1877 Commits

Author SHA1 Message Date
Zqiang
7ed95b0803 rcu-tasks: Convert RCU_LOCKDEP_WARN() to WARN_ONCE()
[ Upstream commit fcd53c8a4dfa38bafb89efdd0b0f718f3a03f884 ]

Kernels built with CONFIG_PROVE_RCU=y and CONFIG_DEBUG_LOCK_ALLOC=y
attempt to emit a warning when the synchronize_rcu_tasks_generic()
function is called during early boot while the rcu_scheduler_active
variable is RCU_SCHEDULER_INACTIVE.  However the warnings is not
actually be printed because the debug_lockdep_rcu_enabled() returns
false, exactly because the rcu_scheduler_active variable is still equal
to RCU_SCHEDULER_INACTIVE.

This commit therefore replaces RCU_LOCKDEP_WARN() with WARN_ONCE()
to force these warnings to actually be printed.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 12:35:29 +02:00
Michal Hocko
cf38a05eb1 rcu: Back off upon fill_page_cache_func() allocation failure
[ Upstream commit 093590c16b447f53e66771c8579ae66c96f6ef61 ]

The fill_page_cache_func() function allocates couple of pages to store
kvfree_rcu_bulk_data structures. This is a lightweight (GFP_NORETRY)
allocation which can fail under memory pressure. The function will,
however keep retrying even when the previous attempt has failed.

This retrying is in theory correct, but in practice the allocation is
invoked from workqueue context, which means that if the memory reclaim
gets stuck, these retries can hog the worker for quite some time.
Although the workqueues subsystem automatically adjusts concurrency, such
adjustment is not guaranteed to happen until the worker context sleeps.
And the fill_page_cache_func() function's retry loop is not guaranteed
to sleep (see the should_reclaim_retry() function).

And we have seen this function cause workqueue lockups:

kernel: BUG: workqueue lockup - pool cpus=93 node=1 flags=0x1 nice=0 stuck for 32s!
[...]
kernel: pool 74: cpus=37 node=0 flags=0x1 nice=0 hung=32s workers=2 manager: 2146
kernel:   pwq 498: cpus=249 node=1 flags=0x1 nice=0 active=4/256 refcnt=5
kernel:     in-flight: 1917:fill_page_cache_func
kernel:     pending: dbs_work_handler, free_work, kfree_rcu_monitor

Originally, we thought that the root cause of this lockup was several
retries with direct reclaim, but this is not yet confirmed.  Furthermore,
we have seen similar lockups without any heavy memory pressure.  This
suggests that there are other factors contributing to these lockups.
However, it is not really clear that endless retries are desireable.

So let's make the fill_page_cache_func() function back off after
allocation failure.

Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 12:35:29 +02:00
Zqiang
3e2d8b89f0 rcu: Avoid triggering strict-GP irq-work when RCU is idle
[ Upstream commit 621189a1fe93cb2b34d62c5cdb9e258bca044813 ]

Kernels built with PREEMPT_RCU=y and RCU_STRICT_GRACE_PERIOD=y trigger
irq-work from rcu_read_unlock(), and the resulting irq-work handler
invokes rcu_preempt_deferred_qs_handle().  The point of this triggering
is to force grace periods to end quickly in order to give tools like KASAN
a better chance of detecting RCU usage bugs such as leaking RCU-protected
pointers out of an RCU read-side critical section.

However, this irq-work triggering is unconditional.  This works, but
there is no point in doing this irq-work unless the current grace period
is waiting on the running CPU or task, which is not the common case.
After all, in the common case there are many rcu_read_unlock() calls
per CPU per grace period.

This commit therefore triggers the irq-work only when the current grace
period is waiting on the running CPU or task.

This change was tested as follows on a four-CPU system:

	echo rcu_preempt_deferred_qs_handler > /sys/kernel/debug/tracing/set_ftrace_filter
	echo 1 > /sys/kernel/debug/tracing/function_profile_enabled
	insmod rcutorture.ko
	sleep 20
	rmmod rcutorture.ko
	echo 0 > /sys/kernel/debug/tracing/function_profile_enabled
	echo > /sys/kernel/debug/tracing/set_ftrace_filter

This procedure produces results in this per-CPU set of files:

	/sys/kernel/debug/tracing/trace_stat/function*

Sample output from one of these files is as follows:

  Function                               Hit    Time            Avg             s^2
  --------                               ---    ----            ---             ---
  rcu_preempt_deferred_qs_handle      838746    182650.3 us     0.217 us        0.004 us

The baseline sum of the "Hit" values (the number of calls to this
function) was 3,319,015.  With this commit, that sum was 1,140,359,
for a 2.9x reduction.  The worst-case variance across the CPUs was less
than 25%, so this large effect size is statistically significant.

The raw data is available in the Link: URL.

Link: https://lore.kernel.org/all/20220808022626.12825-1-qiang1.zhang@intel.com/
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 12:35:29 +02:00
Frederic Weisbecker
621595f771 rcutorture: Fix ksoftirqd boosting timing and iteration
[ Upstream commit 3002153a91a9732a6d1d0bb95138593c7da15743 ]

The RCU priority boosting can fail in two situations:

1) If (nr_cpus= > maxcpus=), which means if the total number of CPUs
is higher than those brought online at boot, then torture_onoff() may
later bring up CPUs that weren't online on boot. Now since rcutorture
initialization only boosts the ksoftirqds of the CPUs that have been
set online on boot, the CPUs later set online by torture_onoff won't
benefit from the boost, making RCU priority boosting fail.

2) The ksoftirqd kthreads are boosted after the creation of
rcu_torture_boost() kthreads, which opens a window large enough for these
rcu_torture_boost() kthreads to wait (despite running at FIFO priority)
for ksoftirqds that are still running at SCHED_NORMAL priority.

The issues can trigger for example with:

	./kvm.sh --configs TREE01 --kconfig "CONFIG_RCU_BOOST=y"

