadow too")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20220821215900.1419215-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bd71558d585ac61cfd799db7f25e78dca404dd7a ]
Since binutils 2.39, ld will print a warning if any stack section is
executable, which is the default for stack sections on files without a
.note.GNU-stack section.
This was fixed for x86 in commit ffcf9c5700e4 ("x86: link vdso and boot with -z noexecstack --no-warn-rwx-segments"),
but remained broken for UML, resulting in several warnings:
/usr/bin/ld: warning: arch/x86/um/vdso/vdso.o: missing .note.GNU-stack section implies executable stack
/usr/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
/usr/bin/ld: warning: .tmp_vmlinux.kallsyms1 has a LOAD segment with RWX permissions
/usr/bin/ld: warning: .tmp_vmlinux.kallsyms1.o: missing .note.GNU-stack section implies executable stack
/usr/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
/usr/bin/ld: warning: .tmp_vmlinux.kallsyms2 has a LOAD segment with RWX permissions
/usr/bin/ld: warning: .tmp_vmlinux.kallsyms2.o: missing .note.GNU-stack section implies executable stack
/usr/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
/usr/bin/ld: warning: vmlinux has a LOAD segment with RWX permissions
Link both the VDSO and vmlinux with -z noexecstack, fixing the warnings
about .note.GNU-stack sections. In addition, pass --no-warn-rwx-segments
to dodge the remaining warnings about LOAD segments with RWX permissions
in the kallsyms objects. (Note that this flag is apparently not
available on lld, so hide it behind a test for BFD, which is what the
x86 patch does.)
Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ffcf9c5700e49c0aee42dcba9a12ba21338e8136
Link: https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=ba951afb99912da01a6e8434126b8fac7aa75107
Signed-off-by: David Gow <davidgow@google.com>
Reviewed-by: Lukas Straub <lukasstraub2@web.de>
Tested-by: Lukas Straub <lukasstraub2@web.de>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d27fff3499671dc23a08efd01cdb8b3764a391c4 ]
arch.tls_array is statically allocated so checking for NULL doesn't
make sense. This causes the compiler warning below.
Remove the checks to silence these warnings.
../arch/x86/um/tls_32.c: In function 'get_free_idx':
../arch/x86/um/tls_32.c:68:13: warning: the comparison will always evaluate as 'true' for the address of 'tls_array' will never be NULL [-Waddress]
68 | if (!t->arch.tls_array)
| ^
In file included from ../arch/x86/um/asm/processor.h:10,
from ../include/linux/rcupdate.h:30,
from ../include/linux/rculist.h:11,
from ../include/linux/pid.h:5,
from ../include/linux/sched.h:14,
from ../arch/x86/um/tls_32.c:7:
../arch/x86/um/asm/processor_32.h:22:31: note: 'tls_array' declared here
22 | struct uml_tls_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
| ^~~~~~~~~
../arch/x86/um/tls_32.c: In function 'get_tls_entry':
../arch/x86/um/tls_32.c:243:13: warning: the comparison will always evaluate as 'true' for the address of 'tls_array' will never be NULL [-Waddress]
243 | if (!t->arch.tls_array)
| ^
../arch/x86/um/asm/processor_32.h:22:31: note: 'tls_array' declared here
22 | struct uml_tls_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
| ^~~~~~~~~
Signed-off-by: Lukas Straub <lukasstraub2@web.de>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit efd608fa7403ba106412b437f873929e2c862e28 upstream.
I encountered some occasional crashes of poke_int3_handler() when
kprobes are set, while accessing desc->vec.
The text poke mechanism claims to have an RCU-like behavior, but it
does not appear that there is any quiescent state to ensure that
nobody holds reference to desc. As a result, the following race
appears to be possible, which can lead to memory corruption.
