37793 Commits

Author SHA1 Message Date
Thomas Gleixner
68c2db8ef5 alarmtimer: Prevent starvation by small intervals and SIG_IGN
commit d125d1349abeb46945dc5e98f7824bf688266f13 upstream.

syzbot reported a RCU stall which is caused by setting up an alarmtimer
with a very small interval and ignoring the signal. The reproducer arms the
alarm timer with a relative expiry of 8ns and an interval of 9ns. Not a
problem per se, but that's an issue when the signal is ignored because then
the timer is immediately rearmed because there is no way to delay that
rearming to the signal delivery path.  See posix_timer_fn() and commit
58229a189942 ("posix-timers: Prevent softirq starvation by small intervals
and SIG_IGN") for details.

The reproducer does not set SIG_IGN explicitely, but it sets up the timers
signal with SIGCONT. That has the same effect as explicitely setting
SIG_IGN for a signal as SIGCONT is ignored if there is no handler set and
the task is not ptraced.

The log clearly shows that:

   [pid  5102] --- SIGCONT {si_signo=SIGCONT, si_code=SI_TIMER, si_timerid=0, si_overrun=316014, si_int=0, si_ptr=NULL} ---

It works because the tasks are traced and therefore the signal is queued so
the tracer can see it, which delays the restart of the timer to the signal
delivery path. But then the tracer is killed:

   [pid  5087] kill(-5102, SIGKILL <unfinished ...>
   ...
   ./strace-static-x86_64: Process 5107 detached

and after it's gone the stall can be observed:

   syzkaller login: [   79.439102][    C0] hrtimer: interrupt took 68471 ns
   [  184.460538][    C1] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
   ...
   [  184.658237][    C1] rcu: Stack dump where RCU GP kthread last ran:
   [  184.664574][    C1] Sending NMI from CPU 1 to CPUs 0:
   [  184.669821][    C0] NMI backtrace for cpu 0
   [  184.669831][    C0] CPU: 0 PID: 5108 Comm: syz-executor192 Not tainted 6.2.0-rc6-next-20230203-syzkaller 
   ...
   [  184.670036][    C0] Call Trace:
   [  184.670041][    C0]  <IRQ>
   [  184.670045][    C0]  alarmtimer_fired+0x327/0x670

posix_timer_fn() prevents that by checking whether the interval for
timers which have the signal ignored is smaller than a jiffie and
artifically delay it by shifting the next expiry out by a jiffie. That's
accurate vs. the overrun accounting, but slightly inaccurate
vs. timer_gettimer(2).

The comment in that function says what needs to be done and there was a fix
available for the regular userspace induced SIG_IGN mechanism, but that did
not work due to the implicit ignore for SIGCONT and similar signals. This
needs to be worked on, but for now the only available workaround is to do
exactly what posix_timer_fn() does:

Increase the interval of self-rearming timers, which have their signal
ignored, to at least a jiffie.

Interestingly this has been fixed before via commit ff86bf0c65f1
("alarmtimer: Rate limit periodic intervals") already, but that fix got
lost in a later rework.

Reported-by: syzbot+b9564ba6e8e00694511b@syzkaller.appspotmail.com
Fixes: f2c45807d399 ("alarmtimer: Switch over to generic set/get/rearm routine")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87k00q1no2.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-22 12:57:11 +01:00
Munehisa Kamata
cca2b3feb7 sched/psi: Fix use-after-free in ep_remove_wait_queue()
commit c2dbe32d5db5c4ead121cf86dabd5ab691fb47fe upstream.

If a non-root cgroup gets removed when there is a thread that registered
trigger and is polling on a pressure file within the cgroup, the polling
waitqueue gets freed in the following path:

 do_rmdir
   cgroup_rmdir
     kernfs_drain_open_files
       cgroup_file_release
         cgroup_pressure_release
           psi_trigger_destroy

However, the polling thread still has a reference to the pressure file and
will access the freed waitqueue when the file is closed or upon exit:

 fput
   ep_eventpoll_release
     ep_free
       ep_remove_wait_queue
         remove_wait_queue

This results in use-after-free as pasted below.

The fundamental problem here is that cgroup_file_release() (and
consequently waitqueue's lifetime) is not tied to the file's real lifetime.
Using wake_up_pollfree() here might be less than ideal, but it is in line
with the comment at commit 42288cb44c4b ("wait: add wake_up_pollfree()")
since the waitqueue's lifetime is not tied to file's one and can be
considered as another special case. While this would be fixable by somehow
making cgroup_file_release() be tied to the fput(), it would require
sizable refactoring at cgroups or higher layer which might be more
justifiable if we identify more cases like this.