	[   34.968561] rcu-torture: !!!
	[   34.968627] ------------[ cut here ]------------
	[   35.014054] WARNING: CPU: 4 PID: 114 at kernel/rcu/rcutorture.c:1979 rcu_torture_stats_print+0x5ad/0x610
	[   35.052043] Modules linked in:
	[   35.069138] CPU: 4 PID: 114 Comm: rcu_torture_sta Not tainted 5.18.0-rc1 #1
	[   35.096424] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014
	[   35.154570] RIP: 0010:rcu_torture_stats_print+0x5ad/0x610
	[   35.198527] Code: 63 1b 02 00 74 02 0f 0b 48 83 3d 35 63 1b 02 00 74 02 0f 0b 48 83 3d 21 63 1b 02 00 74 02 0f 0b 48 83 3d 0d 63 1b 02 00 74 02 <0f> 0b 83 eb 01 0f 8e ba fc ff ff 0f 0b e9 b3 fc ff f82
	[   37.251049] RSP: 0000:ffffa92a0050bdf8 EFLAGS: 00010202
	[   37.277320] rcu: De-offloading 8
	[   37.290367] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
	[   37.290387] RDX: 0000000000000000 RSI: 00000000ffffbfff RDI: 00000000ffffffff
	[   37.290398] RBP: 000000000000007b R08: 0000000000000000 R09: c0000000ffffbfff
	[   37.290407] R10: 000000000000002a R11: ffffa92a0050bc18 R12: ffffa92a0050be20
	[   37.290417] R13: ffffa92a0050be78 R14: 0000000000000000 R15: 000000000001bea0
	[   37.290427] FS:  0000000000000000(0000) GS:ffff96045eb00000(0000) knlGS:0000000000000000
	[   37.290448] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
	[   37.290460] CR2: 0000000000000000 CR3: 000000001dc0c000 CR4: 00000000000006e0
	[   37.290470] Call Trace:
	[   37.295049]  <TASK>
	[   37.295065]  ? preempt_count_add+0x63/0x90
	[   37.295095]  ? _raw_spin_lock_irqsave+0x12/0x40
	[   37.295125]  ? rcu_torture_stats_print+0x610/0x610
	[   37.295143]  rcu_torture_stats+0x29/0x70
	[   37.295160]  kthread+0xe3/0x110
	[   37.295176]  ? kthread_complete_and_exit+0x20/0x20
	[   37.295193]  ret_from_fork+0x22/0x30
	[   37.295218]  </TASK>

Fix this with boosting the ksoftirqds kthreads from the boosting
hotplug callback itself and before the boosting kthreads are created.

Fixes: ea6d962e80b6 ("rcutorture: Judge RCU priority boosting on grace periods, not callbacks")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:23 +02:00
Paul E. McKenney
489b93ac63 rcutorture: Don't cpuhp_remove_state() if cpuhp_setup_state() failed
[ Upstream commit fd13fe16db0d82612b260640f4e26f6d9d1e11fd ]

Currently, in CONFIG_RCU_BOOST kernels, if the rcu_torture_init()
function's call to cpuhp_setup_state() fails, rcu_torture_cleanup()
gamely passes nonsense to cpuhp_remove_state().  This results in
strange and misleading splats.  This commit therefore ensures that if
the rcu_torture_init() function's call to cpuhp_setup_state() fails,
rcu_torture_cleanup() avoids invoking cpuhp_remove_state().

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:22 +02:00
Paul E. McKenney
5a6ff3e32a rcutorture: Warn on individual rcu_torture_init() error conditions
[ Upstream commit efeff6b39b9de4480572c7b0c5eb77204795cb57 ]

When running rcutorture as a module, any rcu_torture_init() issues will be
reflected in the error code from modprobe or insmod, as the case may be.
However, these error codes are not available when running rcutorture
built-in, for example, when using the kvm.sh script.  This commit
therefore adds WARN_ON_ONCE() to allow distinguishing rcu_torture_init()
errors when running rcutorture built-in.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:23:22 +02:00
Paul E. McKenney
2da36b14af rcu: Make TASKS_RUDE_RCU select IRQ_WORK
[ Upstream commit 46e861be589881e0905b9ade3d8439883858721c ]

The TASKS_RUDE_RCU does not select IRQ_WORK, which can result in build
failures for kernels that do not otherwise select IRQ_WORK.  This commit
therefore causes the TASKS_RUDE_RCU Kconfig option to select IRQ_WORK.

Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:32 +02:00
Padmanabha Srinivasaiah
ba722d061b rcu-tasks: Fix race in schedule and flush work
[ Upstream commit f75fd4b9221d93177c50dcfde671b2e907f53e86 ]

While booting secondary CPUs, cpus_read_[lock/unlock] is not keeping
online cpumask stable. The transient online mask results in below
calltrace.

[    0.324121] CPU1: Booted secondary processor 0x0000000001 [0x410fd083]
[    0.346652] Detected PIPT I-cache on CPU2
[    0.347212] CPU2: Booted secondary processor 0x0000000002 [0x410fd083]
[    0.377255] Detected PIPT I-cache on CPU3
[    0.377823] CPU3: Booted secondary processor 0x0000000003 [0x410fd083]
[    0.379040] ------------[ cut here ]------------
[    0.383662] WARNING: CPU: 0 PID: 10 at kernel/workqueue.c:3084 __flush_work+0x12c/0x138
[    0.384850] Modules linked in:
[    0.385403] CPU: 0 PID: 10 Comm: rcu_tasks_rude_ Not tainted 5.17.0-rc3-v8+ #13
[    0.386473] Hardware name: Raspberry Pi 4 Model B Rev 1.4 (DT)
[    0.387289] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[    0.388308] pc : __flush_work+0x12c/0x138
[    0.388970] lr : __flush_work+0x80/0x138
[    0.389620] sp : ffffffc00aaf3c60
[    0.390139] x29: ffffffc00aaf3d20 x28: ffffffc009c16af0 x27: ffffff80f761df48
[    0.391316] x26: 0000000000000004 x25: 0000000000000003 x24: 0000000000000100
[    0.392493] x23: ffffffffffffffff x22: ffffffc009c16b10 x21: ffffffc009c16b28
[    0.393668] x20: ffffffc009e53861 x19: ffffff80f77fbf40 x18: 00000000d744fcc9
[    0.394842] x17: 000000000000000b x16: 00000000000001c2 x15: ffffffc009e57550
[    0.396016] x14: 0000000000000000 x13: ffffffffffffffff x12: 0000000100000000
[    0.397190] x11: 0000000000000462 x10: ffffff8040258008 x9 : 0000000100000000
[    0.398364] x8 : 0000000000000000 x7 : ffffffc0093c8bf4 x6 : 0000000000000000
[    0.399538] x5 : 0000000000000000 x4 : ffffffc00a976e40 x3 : ffffffc00810444c
[    0.400711] x2 : 0000000000000004 x1 : 0000000000000000 x0 : 0000000000000000
[    0.401886] Call trace:
[    0.402309]  __flush_work+0x12c/0x138
[    0.402941]  schedule_on_each_cpu+0x228/0x278
[    0.403693]  rcu_tasks_rude_wait_gp+0x130/0x144
[    0.404502]  rcu_tasks_kthread+0x220/0x254
[    0.405264]  kthread+0x174/0x1ac
[    0.405837]  ret_from_fork+0x10/0x20
[    0.406456] irq event stamp: 102
[    0.406966] hardirqs last  enabled at (101): [<ffffffc0093c8468>] _raw_spin_unlock_irq+0x78/0xb4
[    0.408304] hardirqs last disabled at (102): [<ffffffc0093b8270>] el1_dbg+0x24/0x5c
[    0.409410] softirqs last  enabled at (54): [<ffffffc0081b80c8>] local_bh_enable+0xc/0x2c
[    0.410645] softirqs last disabled at (50): [<ffffffc0081b809c>] local_bh_disable+0xc/0x2c
[    0.411890] ---[ end trace 0000000000000000 ]---
[    0.413000] smp: Brought up 1 node, 4 CPUs
[    0.413762] SMP: Total of 4 processors activated.
[    0.414566] CPU features: detected: 32-bit EL0 Support
[    0.415414] CPU features: detected: 32-bit EL1 Support
[    0.416278] CPU features: detected: CRC32 instructions
[    0.447021] Callback from call_rcu_tasks_rude() invoked.
[    0.506693] Callback from call_rcu_tasks() invoked.