CPU0 CPU1
---- ----
text_poke_bp_batch()
-> smp_store_release(&bp_desc, &desc)
[ notice that desc is on
the stack ]
poke_int3_handler()
[ int3 might be kprobe's
so sync events are do not
help ]
-> try_get_desc(descp=&bp_desc)
desc = __READ_ONCE(bp_desc)
if (!desc) [false, success]
WRITE_ONCE(bp_desc, NULL);
atomic_dec_and_test(&desc.refs)
[ success, desc space on the stack
is being reused and might have
non-zero value. ]
arch_atomic_inc_not_zero(&desc->refs)
[ might succeed since desc points to
stack memory that was freed and might
be reused. ]
Fix this issue with small backportable patch. Instead of trying to
make RCU-like behavior for bp_desc, just eliminate the unnecessary
level of indirection of bp_desc, and hold the whole descriptor as a
global. Anyhow, there is only a single descriptor at any given
moment.
Fixes: 1f676247f36a4 ("x86/alternatives: Implement a better poke_int3_handler() completion scheme")
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@kernel.org
Link: https://lkml.kernel.org/r/20220920224743.3089-1-namit@vmware.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit aae2e72229cdb21f90df2dbe4244c977e5d3265b ]
The only thing reported by CPUID.9 is the value of
IA32_PLATFORM_DCA_CAP[31:0] in EAX. This MSR doesn't even exist in the
guest, since CPUID.1:ECX.DCA[bit 18] is clear in the guest.
Clear CPUID.9 in KVM_GET_SUPPORTED_CPUID.
Fixes: 24c82e576b78 ("KVM: Sanitize cpuid")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220922231854.249383-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 133e049a3f8c91b175029fb6a59b6039d5e79cba upstream.
Unsanitized pages trigger WARN_ON() unconditionally, which can panic the
whole computer, if /proc/sys/kernel/panic_on_warn is set.
In sgx_init(), if misc_register() fails or misc_register() succeeds but
neither sgx_drv_init() nor sgx_vepc_init() succeeds, then ksgxd will be
prematurely stopped. This may leave unsanitized pages, which will result a
false warning.
Refine __sgx_sanitize_pages() to return:
1. Zero when the sanitization process is complete or ksgxd has been
requested to stop.
2. The number of unsanitized pages otherwise.
Fixes: 51ab30eb2ad4 ("x86/sgx: Replace section->init_laundry_list with sgx_dirty_page_list")
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/linux-sgx/20220825051827.246698-1-jarkko@kernel.org/T/#u
Link: https://lkml.kernel.org/r/20220906000221.34286-2-jarkko@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 68be1306caea8948738cab04014ca4506b590d38 ]
Consolidate rmap_recycle and rmap_add into a single function since they
are only ever called together (and only from one place). This has a nice
side effect of eliminating an extra kvm_vcpu_gfn_to_memslot(). In
addition it makes mmu_set_spte(), which is a very long function, a
little shorter.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stable-dep-of: 604f533262ae ("KVM: x86/mmu: add missing update to max_mmu_rmap_size")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 50b2d49bafa16e6311ab2da82f5aafc5f9ada99b upstream.
Inject #UD when emulating XSETBV if CR4.OSXSAVE is not set. This also
covers the "XSAVE not supported" check, as setting CR4.OSXSAVE=1 #GPs if
XSAVE is not supported (and userspace gets to keep the pieces if it
forces incoherent vCPU state).
Add a comment to kvm_emulate_xsetbv() to call out that the CPU checks
CR4.OSXSAVE before checking for intercepts. AMD'S APM implies that #UD
has priority (says that intercepts are checked before #GP exceptions),
while Intel's SDM says nothing about interception priority. However,
testing on hardware shows that both AMD and Intel CPUs prioritize the #UD
over interception.
Fixes: 02d4160fbd76 ("x86: KVM: add xsetbv to the emulator")
Cc: stable@vger.kernel.org
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220824033057.3576315-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 683412ccf61294d727ead4a73d97397396e69a6b upstream.
Flush the CPU caches when memory is reclaimed from an SEV guest (where
reclaim also includes it being unmapped from KVM's memslots). Due to lack
of coherency for SEV encrypted memory, failure to flush results in silent
data corruption if userspace is malicious/broken and doesn't ensure SEV
guest memory is properly pinned and unpinned.