  BUG: KASAN: use-after-free in _raw_spin_lock_irqsave+0x60/0xc0
  Write of size 4 at addr ffff88810e625328 by task a.out/4404

	CPU: 19 PID: 4404 Comm: a.out Not tainted 6.2.0-rc6 
	Hardware name: Amazon EC2 c5a.8xlarge/, BIOS 1.0 10/16/2017
	Call Trace:
	<TASK>
	dump_stack_lvl+0x73/0xa0
	print_report+0x16c/0x4e0
	kasan_report+0xc3/0xf0
	kasan_check_range+0x2d2/0x310
	_raw_spin_lock_irqsave+0x60/0xc0
	remove_wait_queue+0x1a/0xa0
	ep_free+0x12c/0x170
	ep_eventpoll_release+0x26/0x30
	__fput+0x202/0x400
	task_work_run+0x11d/0x170
	do_exit+0x495/0x1130
	do_group_exit+0x100/0x100
	get_signal+0xd67/0xde0
	arch_do_signal_or_restart+0x2a/0x2b0
	exit_to_user_mode_prepare+0x94/0x100
	syscall_exit_to_user_mode+0x20/0x40
	do_syscall_64+0x52/0x90
	entry_SYSCALL_64_after_hwframe+0x63/0xcd
	</TASK>

 Allocated by task 4404:

	kasan_set_track+0x3d/0x60
	__kasan_kmalloc+0x85/0x90
	psi_trigger_create+0x113/0x3e0
	pressure_write+0x146/0x2e0
	cgroup_file_write+0x11c/0x250
	kernfs_fop_write_iter+0x186/0x220
	vfs_write+0x3d8/0x5c0
	ksys_write+0x90/0x110
	do_syscall_64+0x43/0x90
	entry_SYSCALL_64_after_hwframe+0x63/0xcd

 Freed by task 4407:

	kasan_set_track+0x3d/0x60
	kasan_save_free_info+0x27/0x40
	____kasan_slab_free+0x11d/0x170
	slab_free_freelist_hook+0x87/0x150
	__kmem_cache_free+0xcb/0x180
	psi_trigger_destroy+0x2e8/0x310
	cgroup_file_release+0x4f/0xb0
	kernfs_drain_open_files+0x165/0x1f0
	kernfs_drain+0x162/0x1a0
	__kernfs_remove+0x1fb/0x310
	kernfs_remove_by_name_ns+0x95/0xe0
	cgroup_addrm_files+0x67f/0x700
	cgroup_destroy_locked+0x283/0x3c0
	cgroup_rmdir+0x29/0x100
	kernfs_iop_rmdir+0xd1/0x140
	vfs_rmdir+0xfe/0x240
	do_rmdir+0x13d/0x280
	__x64_sys_rmdir+0x2c/0x30
	do_syscall_64+0x43/0x90
	entry_SYSCALL_64_after_hwframe+0x63/0xcd

Fixes: 0e94682b73bf ("psi: introduce psi monitor")
Signed-off-by: Munehisa Kamata <kamatam@amazon.com>
Signed-off-by: Mengchi Cheng <mengcc@amazon.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/lkml/20230106224859.4123476-1-kamatam@amazon.com/
Link: https://lore.kernel.org/r/20230214212705.4058045-1-kamatam@amazon.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-22 12:57:06 +01:00
Masami Hiramatsu
b5d5f1ad05 kprobes: treewide: Cleanup the error messages for kprobes
[ Upstream commit 9c89bb8e327203bc27e09ebd82d8f61ac2ae8b24 ]

This clean up the error/notification messages in kprobes related code.
Basically this defines 'pr_fmt()' macros for each files and update
the messages which describes

 - what happened,
 - what is the kernel going to do or not do,
 - is the kernel fine,
 - what can the user do about it.

Also, if the message is not needed (e.g. the function returns unique
error code, or other error message is already shown.) remove it,
and replace the message with WARN_*() macros if suitable.

Link: https://lkml.kernel.org/r/163163036568.489837.14085396178727185469.stgit@devnote2

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Stable-dep-of: eb7423273cc9 ("riscv: kprobe: Fixup misaligned load text")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-22 12:57:00 +01:00
Wander Lairson Costa
ac39dce119 rtmutex: Ensure that the top waiter is always woken up
commit db370a8b9f67ae5f17e3d5482493294467784504 upstream.

Let L1 and L2 be two spinlocks.

Let T1 be a task holding L1 and blocked on L2. T1, currently, is the top
waiter of L2.

Let T2 be the task holding L2.

Let T3 be a task trying to acquire L1.

The following events will lead to a state in which the wait queue of L2
isn't empty, but no task actually holds the lock.