This commit therefore fixes this issue by applying a single-CPU
optimization to the RCU Tasks Rude grace-period process.  The key point
here is that the purpose of this RCU flavor is to force a schedule on
each online CPU since some past event.  But the rcu_tasks_rude_wait_gp()
function runs in the context of the RCU Tasks Rude's grace-period kthread,
so there must already have been a context switch on the current CPU since
the call to either synchronize_rcu_tasks_rude() or call_rcu_tasks_rude().
So if there is only a single CPU online, RCU Tasks Rude's grace-period
kthread does not need to anything at all.

It turns out that the rcu_tasks_rude_wait_gp() function's call to
schedule_on_each_cpu() causes problems during early boot.  During that
time, there is only one online CPU, namely the boot CPU.  Therefore,
applying this single-CPU optimization fixes early-boot instances of
this problem.

Link: https://lore.kernel.org/lkml/20220210184319.25009-1-treasure4paddy@gmail.com/T/
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Padmanabha Srinivasaiah <treasure4paddy@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09 10:22:32 +02:00
Frederic Weisbecker
0060c7bd9e rcu: Apply callbacks processing time limit only on softirq
commit a554ba288845fd3f6f12311fd76a51694233458a upstream.

Time limit only makes sense when callbacks are serviced in softirq mode
because:

_ In case we need to get back to the scheduler,
  cond_resched_tasks_rcu_qs() is called after each callback.

_ In case some other softirq vector needs the CPU, the call to
  local_bh_enable() before cond_resched_tasks_rcu_qs() takes care about
  them via a call to do_softirq().

Therefore, make sure the time limit only applies to softirq mode.

Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[UR: backport to 5.15-stable]
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-12 12:30:26 +02:00
Frederic Weisbecker
2c5029d652 rcu: Fix callbacks processing time limit retaining cond_resched()
commit 3e61e95e2d095e308616cba4ffb640f95a480e01 upstream.

The callbacks processing time limit makes sure we are not exceeding a
given amount of time executing the queue.

However its "continue" clause bypasses the cond_resched() call on
rcuc and NOCB kthreads, delaying it until we reach the limit, which can
be very long...

Make sure the scheduler has a higher priority than the time limit.

Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[UR: backport to 5.15-stable + commit update]
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-12 12:30:26 +02:00
Paul E. McKenney
e34806c6c2 rcu: Mark writes to the rcu_segcblist structure's ->flags field
[ Upstream commit c09929031018913b5783872a8b8cdddef4a543c7 ]

KCSAN reports data races between the rcu_segcblist_clear_flags() and
rcu_segcblist_set_flags() functions, though misreporting the latter
as a call to rcu_segcblist_is_enabled() from call_rcu().  This commit
converts the updates of this field to WRITE_ONCE(), relying on the
resulting unmarked reads to continue to detect buggy concurrent writes
to this field.

Reported-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-08 14:23:55 +02:00
Paul E. McKenney
058d62a03e rcu: Don't deboost before reporting expedited quiescent state
commit 10c535787436d62ea28156a4b91365fd89b5a432 upstream.

Currently rcu_preempt_deferred_qs_irqrestore() releases rnp->boost_mtx
before reporting the expedited quiescent state.  Under heavy real-time
load, this can result in this function being preempted before the
quiescent state is reported, which can in turn prevent the expedited grace
period from completing.  Tim Murray reports that the resulting expedited
grace periods can take hundreds of milliseconds and even more than one
second, when they should normally complete in less than a millisecond.

This was fine given that there were no particular response-time
constraints for synchronize_rcu_expedited(), as it was designed
for throughput rather than latency.  However, some users now need
sub-100-millisecond response-time constratints.

This patch therefore follows Neeraj's suggestion (seconded by Tim and
by Uladzislau Rezki) of simply reversing the two operations.

Reported-by: Tim Murray <timmurray@google.com>
Reported-by: Joel Fernandes <joelaf@google.com>
Reported-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Tim Murray <timmurray@google.com>
Cc: Todd Kjos <tkjos@google.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: <stable@vger.kernel.org> # 5.4.x
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-28 09:58:45 +02:00
Paul E. McKenney
c3156dbd50 rcu: Tighten rcu_advance_cbs_nowake() checks
commit 614ddad17f22a22e035e2ea37a04815f50362017 upstream.

Currently, rcu_advance_cbs_nowake() checks that a grace period is in
progress, however, that grace period could end just after the check.
This commit rechecks that a grace period is still in progress while
holding the rcu_node structure's lock.  The grace period cannot end while
the current CPU's rcu_node structure's ->lock is held, thus avoiding
false positives from the WARN_ON_ONCE().

As Daniel Vacek noted, it is not necessary for the rcu_node structure
to have a CPU that has not yet passed through its quiescent state.

Tested-by: Guillaume Morin <guillaume@morinfr.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-29 10:58:25 +01:00
Wander Lairson Costa
bcf404b305 rcutorture: Avoid soft lockup during cpu stall
[ Upstream commit 5ff7c9f9d7e3e0f6db5b81945fa11b69d62f433a ]

If we use the module stall_cpu option, we may get a soft lockup warning
in case we also don't pass the stall_cpu_block option.

Introduce the stall_no_softlockup option to avoid a soft lockup on
cpu stall even if we don't use the stall_cpu_block option.

Signed-off-by: Wander Lairson Costa <wander@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:04:37 +01:00
Frederic Weisbecker
ef93cc02ca rcu/exp: Mark current CPU as exp-QS in IPI loop second pass
[ Upstream commit 81f6d49cce2d2fe507e3fddcc4a6db021d9c2e7b ]

Expedited RCU grace periods invoke sync_rcu_exp_select_node_cpus(), which
takes two passes over the leaf rcu_node structure's CPUs.  The first
pass gathers up the current CPU and CPUs that are in dynticks idle mode.
The workqueue will report a quiescent state on their behalf later.
The second pass sends IPIs to the rest of the CPUs, but excludes the
current CPU, incorrectly assuming it has been included in the first
pass's list of CPUs.

Unfortunately the current CPU may have changed between the first and
second pass, due to the fact that the various rcu_node structures'
->lock fields have been dropped, thus momentarily enabling preemption.
This means that if the second pass's CPU was not on the first pass's
list, it will be ignored completely.  There will be no IPI sent to
it, and there will be no reporting of quiescent states on its behalf.
Unfortunately, the expedited grace period will nevertheless be waiting
for that CPU to report a quiescent state, but with that CPU having no
reason to believe that such a report is needed.

The result will be an expedited grace period stall.