Cache coherency is not enforced across the VM boundary in SEV (AMD APM
vol.2 Section 15.34.7). Confidential cachelines, generated by confidential
VM guests have to be explicitly flushed on the host side. If a memory page
containing dirty confidential cachelines was released by VM and reallocated
to another user, the cachelines may corrupt the new user at a later time.
KVM takes a shortcut by assuming all confidential memory remain pinned
until the end of VM lifetime. Therefore, KVM does not flush cache at
mmu_notifier invalidation events. Because of this incorrect assumption and
the lack of cache flushing, malicous userspace can crash the host kernel:
creating a malicious VM and continuously allocates/releases unpinned
confidential memory pages when the VM is running.
Add cache flush operations to mmu_notifier operations to ensure that any
physical memory leaving the guest VM get flushed. In particular, hook
mmu_notifier_invalidate_range_start and mmu_notifier_release events and
flush cache accordingly. The hook after releasing the mmu lock to avoid
contention with other vCPUs.
Cc: stable@vger.kernel.org
Suggested-by: Sean Christpherson <seanjc@google.com>
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[OP: adjusted KVM_X86_OP_OPTIONAL() -> KVM_X86_OP_NULL, applied
kvm_arch_guest_memory_reclaimed() call in kvm_set_memslot()]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8b023accc8df70e72f7704d29fead7ca914d6837 ]
While looking into a bug related to the compiler's handling of addresses
of labels, I noticed some uses of _THIS_IP_ seemed unused in lockdep.
Drive by cleanup.
-Wunused-parameter:
kernel/locking/lockdep.c:1383:22: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4246:48: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4844:19: warning: unused parameter 'ip'
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20220314221909.2027027-1-ndesaulniers@google.com
Stable-dep-of: 54c3931957f6 ("tracing: hold caller_addr to hardirq_{enable,disable}_ip")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0204750bd4c6ccc2fb7417618477f10373b33f56 ]
KVM should not claim to virtualize unknown IA32_ARCH_CAPABILITIES
bits. When kvm_get_arch_capabilities() was originally written, there
were only a few bits defined in this MSR, and KVM could virtualize all
of them. However, over the years, several bits have been defined that
KVM cannot just blindly pass through to the guest without additional
work (such as virtualizing an MSR promised by the
IA32_ARCH_CAPABILITES feature bit).
Define a mask of supported IA32_ARCH_CAPABILITIES bits, and mask off
any other bits that are set in the hardware MSR.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 5b76a3cff011 ("KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20220830174947.2182144-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 020dac4187968535f089f83f376a72beb3451311 ]
Regardless of the 'msr' argument passed to the VMX version of
msr_write_intercepted(), the function always checks to see if a
specific MSR (IA32_SPEC_CTRL) is intercepted for write. This behavior
seems unintentional and unexpected.
Modify the function so that it checks to see if the provided 'msr'
index is intercepted for write.
Fixes: 67f4b9969c30 ("KVM: nVMX: Handle dynamic MSR intercept toggling")
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220810213050.2655000-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d4bdb0bebc5ba3299d74f123c782d99cd4e25c49 upstream.
With the existing code in store_latency_data(), the memory operation (mem_op)
returned to the user is always OP_LOAD where in fact, it should be OP_STORE.
This comes from the fact that the function is simply grabbing the information
from a data source map which covers only load accesses. Intel 12th gen CPU
offers precise store sampling that captures both the data source and latency.
Therefore it can use the data source mapping table but must override the
memory operation to reflect stores instead of loads.
Fixes: 61b985e3e775 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids")
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220818054613.1548130-1-eranian@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 11745ecfe8fea4b4a4c322967a7605d2ecbd5080 upstream.