T1                T2                                  T3
==                ==                                  ==

                                                      spin_lock(L1)
                                                      | raw_spin_lock(L1->wait_lock)
                                                      | rtlock_slowlock_locked(L1)
                                                      | | task_blocks_on_rt_mutex(L1, T3)
                                                      | | | orig_waiter->lock = L1
                                                      | | | orig_waiter->task = T3
                                                      | | | raw_spin_unlock(L1->wait_lock)
                                                      | | | rt_mutex_adjust_prio_chain(T1, L1, L2, orig_waiter, T3)
                  spin_unlock(L2)                     | | | |
                  | rt_mutex_slowunlock(L2)           | | | |
                  | | raw_spin_lock(L2->wait_lock)    | | | |
                  | | wakeup(T1)                      | | | |
                  | | raw_spin_unlock(L2->wait_lock)  | | | |
                                                      | | | | waiter = T1->pi_blocked_on
                                                      | | | | waiter == rt_mutex_top_waiter(L2)
                                                      | | | | waiter->task == T1
                                                      | | | | raw_spin_lock(L2->wait_lock)
                                                      | | | | dequeue(L2, waiter)
                                                      | | | | update_prio(waiter, T1)
                                                      | | | | enqueue(L2, waiter)
                                                      | | | | waiter != rt_mutex_top_waiter(L2)
                                                      | | | | L2->owner == NULL
                                                      | | | | wakeup(T1)
                                                      | | | | raw_spin_unlock(L2->wait_lock)
T1 wakes up
T1 != top_waiter(L2)
schedule_rtlock()

If the deadline of T1 is updated before the call to update_prio(), and the
new deadline is greater than the deadline of the second top waiter, then
after the requeue, T1 is no longer the top waiter, and the wrong task is
woken up which will then go back to sleep because it is not the top waiter.

This can be reproduced in PREEMPT_RT with stress-ng:

while true; do
    stress-ng --sched deadline --sched-period 1000000000 \
    	    --sched-runtime 800000000 --sched-deadline \
    	    1000000000 --mmapfork 23 -t 20
done

A similar issue was pointed out by Thomas versus the cases where the top
waiter drops out early due to a signal or timeout, which is a general issue
for all regular rtmutex use cases, e.g. futex.

The problematic code is in rt_mutex_adjust_prio_chain():

    	// Save the top waiter before dequeue/enqueue
	prerequeue_top_waiter = rt_mutex_top_waiter(lock);

	rt_mutex_dequeue(lock, waiter);
	waiter_update_prio(waiter, task);
	rt_mutex_enqueue(lock, waiter);

	// Lock has no owner?
	if (!rt_mutex_owner(lock)) {
	   	// Top waiter changed
  ---->		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
  ---->			wake_up_state(waiter->task, waiter->wake_state);

This only takes the case into account where @waiter is the new top waiter
due to the requeue operation.

But it fails to handle the case where @waiter is not longer the top
waiter due to the requeue operation.

Ensure that the new top waiter is woken up so in all cases so it can take
over the ownerless lock.

[ tglx: Amend changelog, add Fixes tag ]

Fixes: c014ef69b3ac ("locking/rtmutex: Add wake_state to rt_mutex_waiter")
Signed-off-by: Wander Lairson Costa <wander@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230117172649.52465-1-wander@redhat.com
Link: https://lore.kernel.org/r/20230202123020.14844-1-wander@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-14 19:18:04 +01:00
Shiju Jose
70f37b3118 tracing: Fix poll() and select() do not work on per_cpu trace_pipe and trace_pipe_raw
commit 3e46d910d8acf94e5360126593b68bf4fee4c4a1 upstream.

poll() and select() on per_cpu trace_pipe and trace_pipe_raw do not work
since kernel 6.1-rc6. This issue is seen after the commit
42fb0a1e84ff525ebe560e2baf9451ab69127e2b ("tracing/ring-buffer: Have
polling block on watermark").

This issue is firstly detected and reported, when testing the CXL error
events in the rasdaemon and also erified using the test application for poll()
and select().

This issue occurs for the per_cpu case, when calling the ring_buffer_poll_wait(),
in kernel/trace/ring_buffer.c, with the buffer_percent > 0 and then wait until the
percentage of pages are available. The default value set for the buffer_percent is 50
in the kernel/trace/trace.c.

As a fix, allow userspace application could set buffer_percent as 0 through
the buffer_percent_fops, so that the task will wake up as soon as data is added
to any of the specific cpu buffer.

Link: https://lore.kernel.org/linux-trace-kernel/20230202182309.742-2-shiju.jose@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <mchehab@kernel.org>
Cc: <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Signed-off-by: Shiju Jose <shiju.jose@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-14 19:17:57 +01:00
Hao Sun
6e2fac197d bpf: Skip invalid kfunc call in backtrack_insn
commit d3178e8a434b58678d99257c0387810a24042fb6 upstream.