Fix this by no longer excluding the current CPU from consideration during
the second pass.

Fixes: b9ad4d6ed18e ("rcu: Avoid self-IPI in sync_rcu_exp_select_node_cpus()")
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:03:32 +01:00
Paul E. McKenney
a96ac0688a rcu: Mark accesses to rcu_state.n_force_qs
commit 2431774f04d1050292054c763070021bade7b151 upstream.

This commit marks accesses to the rcu_state.n_force_qs.  These data
races are hard to make happen, but syzkaller was equal to the task.

Reported-by: syzbot+e08a83a1940ec3846cd5@syzkaller.appspotmail.com
Acked-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:51 +01:00
Peter Zijlstra
d846b69dc7 rcu: Fix rcu_dynticks_curr_cpu_in_eqs() vs noinstr
[ Upstream commit 74aece72f95f399dd29363669dc32a1344c8fab4 ]

  vmlinux.o: warning: objtool: rcu_nmi_enter()+0x36: call to __kasan_check_read() leaves .noinstr.text section

noinstr cannot have atomic_*() functions in because they're explicitly
annotated, use arch_atomic_*().

Fixes: 2be57f732889 ("rcu: Weaken ->dynticks accesses and updates")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18 19:16:30 +01:00
Peter Zijlstra
fa1af3cb0e rcu: Always inline rcu_dynticks_task*_{enter,exit}()
[ Upstream commit 7663ad9a5dbcc27f3090e6bfd192c7e59222709f ]

RCU managed to grow a few noinstr violations:

  vmlinux.o: warning: objtool: rcu_dynticks_eqs_enter()+0x0: call to rcu_dynticks_task_trace_enter() leaves .noinstr.text section
  vmlinux.o: warning: objtool: rcu_dynticks_eqs_exit()+0xe: call to rcu_dynticks_task_trace_exit() leaves .noinstr.text section

Fix them by adding __always_inline to the relevant trivial functions.

Also replace the noinstr with __always_inline for the existing
rcu_dynticks_task_*() functions since noinstr would force noinline
them, even when empty, which seems silly.

Fixes: 7d0c9c50c5a1 ("rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18 19:16:30 +01:00
Neeraj Upadhyay
4a9334d04b rcu: Fix existing exp request check in sync_sched_exp_online_cleanup()
[ Upstream commit f0b2b2df5423fb369ac762c77900bc7765496d58 ]

The sync_sched_exp_online_cleanup() checks to see if RCU needs
an expedited quiescent state from the incoming CPU, sending it
an IPI if so. Before sending IPI, it checks whether expedited
qs need has been already requested for the incoming CPU, by
checking rcu_data.cpu_no_qs.b.exp for the current cpu, on which
sync_sched_exp_online_cleanup() is running. This works for the
case where incoming CPU is same as self. However, for the case
where incoming CPU is different from self, expedited request
won't get marked, which can potentially delay reporting of
expedited quiescent state for the incoming CPU.

Fixes: e015a3411220 ("rcu: Avoid self-IPI in sync_sched_exp_online_cleanup()")
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18 19:16:23 +01:00
Paul E. McKenney
f85b0fe504 rcu-tasks: Move RTGS_WAIT_CBS to beginning of rcu_tasks_kthread() loop
[ Upstream commit 0db7c32ad3160ae06f497d48a74bd46a2a35e6bf ]

Early in debugging, it made some sense to differentiate the first
iteration from subsequent iterations, but now this just causes confusion.
This commit therefore moves the "set_tasks_gp_state(rtp, RTGS_WAIT_CBS)"
statement to the beginning of the "for" loop in rcu_tasks_kthread().

Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18 19:16:10 +01:00
Scott Wood
9508ee70d1 rcutorture: Avoid problematic critical section nesting on PREEMPT_RT
[ Upstream commit 71921a9606ddbcc1d98c00eca7ae82c373d1fecd ]

rcutorture is generating some nesting scenarios that are not compatible on PREEMPT_RT.
For example:
	preempt_disable();
	rcu_read_lock_bh();
	preempt_enable();
	rcu_read_unlock_bh();

The problem here is that on PREEMPT_RT the bottom halves have to be
disabled and enabled in preemptible context.

Reorder locking: start with BH locking and continue with then with
disabling preemption or interrupts. In the unlocking do it reverse by
first enabling interrupts and preemption and BH at the very end.
Ensure that on PREEMPT_RT BH locking remains unchanged if in
non-preemptible context.

Link: https://lkml.kernel.org/r/20190911165729.11178-6-swood@redhat.com
Link: https://lkml.kernel.org/r/20210819182035.GF4126399@paulmck-ThinkPad-P17-Gen-1
Signed-off-by: Scott Wood <swood@redhat.com>
[bigeasy: Drop ATOM_BH, make it only about changing BH in atomic
context. Allow enabling RCU in IRQ-off section. Reword commit message.]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18 19:16:09 +01:00
Linus Torvalds
e5e726f7bb Updates for locking and atomics:
The regular pile:
 
   - A few improvements to the mutex code
 
   - Documentation updates for atomics to clarify the difference between
     cmpxchg() and try_cmpxchg() and to explain the forward progress
     expectations.
 
   - Simplification of the atomics fallback generator
 
   - The addition of arch_atomic_long*() variants and generic arch_*()
     bitops based on them.
 
   - Add the missing might_sleep() invocations to the down*() operations of
     semaphores.
 
 The PREEMPT_RT locking core:
 
   - Scheduler updates to support the state preserving mechanism for
     'sleeping' spin- and rwlocks on RT. This mechanism is carefully
     preserving the state of the task when blocking on a 'sleeping' spin- or
     rwlock and takes regular wake-ups targeted at the same task into
     account. The preserved or updated (via a regular wakeup) state is
     restored when the lock has been acquired.
 
   - Restructuring of the rtmutex code so it can be utilized and extended
     for the RT specific lock variants.
 
   - Restructuring of the ww_mutex code to allow sharing of the ww_mutex
     specific functionality for rtmutex based ww_mutexes.
 
   - Header file disentangling to allow substitution of the regular lock
     implementations with the PREEMPT_RT variants without creating an
     unmaintainable #ifdef mess.
 
   - Shared base code for the PREEMPT_RT specific rw_semaphore and rwlock
     implementations. Contrary to the regular rw_semaphores and rwlocks the
     PREEMPT_RT implementation is writer unfair because it is infeasible to
     do priority inheritance on multiple readers. Experience over the years
     has shown that real-time workloads are not the typical workloads which
     are sensitive to writer starvation. The alternative solution would be
     to allow only a single reader which has been tried and discarded as it
     is a major bottleneck especially for mmap_sem. Aside of that many of
     the writer starvation critical usage sites have been converted to a
     writer side mutex/spinlock and RCU read side protections in the past
     decade so that the issue is less prominent than it used to be.
 
   - The actual rtmutex based lock substitutions for PREEMPT_RT enabled
     kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
     rwlock_t. The spin/rw_lock*() functions disable migration across the
     critical section to preserve the existing semantics vs. per CPU
     variables.
 