Existing code was generating bogus counts for the SNB IMC bandwidth counters:
$ perf stat -a -I 1000 -e uncore_imc/data_reads/,uncore_imc/data_writes/
1.000327813 1,024.03 MiB uncore_imc/data_reads/
1.000327813 20.73 MiB uncore_imc/data_writes/
2.000580153 261,120.00 MiB uncore_imc/data_reads/
2.000580153 23.28 MiB uncore_imc/data_writes/
The problem was introduced by commit:
07ce734dd8ad ("perf/x86/intel/uncore: Clean up client IMC")
Where the read_counter callback was replace to point to the generic
uncore_mmio_read_counter() function.
The SNB IMC counters are freerunnig 32-bit counters laid out contiguously in
MMIO. But uncore_mmio_read_counter() is using a readq() call to read from
MMIO therefore reading 64-bit from MMIO. Although this is okay for the
uncore_perf_event_update() function because it is shifting the value based
on the actual counter width to compute a delta, it is not okay for the
uncore_pmu_event_start() which is simply reading the counter and therefore
priming the event->prev_count with a bogus value which is responsible for
causing bogus deltas in the perf stat command above.
The fix is to reintroduce the custom callback for read_counter for the SNB
IMC PMU and use readl() instead of readq(). With the change the output of
perf stat is back to normal:
$ perf stat -a -I 1000 -e uncore_imc/data_reads/,uncore_imc/data_writes/
1.000120987 296.94 MiB uncore_imc/data_reads/
1.000120987 138.42 MiB uncore_imc/data_writes/
2.000403144 175.91 MiB uncore_imc/data_reads/
2.000403144 68.50 MiB uncore_imc/data_writes/
Fixes: 07ce734dd8ad ("perf/x86/intel/uncore: Clean up client IMC")
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20220803160031.1379788-1-eranian@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 332924973725e8cdcc783c175f68cf7e162cb9e5 upstream.
Turns out that i386 doesn't unconditionally have LFENCE, as such the
loop in __FILL_RETURN_BUFFER isn't actually speculation safe on such
chips.
Fixes: ba6e31af2be9 ("x86/speculation: Add LFENCE to RSB fill sequence")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/Yv9tj9vbQ9nNlXoY@worktop.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4e3aa9238277597c6c7624f302d81a7b568b6f2d upstream.
Commit 2b1299322016 ("x86/speculation: Add RSB VM Exit protections")
made a right mess of the RSB stuffing, rewrite the whole thing to not
suck.
Thanks to Andrew for the enlightening comment about Post-Barrier RSB
things so we can make this code less magical.
Cc: stable@vger.kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YvuNdDWoUZSBjYcm@worktop.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7df548840c496b0141fb2404b889c346380c2b22 upstream.
Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which may not be correct. Vulnerability status for these older CPUs is
unknown.
Add known-not-affected CPUs to the whitelist. Report "unknown"
mitigation status for CPUs that are not in blacklist, whitelist and also
don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware
immunity to MMIO Stale Data vulnerabilities.
Mitigation is not deployed when the status is unknown.
[ bp: Massage, fixup. ]
Fixes: 8d50cdf8b834 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data")
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fc2e426b1161761561624ebd43ce8c8d2fa058da upstream.
When meeting ftrace trampolines in ORC unwinding, unwinder uses address
of ftrace_{regs_}call address to find the ORC entry, which gets next frame at
sp+176.
If there is an IRQ hitting at sub $0xa8,%rsp, the next frame should be
sp+8 instead of 176. It makes unwinder skip correct frame and throw
warnings such as "wrong direction" or "can't access registers", etc,
depending on the content of the incorrect frame address.
By adding the base address ftrace_{regs_}caller with the offset
*ip - ops->trampoline*, we can get the correct address to find the ORC entry.
Also change "caller" to "tramp_addr" to make variable name conform to
its content.
[ mingo: Clarified the changelog a bit. ]
Fixes: 6be7fa3c74d1 ("ftrace, orc, x86: Handle ftrace dynamically allocated trampolines")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220819084334.244016-1-chenzhongjin@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 32ba156df1b1c8804a4e5be5339616945eafea22 upstream.