The verifier skips invalid kfunc call in check_kfunc_call(), which
would be captured in fixup_kfunc_call() if such insn is not eliminated
by dead code elimination. However, this can lead to the following
warning in backtrack_insn(), also see [1]:

  ------------[ cut here ]------------
  verifier backtracking bug
  WARNING: CPU: 6 PID: 8646 at kernel/bpf/verifier.c:2756 backtrack_insn
  kernel/bpf/verifier.c:2756
	__mark_chain_precision kernel/bpf/verifier.c:3065
	mark_chain_precision kernel/bpf/verifier.c:3165
	adjust_reg_min_max_vals kernel/bpf/verifier.c:10715
	check_alu_op kernel/bpf/verifier.c:10928
	do_check kernel/bpf/verifier.c:13821 [inline]
	do_check_common kernel/bpf/verifier.c:16289
  [...]

So make backtracking conservative with this by returning ENOTSUPP.

  [1] https://lore.kernel.org/bpf/CACkBjsaXNceR8ZjkLG=dT3P=4A8SBsg0Z5h5PWLryF5=ghKq=g@mail.gmail.com/

Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230104014709.9375-1-sunhao.th@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-09 11:26:48 +01:00
Martin KaFai Lau
8c84f50390 bpf: Do not reject when the stack read size is different from the tracked scalar size
commit f30d4968e9aee737e174fc97942af46cfb49b484 upstream.

Below is a simplified case from a report in bcc [0]:

  r4 = 20
  *(u32 *)(r10 -4) = r4
  *(u32 *)(r10 -8) = r4  /* r4 state is tracked */
  r4 = *(u64 *)(r10 -8)  /* Read more than the tracked 32bit scalar.
			  * verifier rejects as 'corrupted spill memory'.
			  */

After commit 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill"),
the 8-byte aligned 32bit spill is also tracked by the verifier and the
register state is stored.

However, if 8 bytes are read from the stack instead of the tracked 4 byte
scalar, then verifier currently rejects the program as "corrupted spill
memory". This patch fixes this case by allowing it to read but marks the
register as unknown.

Also note that, if the prog is trying to corrupt/leak an earlier spilled
pointer by spilling another <8 bytes register on top, this has already
been rejected in the check_stack_write_fixed_off().

  [0] https://github.com/iovisor/bcc/pull/3683

Fixes: 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
Reported-by: Hengqi Chen <hengqi.chen@gmail.com>
Reported-by: Yonghong Song <yhs@gmail.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Hengqi Chen <hengqi.chen@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211102064535.316018-1-kafai@fb.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-09 11:26:47 +01:00
Paul Chaignon
14b6198abb bpf: Fix incorrect state pruning for <8B spill/fill
commit 345e004d023343d38088fdfea39688aa11e06ccf upstream.

Commit 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
introduced support in the verifier to track <8B spill/fills of scalars.
The backtracking logic for the precision bit was however skipping
spill/fills of less than 8B. That could cause state pruning to consider
two states equivalent when they shouldn't be.

As an example, consider the following bytecode snippet:

  0:  r7 = r1
  1:  call bpf_get_prandom_u32
  2:  r6 = 2
  3:  if r0 == 0 goto pc+1
  4:  r6 = 3
  ...
  8: [state pruning point]
  ...
  /* u32 spill/fill */
  10: *(u32 *)(r10 - 8) = r6
  11: r8 = *(u32 *)(r10 - 8)
  12: r0 = 0
  13: if r8 == 3 goto pc+1
  14: r0 = 1
  15: exit

The verifier first walks the path with R6=3. Given the support for <8B
spill/fills, at instruction 13, it knows the condition is true and skips
instruction 14. At that point, the backtracking logic kicks in but stops
at the fill instruction since it only propagates the precision bit for
8B spill/fill. When the verifier then walks the path with R6=2, it will
consider it safe at instruction 8 because R6 is not marked as needing
precision. Instruction 14 is thus never walked and is then incorrectly
removed as 'dead code'.

It's also possible to lead the verifier to accept e.g. an out-of-bound
memory access instead of causing an incorrect dead code elimination.

This regression was found via Cilium's bpf-next CI where it was causing
a conntrack map update to be silently skipped because the code had been
removed by the verifier.

This commit fixes it by enabling support for <8B spill/fills in the
bactracking logic. In case of a <8B spill/fill, the full 8B stack slot
will be marked as needing precision. Then, in __mark_chain_precision,
any tracked register spilled in a marked slot will itself be marked as
needing precision, regardless of the spill size. This logic makes two
assumptions: (1) only 8B-aligned spill/fill are tracked and (2) spilled
registers are only tracked if the spill and fill sizes are equal. Commit
ef979017b837 ("bpf: selftest: Add verifier tests for <8-byte scalar
spill and refill") covers the first assumption and the next commit in
this patchset covers the second.