   - Rework of the futex REQUEUE_PI mechanism to handle the case of early
     wake-ups which interleave with a re-queue operation to prevent the
     situation that a task would be blocked on both the rtmutex associated
     to the outer futex and the rtmutex based hash bucket spinlock.
 
     While this situation cannot happen on !RT enabled kernels the changes
     make the underlying concurrency problems easier to understand in
     general. As a result the difference between !RT and RT kernels is
     reduced to the handling of waiting for the critical section. !RT
     kernels simply spin-wait as before and RT kernels utilize rcu_wait().
 
   - The substitution of local_lock for PREEMPT_RT with a spinlock which
     protects the critical section while staying preemptible. The CPU
     locality is established by disabling migration.
 
   The underlying concepts of this code have been in use in PREEMPT_RT for
   way more than a decade. The code has been refactored several times over
   the years and this final incarnation has been optimized once again to be
   as non-intrusive as possible, i.e. the RT specific parts are mostly
   isolated.
 
   It has been extensively tested in the 5.14-rt patch series and it has
   been verified that !RT kernels are not affected by these changes.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmEsnuMTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoaeWD/wLNMoAZXslS0prfr64ANjRgLXIqMFA
 r6xgioiwxxaxbmZ/GNPraoLC//ENo6mwobuUovq8yKljv2oBu6AmlUkBwrmMBc8Q
 nnm7jjGM3bZ1REup7rWERnjdOZfdGVSL5CUAAfthyC744XmXaepwrrrqfXG22GxJ
 QwLXBTAwXFVDxKfUjDKzEo5zgLNHRvHbzc0DpTYYn6WcuDJOmlyWnhfDTu2mNG9Z
 rqjqy+OgOUEUprQDgitk5hedfeic2kPm1mxxZrXkpkuPef5be2inQq2siC7GxR4g
 0AKeUsMFgFmSqiD4iJTALJ+8WXkgMnD9VgooeWHk4OaqZfaGzi/iwRSnrlnf7+OV
 GTmrsmX+TX/Wz2BDjB+3zylQnYqYh3quE5w4UO6uUyJXfdhlnvsjVc8bEajDFjeM
 yUapaWxdAri7k2n+vjXQthAngxtYPgXtFbZPoOl109JcDcG6jJsCdM5TdenegaRs
 WeUh05JqrH8+qI+Nwzc4rO+PmKHQ8on2wKdgLp11dviiPOf8OguH65nDQSGZ/fGv
 7cnD9A1/MUd0sdrvc52AqkIYxh+Rp9GnCs1xA82JsTXgAPcXqAWjjR2JFPHL4neV
 eW2upZekl8lMR7hkfcQbhe4MVjQIjff3iFOkQXittxMzfzFdi0tly8xB8AzpTHOx
 h91MycvmMR2zRw==
 =IEqE
 -----END PGP SIGNATURE-----

Merge tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking and atomics updates from Thomas Gleixner:
 "The regular pile:

   - A few improvements to the mutex code

   - Documentation updates for atomics to clarify the difference between
     cmpxchg() and try_cmpxchg() and to explain the forward progress
     expectations.

   - Simplification of the atomics fallback generator

   - The addition of arch_atomic_long*() variants and generic arch_*()
     bitops based on them.

   - Add the missing might_sleep() invocations to the down*() operations
     of semaphores.

  The PREEMPT_RT locking core:

   - Scheduler updates to support the state preserving mechanism for
     'sleeping' spin- and rwlocks on RT.

     This mechanism is carefully preserving the state of the task when
     blocking on a 'sleeping' spin- or rwlock and takes regular wake-ups
     targeted at the same task into account. The preserved or updated
     (via a regular wakeup) state is restored when the lock has been
     acquired.

   - Restructuring of the rtmutex code so it can be utilized and
     extended for the RT specific lock variants.

   - Restructuring of the ww_mutex code to allow sharing of the ww_mutex
     specific functionality for rtmutex based ww_mutexes.

   - Header file disentangling to allow substitution of the regular lock
     implementations with the PREEMPT_RT variants without creating an
     unmaintainable #ifdef mess.

   - Shared base code for the PREEMPT_RT specific rw_semaphore and
     rwlock implementations.

     Contrary to the regular rw_semaphores and rwlocks the PREEMPT_RT
     implementation is writer unfair because it is infeasible to do
     priority inheritance on multiple readers. Experience over the years
     has shown that real-time workloads are not the typical workloads
     which are sensitive to writer starvation.

     The alternative solution would be to allow only a single reader
     which has been tried and discarded as it is a major bottleneck
     especially for mmap_sem. Aside of that many of the writer
     starvation critical usage sites have been converted to a writer
     side mutex/spinlock and RCU read side protections in the past
     decade so that the issue is less prominent than it used to be.

   - The actual rtmutex based lock substitutions for PREEMPT_RT enabled
     kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
     rwlock_t. The spin/rw_lock*() functions disable migration across
     the critical section to preserve the existing semantics vs per-CPU
     variables.

   - Rework of the futex REQUEUE_PI mechanism to handle the case of
     early wake-ups which interleave with a re-queue operation to
     prevent the situation that a task would be blocked on both the
     rtmutex associated to the outer futex and the rtmutex based hash
     bucket spinlock.

     While this situation cannot happen on !RT enabled kernels the
     changes make the underlying concurrency problems easier to
     understand in general. As a result the difference between !RT and
     RT kernels is reduced to the handling of waiting for the critical
     section. !RT kernels simply spin-wait as before and RT kernels
     utilize rcu_wait().

   - The substitution of local_lock for PREEMPT_RT with a spinlock which
     protects the critical section while staying preemptible. The CPU
     locality is established by disabling migration.

  The underlying concepts of this code have been in use in PREEMPT_RT for
  way more than a decade. The code has been refactored several times over
  the years and this final incarnation has been optimized once again to be
  as non-intrusive as possible, i.e. the RT specific parts are mostly
  isolated.

  It has been extensively tested in the 5.14-rt patch series and it has
  been verified that !RT kernels are not affected by these changes"

* tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (92 commits)
  locking/rtmutex: Return success on deadlock for ww_mutex waiters
  locking/rtmutex: Prevent spurious EDEADLK return caused by ww_mutexes
  locking/rtmutex: Dequeue waiter on ww_mutex deadlock
  locking/rtmutex: Dont dereference waiter lockless
  locking/semaphore: Add might_sleep() to down_*() family
  locking/ww_mutex: Initialize waiter.ww_ctx properly
  static_call: Update API documentation
  locking/local_lock: Add PREEMPT_RT support
  locking/spinlock/rt: Prepare for RT local_lock
  locking/rtmutex: Add adaptive spinwait mechanism
  locking/rtmutex: Implement equal priority lock stealing
  preempt: Adjust PREEMPT_LOCK_OFFSET for RT
  locking/rtmutex: Prevent lockdep false positive with PI futexes
  futex: Prevent requeue_pi() lock nesting issue on RT
  futex: Simplify handle_early_requeue_pi_wakeup()
  futex: Reorder sanity checks in futex_requeue()
  futex: Clarify comment in futex_requeue()
  futex: Restructure futex_requeue()
  futex: Correct the number of requeued waiters for PI
  futex: Remove bogus condition for requeue PI
  ...
2021-08-30 14:26:36 -07:00
Peter Zijlstra
830e6acc8a locking/rtmutex: Split out the inner parts of 'struct rtmutex'
RT builds substitutions for rwsem, mutex, spinlock and rwlock around
rtmutexes. Split the inner working out so each lock substitution can use
them with the appropriate lockdep annotations. This avoids having an extra
unused lockdep map in the wrapped rtmutex.