On the platform with Arch LBR, the HW raw branch type encoding may leak
to the perf tool when the SAVE_TYPE option is not set.
In the intel_pmu_store_lbr(), the HW raw branch type is stored in
lbr_entries[].type. If the SAVE_TYPE option is set, the
lbr_entries[].type will be converted into the generic PERF_BR_* type
in the intel_pmu_lbr_filter() and exposed to the user tools.
But if the SAVE_TYPE option is NOT set by the user, the current perf
kernel doesn't clear the field. The HW raw branch type leaks.
There are two solutions to fix the issue for the Arch LBR.
One is to clear the field if the SAVE_TYPE option is NOT set.
The other solution is to unconditionally convert the branch type and
expose the generic type to the user tools.
The latter is implemented here, because
- The branch type is valuable information. I don't see a case where
you would not benefit from the branch type. (Stephane Eranian)
- Not having the branch type DOES NOT save any space in the
branch record (Stephane Eranian)
- The Arch LBR HW can retrieve the common branch types from the
LBR_INFO. It doesn't require the high overhead SW disassemble.
Fixes: 47125db27e47 ("perf/x86/intel/lbr: Support Architectural LBR")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220816125612.2042397-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8924779df820c53875abaeb10c648e9cb75b46d4 upstream.
When kprobes emulates JNG/JNLE instructions on x86 it uses the wrong
condition. For JNG (opcode: 0F 8E), according to Intel SDM, the jump is
performed if (ZF == 1 or SF != OF). However the kernel emulation
currently uses 'and' instead of 'or'.
As a result, setting a kprobe on JNG/JNLE might cause the kernel to
behave incorrectly whenever the kprobe is hit.
Fix by changing the 'and' to 'or'.
Fixes: 6256e668b7af ("x86/kprobes: Use int3 instead of debug trap for single-step")
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220813225943.143767-1-namit@vmware.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 88e0a74902f894fbbc55ad3ad2cb23b4bfba555c upstream.
Commit c164fbb40c43f("x86/mm: thread pgprot_t through
init_memory_mapping()") mistakenly used __pgprot() which doesn't respect
__default_kernel_pte_mask when setting PUD mapping.
Fix it by only setting the one bit we actually need (PSE) and leaving
the other bits (that have been properly masked) alone.
Fixes: c164fbb40c43 ("x86/mm: thread pgprot_t through init_memory_mapping()")
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1f001e9da6bbf482311e45e48f53c2bd2179e59c upstream.
Use the return thunk in ftrace trampolines, if needed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: use memcpy(text_gen_insn) as there is no __text_gen_insn]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e52fc2cf3f662828cc0d51c4b73bed73ad275fce upstream.
Return trampoline must not use indirect branch to return; while this
preserves the RSB, it is fundamentally incompatible with IBT. Instead
use a retpoline like ROP gadget that defeats IBT while not unbalancing
the RSB.
And since ftrace_stub is no longer a plain RET, don't use it to copy
from. Since RET is a trivial instruction, poke it directly.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154318.347296408@infradead.org
[cascardo: remove ENDBR]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit e54fcb0812faebd147de72bd37ad87cc4951c68c.
This temporarily reverts the backport of upstream commit
1f001e9da6bbf482311e45e48f53c2bd2179e59c. It was not correct to copy the
ftrace stub as it would contain a relative jump to the return thunk which
would not apply to the context where it was being copied to, leading to
ftrace support to be broken.
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4496a6f9b45e8cd83343ad86a3984d614e22cf54 ]
Attempt to load PERF_GLOBAL_CTRL during nested VM-Enter/VM-Exit if and
only if the MSR exists (according to the guest vCPU model). KVM has very
misguided handling of VM_{ENTRY,EXIT}_LOAD_IA32_PERF_GLOBAL_CTRL and
attempts to force the nVMX MSR settings to match the vPMU model, i.e. to
hide/expose the control based on whether or not the MSR exists from the
guest's perspective.