Fixes: 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Paul Chaignon <paul@isovalent.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-09 11:26:46 +01:00
Greg Kroah-Hartman
066ecbf1a5 kernel/irq/irqdomain.c: fix memory leak with using debugfs_lookup()
commit d83d7ed260283560700d4034a80baad46620481b upstream.

When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time.  To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable <stable@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230202151554.2310273-1-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-09 11:26:44 +01:00
Eduard Zingerman
34ad5d8885 bpf: Fix to preserve reg parent/live fields when copying range info
[ Upstream commit 71f656a50176915d6813751188b5758daa8d012b ]

Register range information is copied in several places. The intent is
to transfer range/id information from one register/stack spill to
another. Currently this is done using direct register assignment, e.g.:

static void find_equal_scalars(..., struct bpf_reg_state *known_reg)
{
	...
	struct bpf_reg_state *reg;
	...
			*reg = *known_reg;
	...
}

However, such assignments also copy the following bpf_reg_state fields:

struct bpf_reg_state {
	...
	struct bpf_reg_state *parent;
	...
	enum bpf_reg_liveness live;
	...
};

Copying of these fields is accidental and incorrect, as could be
demonstrated by the following example:

     0: call ktime_get_ns()
     1: r6 = r0
     2: call ktime_get_ns()
     3: r7 = r0
     4: if r0 > r6 goto +1             ; r0 & r6 are unbound thus generated
                                       ; branch states are identical
     5: *(u64 *)(r10 - 8) = 0xdeadbeef ; 64-bit write to fp[-8]
    --- checkpoint ---
     6: r1 = 42                        ; r1 marked as written
     7: *(u8 *)(r10 - 8) = r1          ; 8-bit write, fp[-8] parent & live
                                       ; overwritten
     8: r2 = *(u64 *)(r10 - 8)
     9: r0 = 0
    10: exit

This example is unsafe because 64-bit write to fp[-8] at (5) is
conditional, thus not all bytes of fp[-8] are guaranteed to be set
when it is read at (8). However, currently the example passes
verification.

First, the execution path 1-10 is examined by verifier.
Suppose that a new checkpoint is created by is_state_visited() at (6).
After checkpoint creation:
- r1.parent points to checkpoint.r1,
- fp[-8].parent points to checkpoint.fp[-8].
At (6) the r1.live is set to REG_LIVE_WRITTEN.
At (7) the fp[-8].parent is set to r1.parent and fp[-8].live is set to
REG_LIVE_WRITTEN, because of the following code called in
check_stack_write_fixed_off():

static void save_register_state(struct bpf_func_state *state,
				int spi, struct bpf_reg_state *reg,
				int size)
{
	...
	state->stack[spi].spilled_ptr = *reg;  // <--- parent & live copied
	if (size == BPF_REG_SIZE)
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
	...
}

Note the intent to mark stack spill as written only if 8 bytes are
spilled to a slot, however this intent is spoiled by a 'live' field copy.
At (8) the checkpoint.fp[-8] should be marked as REG_LIVE_READ but
this does not happen:
- fp[-8] in a current state is already marked as REG_LIVE_WRITTEN;
- fp[-8].parent points to checkpoint.r1, parentage chain is used by
  mark_reg_read() to mark checkpoint states.
At (10) the verification is finished for path 1-10 and jump 4-6 is
examined. The checkpoint.fp[-8] never gets REG_LIVE_READ mark and this
spill is pruned from the cached states by clean_live_states(). Hence
verifier state obtained via path 1-4,6 is deemed identical to one
obtained via path 1-6 and program marked as safe.

Note: the example should be executed with BPF_F_TEST_STATE_FREQ flag
set to force creation of intermediate verifier states.

This commit revisits the locations where bpf_reg_state instances are
copied and replaces the direct copies with a call to a function
copy_register_state(dst, src) that preserves 'parent' and 'live'
fields of the 'dst'.

Fixes: 679c782de14b ("bpf/verifier: per-register parent pointers")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230106142214.1040390-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-09 11:26:33 +01:00
Martin KaFai Lau
7b86f9ab56 bpf: Support <8-byte scalar spill and refill
[ Upstream commit 354e8f1970f821d4952458f77b1ab6c3eb24d530 ]

The verifier currently does not save the reg state when
spilling <8byte bounded scalar to the stack.  The bpf program
will be incorrectly rejected when this scalar is refilled to
the reg and then used to offset into a packet header.
The later patch has a simplified bpf prog from a real use case
to demonstrate this case.  The current work around is
to reparse the packet again such that this offset scalar
is close to where the packet data will be accessed to
avoid the spill.  Thus, the header is parsed twice.