No functional change.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.784739994@linutronix.de
2021-08-17 17:04:01 +02:00
Paul E. McKenney
b770efc460 Merge branches 'doc.2021.07.20c', 'fixes.2021.08.06a', 'nocb.2021.07.20c', 'nolibc.2021.07.20c', 'tasks.2021.07.20c', 'torture.2021.07.27a' and 'torturescript.2021.07.27a' into HEAD
doc.2021.07.20c: Documentation updates.
fixes.2021.08.06a: Miscellaneous fixes.
nocb.2021.07.20c: Callback-offloading (NOCB CPU) updates.
nolibc.2021.07.20c: Tiny userspace library updates.
tasks.2021.07.20c: Tasks RCU updates.
torture.2021.07.27a: In-kernel torture-test updates.
torturescript.2021.07.27a: Torture-test scripting updates.
2021-08-10 11:00:53 -07:00
Sebastian Andrzej Siewior
d3dd95a885 rcu: Replace deprecated CPU-hotplug functions
The functions get_online_cpus() and put_online_cpus() have been
deprecated during the CPU hotplug rework. They map directly to
cpus_read_lock() and cpus_read_unlock().

Replace deprecated CPU-hotplug functions with the official version.
The behavior remains unchanged.

Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: rcu@vger.kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-10 10:47:32 -07:00
Paul E. McKenney
521c89b3a4 rcu: Print human-readable message for schedule() in RCU reader
The WARN_ON_ONCE() invocation within the CONFIG_PREEMPT=y version of
rcu_note_context_switch() triggers when there is a voluntary context
switch in an RCU read-side critical section, but there is quite a gap
between the output of that WARN_ON_ONCE() and this RCU-usage error.
This commit therefore converts the WARN_ON_ONCE() to a WARN_ONCE()
that explicitly describes the problem in its message.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:49 -07:00
Liu Song
8211e922de rcu: Use per_cpu_ptr to get the pointer of per_cpu variable
There are a few remaining locations in kernel/rcu that still use
"&per_cpu()".  This commit replaces them with "per_cpu_ptr(&)", and does
not introduce any functional change.

Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Liu Song <liu.song11@zte.com.cn>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:49 -07:00
Liu Song
eb880949ef rcu: Remove useless "ret" update in rcu_gp_fqs_loop()
Within rcu_gp_fqs_loop(), the "ret" local variable is set to the
return value from swait_event_idle_timeout_exclusive(), but "ret" is
unconditionally overwritten later in the code.  This commit therefore
removes this useless assignment.

Signed-off-by: Liu Song <liu.song11@zte.com.cn>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Paul E. McKenney
d283aa1b04 rcu: Mark accesses in tree_stall.h
This commit marks the accesses in tree_stall.h so as to both avoid
undesirable compiler optimizations and to keep KCSAN focused on the
accesses of the core algorithm.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Paul E. McKenney
f74126dcbc rcu: Make rcu_gp_init() and rcu_gp_fqs_loop noinline to conserve stack
The kbuild test project found an oversized stack frame in rcu_gp_kthread()
for some kernel configurations.  This oversizing was due to a very large
amount of inlining, which is unnecessary due to the fact that this code
executes infrequently.  This commit therefore marks rcu_gp_init() and
rcu_gp_fqs_loop noinline_for_stack to conserve stack space.

Reported-by: kernel test robot <lkp@intel.com>
Tested-by: Rong Chen <rong.a.chen@intel.com>
[ paulmck: noinline_for_stack per Nathan Chancellor. ]
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Paul E. McKenney
d9ee962feb rcu: Mark lockless ->qsmask read in rcu_check_boost_fail()
Accesses to ->qsmask are normally protected by ->lock, but there is an
exception in the diagnostic code in rcu_check_boost_fail().  This commit
therefore applies data_race() to this access to avoid KCSAN complaining
about the C-language writes protected by ->lock.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Paul E. McKenney
65bfdd36c1 srcutiny: Mark read-side data races
This commit marks some interrupt-induced read-side data races in
__srcu_read_lock(), __srcu_read_unlock(), and srcu_torture_stats_print().

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Paul E. McKenney
b169246feb rcu: Start timing stall repetitions after warning complete
Systems with low-bandwidth consoles can have very large printk()
latencies, and on such systems it makes no sense to have the next RCU CPU
stall warning message start output before the prior message completed.
This commit therefore sets the time of the next stall only after the
prints have completed.  While printing, the time of the next stall
message is set to ULONG_MAX/2 jiffies into the future.

Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Sergey Senozhatsky
a80be428fb rcu: Do not disable GP stall detection in rcu_cpu_stall_reset()
rcu_cpu_stall_reset() is one of the functions virtual CPUs
execute during VM resume in order to handle jiffies skew
that can trigger false positive stall warnings. Paul has
pointed out that this approach is problematic because
rcu_cpu_stall_reset() disables RCU grace period stall-detection
virtually forever, while in fact it can just restart the
stall-detection timeout.

Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Sergey Senozhatsky
ccfc9dd691 rcu/tree: Handle VM stoppage in stall detection
The soft watchdog timer function checks if a virtual machine
was suspended and hence what looks like a lockup in fact
is a false positive.

This is what kvm_check_and_clear_guest_paused() does: it
tests guest PVCLOCK_GUEST_STOPPED (which is set by the host)
and if it's set then we need to touch all watchdogs and bail
out.

Watchdog timer function runs from IRQ, so PVCLOCK_GUEST_STOPPED
check works fine.

There is, however, one more watchdog that runs from IRQ, so
watchdog timer fn races with it, and that watchdog is not aware
of PVCLOCK_GUEST_STOPPED - RCU stall detector.

apic_timer_interrupt()
 smp_apic_timer_interrupt()
  hrtimer_interrupt()
   __hrtimer_run_queues()
    tick_sched_timer()
     tick_sched_handle()
      update_process_times()
       rcu_sched_clock_irq()

This triggers RCU stalls on our devices during VM resume.

If tick_sched_handle()->rcu_sched_clock_irq() runs on a VCPU
before watchdog_timer_fn()->kvm_check_and_clear_guest_paused()
then there is nothing on this VCPU that touches watchdogs and
RCU reads stale gp stall timestamp and new jiffies value, which
makes it think that RCU has stalled.