KVM's modifications fail to handle the scenario where the vPMU is hidden
from the guest _after_ being exposed to the guest, e.g. by userspace
doing multiple KVM_SET_CPUID2 calls, which is allowed if done before any
KVM_RUN. nested_vmx_pmu_refresh() is called if and only if there's a
recognized vPMU, i.e. KVM will leave the bits in the allow state and then
ultimately reject the MSR load and WARN.
KVM should not force the VMX MSRs in the first place. KVM taking control
of the MSRs was a misguided attempt at mimicking what commit 5f76f6f5ff96
("KVM: nVMX: Do not expose MPX VMX controls when guest MPX disabled",
2018-10-01) did for MPX. However, the MPX commit was a workaround for
another KVM bug and not something that should be imitated (and it should
never been done in the first place).
In other words, KVM's ABI _should_ be that userspace has full control
over the MSRs, at which point triggering the WARN that loading the MSR
must not fail is trivial.
The intent of the WARN is still valid; KVM has consistency checks to
ensure that vmcs12->{guest,host}_ia32_perf_global_ctrl is valid. The
problem is that '0' must be considered a valid value at all times, and so
the simple/obvious solution is to just not actually load the MSR when it
does not exist. It is userspace's responsibility to provide a sane vCPU
model, i.e. KVM is well within its ABI and Intel's VMX architecture to
skip the loads if the MSR does not exist.
Fixes: 03a8871add95 ("KVM: nVMX: Expose load IA32_PERF_GLOBAL_CTRL VM-{Entry,Exit} control")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220722224409.1336532-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b663f0b5f3d665c261256d1f76e98f077c6e56af ]
Add a helper to check of the guest PMU has PERF_GLOBAL_CTRL, which is
unintuitive _and_ diverges from Intel's architecturally defined behavior.
Even worse, KVM currently implements the check using two different (but
equivalent) checks, _and_ there has been at least one attempt to add a
_third_ flavor.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220722224409.1336532-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 98defd2e17803263f49548fea930cfc974d505aa ]
MSR_CORE_PERF_GLOBAL_CTRL is introduced as part of Architecture PMU V2,
as indicated by Intel SDM 19.2.2 and the intel_is_valid_msr() function.
So in the absence of global_ctrl support, all PMCs are enabled as AMD does.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220509102204.62389-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 93255bf92939d948bc86d81c6bb70bb0fecc5db1 ]
Mark all MSR_CORE_PERF_GLOBAL_CTRL and MSR_CORE_PERF_GLOBAL_OVF_CTRL bits
as reserved if there is no guest vPMU. The nVMX VM-Entry consistency
checks do not check for a valid vPMU prior to consuming the masks via
kvm_valid_perf_global_ctrl(), i.e. may incorrectly allow a non-zero mask
to be loaded via VM-Enter or VM-Exit (well, attempted to be loaded, the
actual MSR load will be rejected by intel_is_valid_msr()).
Fixes: f5132b01386b ("KVM: Expose a version 2 architectural PMU to a guests")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220722224409.1336532-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2c985527dd8d283e786ad7a67e532ef7f6f00fac ]
The mask value of fixed counter control register should be dynamic
adjusted with the number of fixed counters. This patch introduces a
variable that includes the reserved bits of fixed counter control
registers. This is a generic code refactoring.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2368048bf5c2ec4b604ac3431564071e89a0bc71 ]
Return '1', not '-1', when handling an illegal WRMSR to a MCi_CTL or
MCi_STATUS MSR. The behavior of "all zeros' or "all ones" for CTL MSRs
is architectural, as is the "only zeros" behavior for STATUS MSRs. I.e.
the intent is to inject a #GP, not exit to userspace due to an unhandled
emulation case. Returning '-1' gets interpreted as -EPERM up the stack
and effecitvely kills the guest.
Fixes: 890ca9aefa78 ("KVM: Add MCE support")
Fixes: 9ffd986c6e4e ("KVM: X86: #GP when guest attempts to write MCi_STATUS register w/o 0")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220512222716.4112548-2-seanjc@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>