The llvm patch [1] will align the <8bytes spill to
the 8-byte stack address.  This can simplify the verifier
support by avoiding to store multiple reg states for
each 8 byte stack slot.

This patch changes the verifier to save the reg state when
spilling <8bytes scalar to the stack.  This reg state saving
is limited to spill aligned to the 8-byte stack address.
The current refill logic has already called coerce_reg_to_size(),
so coerce_reg_to_size() is not called on state->stack[spi].spilled_ptr
during spill.

When refilling in check_stack_read_fixed_off(),  it checks
the refill size is the same as the number of bytes marked with
STACK_SPILL before restoring the reg state.  When restoring
the reg state to state->regs[dst_regno], it needs
to avoid the state->regs[dst_regno].subreg_def being
over written because it has been marked by the check_reg_arg()
earlier [check_mem_access() is called after check_reg_arg() in
do_check()].  Reordering check_mem_access() and check_reg_arg()
will need a lot of changes in test_verifier's tests because
of the difference in verifier's error message.  Thus, the
patch here is to save the state->regs[dst_regno].subreg_def
first in check_stack_read_fixed_off().

There are cases that the verifier needs to scrub the spilled slot
from STACK_SPILL to STACK_MISC.  After this patch the spill is not always
in 8 bytes now, so it can no longer assume the other 7 bytes are always
marked as STACK_SPILL.  In particular, the scrub needs to avoid marking
an uninitialized byte from STACK_INVALID to STACK_MISC.  Otherwise, the
verifier will incorrectly accept bpf program reading uninitialized bytes
from the stack.  A new helper scrub_spilled_slot() is created for this
purpose.

[1]: https://reviews.llvm.org/D109073

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210922004941.625398-1-kafai@fb.com
Stable-dep-of: 71f656a50176 ("bpf: Fix to preserve reg parent/live fields when copying range info")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-09 11:26:33 +01:00
Yonghong Song
b7abeb6916 bpf: Fix a possible task gone issue with bpf_send_signal[_thread]() helpers
[ Upstream commit bdb7fdb0aca8b96cef9995d3a57e251c2289322f ]

In current bpf_send_signal() and bpf_send_signal_thread() helper
implementation, irq_work is used to handle nmi context. Hao Sun
reported in [1] that the current task at the entry of the helper
might be gone during irq_work callback processing. To fix the issue,
a reference is acquired for the current task before enqueuing into
the irq_work so that the queued task is still available during
irq_work callback processing.

  [1] https://lore.kernel.org/bpf/20230109074425.12556-1-sunhao.th@gmail.com/

Fixes: 8b401f9ed244 ("bpf: implement bpf_send_signal() helper")
Tested-by: Hao Sun <sunhao.th@gmail.com>
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230118204815.3331855-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-09 11:26:33 +01:00
Hao Sun
0dfef50313 bpf: Skip task with pid=1 in send_signal_common()
[ Upstream commit a3d81bc1eaef48e34dd0b9b48eefed9e02a06451 ]

The following kernel panic can be triggered when a task with pid=1 attaches
a prog that attempts to send killing signal to itself, also see [1] for more
details:

  Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
  CPU: 3 PID: 1 Comm: systemd Not tainted 6.1.0-09652-g59fe41b5255f 
  Call Trace:
  <TASK>
  __dump_stack lib/dump_stack.c:88 [inline]
  dump_stack_lvl+0x100/0x178 lib/dump_stack.c:106
  panic+0x2c4/0x60f kernel/panic.c:275
  do_exit.cold+0x63/0xe4 kernel/exit.c:789
  do_group_exit+0xd4/0x2a0 kernel/exit.c:950
  get_signal+0x2460/0x2600 kernel/signal.c:2858
  arch_do_signal_or_restart+0x78/0x5d0 arch/x86/kernel/signal.c:306
  exit_to_user_mode_loop kernel/entry/common.c:168 [inline]
  exit_to_user_mode_prepare+0x15f/0x250 kernel/entry/common.c:203
  __syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
  syscall_exit_to_user_mode+0x1d/0x50 kernel/entry/common.c:296
  do_syscall_64+0x44/0xb0 arch/x86/entry/common.c:86
  entry_SYSCALL_64_after_hwframe+0x63/0xcd

So skip task with pid=1 in bpf_send_signal_common() to avoid the panic.

  [1] https://lore.kernel.org/bpf/20221222043507.33037-1-sunhao.th@gmail.com

Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230106084838.12690-1-sunhao.th@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-06 07:59:00 +01:00
Natalia Petrova
592ba7116f trace_events_hist: add check for return value of 'create_hist_field'
commit 8b152e9150d07a885f95e1fd401fc81af202d9a4 upstream.