Make RCU stall watchdog aware of PVCLOCK_GUEST_STOPPED and
don't report RCU stalls when we resume the VM.

Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Paul E. McKenney
5fcb3a5f04 rcu: Mark accesses to ->rcu_read_lock_nesting
KCSAN flags accesses to ->rcu_read_lock_nesting as data races, but
in the past, the overhead of marked accesses was excessive.  However,
that was long ago, and much has changed since then, both in terms of
hardware and of compilers.  Here is data taken on an eight-core laptop
using Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz with a kernel built
using gcc version 9.3.0, with all data in nanoseconds.

Unmarked accesses (status quo), measured by three refscale runs:

	Minimum reader duration:  3.286  2.851  3.395
	Median reader duration:   3.698  3.531  3.4695
	Maximum reader duration:  4.481  5.215  5.157

Marked accesses, also measured by three refscale runs:

	Minimum reader duration:  3.501  3.677  3.580
	Median reader duration:   4.053  3.723  3.895
	Maximum reader duration:  7.307  4.999  5.511

This focused microbenhmark shows only sub-nanosecond differences which
are unlikely to be visible at the system level.  This commit therefore
marks data-racing accesses to ->rcu_read_lock_nesting.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Paul E. McKenney
2be57f7328 rcu: Weaken ->dynticks accesses and updates
Accesses to the rcu_data structure's ->dynticks field have always been
fully ordered because it was not possible to prove that weaker ordering
was safe.  However, with the removal of the rcu_eqs_special_set() function
and the advent of the Linux-kernel memory model, it is now easy to show
that two of the four original full memory barriers can be weakened to
acquire and release operations.  The remaining pair must remain full
memory barriers.  This change makes the memory ordering requirements
more evident, and it might well also speed up the to-idle and from-idle
fastpaths on some architectures.

The following litmus test, adapted from one supplied off-list by Frederic
Weisbecker, models the RCU grace-period kthread detecting an idle CPU
that is concurrently transitioning to non-idle:

	C dynticks-from-idle

	{
		DYNTICKS=0; (* Initially idle. *)
	}

	P0(int *X, int *DYNTICKS)
	{
		int dynticks;
		int x;

		// Idle.
		dynticks = READ_ONCE(*DYNTICKS);
		smp_store_release(DYNTICKS, dynticks + 1);
		smp_mb();
		// Now non-idle
		x = READ_ONCE(*X);
	}

	P1(int *X, int *DYNTICKS)
	{
		int dynticks;

		WRITE_ONCE(*X, 1);
		smp_mb();
		dynticks = smp_load_acquire(DYNTICKS);
	}

	exists (1:dynticks=0 /\ 0:x=1)

Running "herd7 -conf linux-kernel.cfg dynticks-from-idle.litmus" verifies
this transition, namely, showing that if the RCU grace-period kthread (P1)
sees another CPU as idle (P0), then any memory access prior to the start
of the grace period (P1's write to X) will be seen by any RCU read-side
critical section following the to-non-idle transition (P0's read from X).
This is a straightforward use of full memory barriers to force ordering
in a store-buffering (SB) litmus test.

The following litmus test, also adapted from the one supplied off-list
by Frederic Weisbecker, models the RCU grace-period kthread detecting
a non-idle CPU that is concurrently transitioning to idle:

	C dynticks-into-idle

	{
		DYNTICKS=1; (* Initially non-idle. *)
	}

	P0(int *X, int *DYNTICKS)
	{
		int dynticks;

		// Non-idle.
		WRITE_ONCE(*X, 1);
		dynticks = READ_ONCE(*DYNTICKS);
		smp_store_release(DYNTICKS, dynticks + 1);
		smp_mb();
		// Now idle.
	}

	P1(int *X, int *DYNTICKS)
	{
		int x;
		int dynticks;

		smp_mb();
		dynticks = smp_load_acquire(DYNTICKS);
		x = READ_ONCE(*X);
	}

	exists (1:dynticks=2 /\ 1:x=0)

Running "herd7 -conf linux-kernel.cfg dynticks-into-idle.litmus" verifies
this transition, namely, showing that if the RCU grace-period kthread
(P1) sees another CPU as newly idle (P0), then any pre-idle memory access
(P0's write to X) will be seen by any code following the grace period
(P1's read from X).  This is a simple release-acquire pair forcing
ordering in a message-passing (MP) litmus test.

Of course, if the grace-period kthread detects the CPU as non-idle,
it will refrain from reporting a quiescent state on behalf of that CPU,
so there are no ordering requirements from the grace-period kthread in
that case.  However, other subsystems call rcu_is_idle_cpu() to check
for CPUs being non-idle from an RCU perspective.  That case is also
verified by the above litmus tests with the proviso that the sense of
the low-order bit of the DYNTICKS counter be inverted.

Unfortunately, on x86 smp_mb() is as expensive as a cache-local atomic
increment.  This commit therefore weakens only the read from ->dynticks.
However, the updates are abstracted into a rcu_dynticks_inc() function
to ease any future changes that might be needed.

[ paulmck: Apply Linus Torvalds feedback. ]

Link: https://lore.kernel.org/lkml/20210721202127.2129660-4-paulmck@kernel.org/
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Joel Fernandes (Google)
a86baa69c2 rcu: Remove special bit at the bottom of the ->dynticks counter
Commit b8c17e6664c4 ("rcu: Maintain special bits at bottom of ->dynticks
counter") reserved a bit at the bottom of the ->dynticks counter to defer
flushing of TLBs, but this facility never has been used.  This commit
therefore removes this capability along with the rcu_eqs_special_set()
function used to trigger it.

Link: https://lore.kernel.org/linux-doc/CALCETrWNPOOdTrFabTDd=H7+wc6xJ9rJceg6OL1S0rTV5pfSsA@mail.gmail.com/
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
[ paulmck: Forward-port to v5.13-rc1. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:48 -07:00
Yanfei Xu
dc87740c8a rcu: Fix stall-warning deadlock due to non-release of rcu_node ->lock
If rcu_print_task_stall() is invoked on an rcu_node structure that does
not contain any tasks blocking the current grace period, it takes an
early exit that fails to release that rcu_node structure's lock.  This
results in a self-deadlock, which is detected by lockdep.

To reproduce this bug:

tools/testing/selftests/rcutorture/bin/kvm.sh --allcpus --duration 3 --trust-make --configs "TREE03" --kconfig "CONFIG_PROVE_LOCKING=y" --bootargs "rcutorture.stall_cpu=30 rcutorture.stall_cpu_block=1 rcutorture.fwd_progress=0 rcutorture.test_boost=0"

This will also result in other complaints, including RCU's scheduler
hook complaining about blocking rather than preemption and an rcutorture
writer stall.

Only a partial RCU CPU stall warning message will be printed because of
the self-deadlock.

This commit therefore releases the lock on the rcu_print_task_stall()
function's early exit path.