Function 'create_hist_field' is called recursively at
trace_events_hist.c:1954 and can return NULL-value that's why we have
to check it to avoid null pointer dereference.

Found by Linux Verification Center (linuxtesting.org) with SVACE.

Link: https://lkml.kernel.org/r/20230111120409.4111-1-n.petrova@fintech.ru

Cc: stable@vger.kernel.org
Fixes: 30350d65ac56 ("tracing: Add variable support to hist triggers")
Signed-off-by: Natalia Petrova <n.petrova@fintech.ru>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-01 08:27:23 +01:00
Steven Rostedt (Google)
b0af180514 tracing: Make sure trace_printk() can output as soon as it can be used
commit 3bb06eb6e9acf7c4a3e1b5bc87aed398ff8e2253 upstream.

Currently trace_printk() can be used as soon as early_trace_init() is
called from start_kernel(). But if a crash happens, and
"ftrace_dump_on_oops" is set on the kernel command line, all you get will
be:

  [    0.456075]   <idle>-0         0dN.2. 347519us : Unknown type 6
  [    0.456075]   <idle>-0         0dN.2. 353141us : Unknown type 6
  [    0.456075]   <idle>-0         0dN.2. 358684us : Unknown type 6

This is because the trace_printk() event (type 6) hasn't been registered
yet. That gets done via an early_initcall(), which may be early, but not
early enough.

Instead of registering the trace_printk() event (and other ftrace events,
which are not trace events) via an early_initcall(), have them registered at
the same time that trace_printk() can be used. This way, if there is a
crash before early_initcall(), then the trace_printk()s will actually be
useful.

Link: https://lkml.kernel.org/r/20230104161412.019f6c55@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: e725c731e3bb1 ("tracing: Split tracing initialization into two for early initialization")
Reported-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-01 08:27:23 +01:00
Petr Pavlu
91135d7233 module: Don't wait for GOING modules
commit 0254127ab977e70798707a7a2b757c9f3c971210 upstream.

During a system boot, it can happen that the kernel receives a burst of
requests to insert the same module but loading it eventually fails
during its init call. For instance, udev can make a request to insert
a frequency module for each individual CPU when another frequency module
is already loaded which causes the init function of the new module to
return an error.

Since commit 6e6de3dee51a ("kernel/module.c: Only return -EEXIST for
modules that have finished loading"), the kernel waits for modules in
MODULE_STATE_GOING state to finish unloading before making another
attempt to load the same module.

This creates unnecessary work in the described scenario and delays the
boot. In the worst case, it can prevent udev from loading drivers for
other devices and might cause timeouts of services waiting on them and
subsequently a failed boot.

This patch attempts a different solution for the problem 6e6de3dee51a
was trying to solve. Rather than waiting for the unloading to complete,
it returns a different error code (-EBUSY) for modules in the GOING
state. This should avoid the error situation that was described in
6e6de3dee51a (user space attempting to load a dependent module because
the -EEXIST error code would suggest to user space that the first module
had been loaded successfully), while avoiding the delay situation too.

This has been tested on linux-next since December 2022 and passes
all kmod selftests except test 0009 with module compression enabled
but it has been confirmed that this issue has existed and has gone
unnoticed since prior to this commit and can also be reproduced without
module compression with a simple usleep(5000000) on tools/modprobe.c [0].
These failures are caused by hitting the kernel mod_concurrent_max and can
happen either due to a self inflicted kernel module auto-loead DoS somehow
or on a system with large CPU count and each CPU count incorrectly triggering
many module auto-loads. Both of those issues need to be fixed in-kernel.

[0] https://lore.kernel.org/all/Y9A4fiobL6IHp%2F%2FP@bombadil.infradead.org/

Fixes: 6e6de3dee51a ("kernel/module.c: Only return -EEXIST for modules that have finished loading")
Co-developed-by: Martin Wilck <mwilck@suse.com>
Signed-off-by: Martin Wilck <mwilck@suse.com>
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Cc: stable@vger.kernel.org
Reviewed-by: Petr Mladek <pmladek@suse.com>
[mcgrof: enhance commit log with testing and kmod test result interpretation ]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-01 08:27:23 +01:00
Kees Cook
21998acd31 exit: Use READ_ONCE() for all oops/warn limit reads
commit 7535b832c6399b5ebfc5b53af5c51dd915ee2538 upstream.

Use a temporary variable to take full advantage of READ_ONCE() behavior.
Without this, the report (and even the test) might be out of sync with
the initial test.