Fixes: c583bcb8f5ed ("rcu: Don't invoke try_invoke_on_locked_down_task() with irqs disabled")
Tested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:42 -07:00
Yanfei Xu
e6a901a44f rcu: Fix to include first blocked task in stall warning
The for loop in rcu_print_task_stall() always omits ts[0], which points
to the first task blocking the stalled grace period.  This in turn fails
to count this first task, which means that ndetected will be equal to
zero when all CPUs have passed through their quiescent states and only
one task is blocking the stalled grace period.  This zero value for
ndetected will in turn result in an incorrect "All QSes seen" message:

rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
rcu:    Tasks blocked on level-1 rcu_node (CPUs 12-23):
        (detected by 15, t=6504 jiffies, g=164777, q=9011209)
rcu: All QSes seen, last rcu_preempt kthread activity 1 (4295252379-4295252378), jiffies_till_next_fqs=1, root ->qsmask 0x2
BUG: sleeping function called from invalid context at include/linux/uaccess.h:156
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 70613, name: msgstress04
INFO: lockdep is turned off.
Preemption disabled at:
[<ffff8000104031a4>] create_object.isra.0+0x204/0x4b0
CPU: 15 PID: 70613 Comm: msgstress04 Kdump: loaded Not tainted
5.12.2-yoctodev-standard #1
Hardware name: Marvell OcteonTX CN96XX board (DT)
Call trace:
 dump_backtrace+0x0/0x2cc
 show_stack+0x24/0x30
 dump_stack+0x110/0x188
 ___might_sleep+0x214/0x2d0
 __might_sleep+0x7c/0xe0

This commit therefore fixes the loop to include ts[0].

Fixes: c583bcb8f5ed ("rcu: Don't invoke try_invoke_on_locked_down_task() with irqs disabled")
Tested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06 13:41:29 -07:00
Jiangong.Han
811192c5f2 rcuscale: Console output claims too few grace periods
The rcuscale console output claims N grace periods, numbered from zero
to N, which means that there were really N+1 grace periods.  The root
cause of this bug is that rcu_scale_writer() stores the number of the
last grace period (numbered from zero) into writer_n_durations[me]
instead of the number of grace periods.  This commit therefore assigns
the actual number of grace periods to writer_n_durations[me], and also
makes the corresponding adjustment to the loop outputting per-grace-period
measurements.

Sample of old console output:
    rcu-scale: writer 0 gps: 133
    ......
    rcu-scale:    0 writer-duration:     0 44003961
    rcu-scale:    0 writer-duration:     1 32003582
    ......
    rcu-scale:    0 writer-duration:   132 28004391
    rcu-scale:    0 writer-duration:   133 27996410

Sample of new console output:
    rcu-scale: writer 0 gps: 134
    ......
    rcu-scale:    0 writer-duration:     0 44003961
    rcu-scale:    0 writer-duration:     1 32003582
    ......
    rcu-scale:    0 writer-duration:   132 28004391
    rcu-scale:    0 writer-duration:   133 27996410

Signed-off-by: Jiangong.Han <jiangong.han@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-27 11:39:30 -07:00
Paul E. McKenney
59e8366628 rcutorture: Preempt rather than block when testing task stalls
Currently, rcu_torture_stall() does a one-jiffy timed wait when
stall_cpu_block is set.  This works, but emits a pointless splat in
CONFIG_PREEMPT=y kernels.  This commit avoids this splat by instead
invoking preempt_schedule() in CONFIG_PREEMPT=y kernels.

This uses an admittedly ugly #ifdef, but abstracted approaches just
looked worse.  A prettier approach would provide a preempt_schedule()
definition with a WARN_ON() for CONFIG_PREEMPT=n kernels, but this seems
quite silly.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-27 11:39:30 -07:00
Paul E. McKenney
25f6fa53a0 refscale: Add measurement of clock readout
This commit adds a "clock" type to refscale, which checks the performance
of ktime_get_real_fast_ns().  Use the "clocksource=" kernel boot parameter
to select the underlying clock source.

[ paulmck: Work around compiler false positive per kernel test robot. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-27 11:38:56 -07:00
Zhouyi Zhou
fed31a4dd3 rcu: Fix macro name CONFIG_TASKS_RCU_TRACE
This commit fixes several typos where CONFIG_TASKS_RCU_TRACE should
instead be CONFIG_TASKS_TRACE_RCU.  Among other things, these typos
could cause CONFIG_TASKS_TRACE_RCU_READ_MB=y kernels to suffer from
memory-ordering bugs that could result in false-positive quiescent
states and too-short grace periods.

Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20 13:43:44 -07:00
Paul E. McKenney
e4be1f44b6 rcu-tasks: Fix synchronize_rcu_rude() typo in comment
This commit replaces the fictitious synchronize_rcu_rude() function with
its real-world synchronize_rcu_tasks_rude() counterpart.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20 13:43:44 -07:00
Paul E. McKenney
f8ab3fad80 rcu-tasks: Mark ->trc_reader_special.b.need_qs data races
There are several ->trc_reader_special.b.need_qs data races that are
too low-probability for KCSAN to notice, but which will happen sooner
or later.  This commit therefore marks these accesses.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20 13:43:44 -07:00
Paul E. McKenney
bdb0cca0d1 rcu-tasks: Mark ->trc_reader_nesting data races
There are several ->trc_reader_nesting data races that are too
low-probability for KCSAN to notice, but which will happen sooner or
later.  This commit therefore marks these accesses, and comments one
that cannot race.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20 13:43:44 -07:00
Paul E. McKenney
45f4b4a202 rcu-tasks: Add comments explaining task_struct strategy
Accesses to task_struct structures must be either protected by RCU
or by get_task_struct().  Tasks trace RCU uses these in a non-obvious
combination, in conjunction with an IPI handler.  This commit therefore
adds comments explaining this usage.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20 13:43:44 -07:00
Frederic Weisbecker
cba712beeb rcu/nocb: Remove NOCB deferred wakeup from rcutree_dead_cpu()
At CPU offline time, we must handle any pending wakeup for the nocb_gp
kthread linked to the outgoing CPU.

Now we are making sure of that twice:

1) From rcu_report_dead() when the outgoing CPU makes the very last
   local cleanups by itself before switching offline.

2) From rcutree_dead_cpu(). Here the offlining CPU has gone and is truly
   now offline. Another CPU takes care of post-portem cleaning up and
   check if the offline CPU had pending wakeup.

Both ways are fine but we have to choose one or the other because we
don't need to repeat that action. Simply benefit from cache locality
and keep only the first solution.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20 13:41:51 -07:00
Frederic Weisbecker
dfcb275402 rcu/nocb: Start moving nocb code to its own plugin file
The kernel/rcu/tree_plugin.h file contains not only the plugins for
preemptible RCU, but also many other features including rcu_nocbs
callback offloading.  This offloading has become large and complex,
so it is time to put it in its own file.

This commit starts that process.

Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
[ paulmck: Rename to tree_nocb.h, add Frederic as author. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20 13:41:51 -07:00