Reported-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/lkml/Y5x7GXeluFmZ8E0E@hirez.programming.kicks-ass.net
Fixes: 9fc9e278a5c0 ("panic: Introduce warn_limit")
Fixes: d4ccd54d28d3 ("exit: Put an upper limit on how often we can oops")
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Jann Horn <jannh@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Marco Elver <elver@google.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:22 +01:00
Kees Cook
1c51698ad6 panic: Expose "warn_count" to sysfs
commit 8b05aa26336113c4cea25f1c333ee8cd4fc212a6 upstream.

Since Warn count is now tracked and is a fairly interesting signal, add
the entry /sys/kernel/warn_count to expose it to userspace.

Cc: Petr Mladek <pmladek@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-6-keescook@chromium.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:22 +01:00
Kees Cook
0691ddae56 panic: Introduce warn_limit
commit 9fc9e278a5c0b708eeffaf47d6eb0c82aa74ed78 upstream.

Like oops_limit, add warn_limit for limiting the number of warnings when
panic_on_warn is not set.

Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: linux-doc@vger.kernel.org
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-5-keescook@chromium.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:22 +01:00
Kees Cook
7b98914a6c panic: Consolidate open-coded panic_on_warn checks
commit 79cc1ba7badf9e7a12af99695a557e9ce27ee967 upstream.

Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll
their own warnings, and each check "panic_on_warn". Consolidate this
into a single function so that future instrumentation can be added in
a single location.

Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Gow <davidgow@google.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: Jann Horn <jannh@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm@kvack.org
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:22 +01:00
Kees Cook
fc636b1362 exit: Allow oops_limit to be disabled
commit de92f65719cd672f4b48397540b9f9eff67eca40 upstream.

In preparation for keeping oops_limit logic in sync with warn_limit,
have oops_limit == 0 disable checking the Oops counter.

Cc: Jann Horn <jannh@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-doc@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:21 +01:00
Kees Cook
339f8a8e52 exit: Expose "oops_count" to sysfs
commit 9db89b41117024f80b38b15954017fb293133364 upstream.

Since Oops count is now tracked and is a fairly interesting signal, add
the entry /sys/kernel/oops_count to expose it to userspace.

Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Jann Horn <jannh@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-3-keescook@chromium.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:21 +01:00
Jann Horn
f80fb0001f exit: Put an upper limit on how often we can oops
commit d4ccd54d28d3c8598e2354acc13e28c060961dbb upstream.

Many Linux systems are configured to not panic on oops; but allowing an
attacker to oops the system **really** often can make even bugs that look
completely unexploitable exploitable (like NULL dereferences and such) if
each crash elevates a refcount by one or a lock is taken in read mode, and
this causes a counter to eventually overflow.

The most interesting counters for this are 32 bits wide (like open-coded
refcounts that don't use refcount_t). (The ldsem reader count on 32-bit
platforms is just 16 bits, but probably nobody cares about 32-bit platforms
that much nowadays.)

So let's panic the system if the kernel is constantly oopsing.

The speed of oopsing 2^32 times probably depends on several factors, like
how long the stack trace is and which unwinder you're using; an empirically
important one is whether your console is showing a graphical environment or
a text console that oopses will be printed to.
In a quick single-threaded benchmark, it looks like oopsing in a vfork()
child with a very short stack trace only takes ~510 microseconds per run
when a graphical console is active; but switching to a text console that
oopses are printed to slows it down around 87x, to ~45 milliseconds per
run.
(Adding more threads makes this faster, but the actual oops printing
happens under &die_lock on x86, so you can maybe speed this up by a factor
of around 2 and then any further improvement gets eaten up by lock
contention.)

It looks like it would take around 8-12 days to overflow a 32-bit counter
with repeated oopsing on a multi-core X86 system running a graphical
environment; both me (in an X86 VM) and Seth (with a distro kernel on
normal hardware in a standard configuration) got numbers in that ballpark.

12 days aren't *that* short on a desktop system, and you'd likely need much
longer on a typical server system (assuming that people don't run graphical
desktop environments on their servers), and this is a *very* noisy and
violent approach to exploiting the kernel; and it also seems to take orders
of magnitude longer on some machines, probably because stuff like EFI
pstore will slow it down a ton if that's active.

Signed-off-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/r/20221107201317.324457-1-jannh@google.com
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-2-keescook@chromium.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:21 +01:00
Kees Cook
2857ce7f47 panic: Separate sysctl logic from CONFIG_SMP
commit 9360d035a579d95d1e76c471061b9065b18a0eb1 upstream.

In preparation for adding more sysctls directly in kernel/panic.c, split
CONFIG_SMP from the logic that adds sysctls.

Cc: Petr Mladek <pmladek@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-1-keescook@chromium.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:21 +01:00
Eric W. Biederman
39a26d8721 exit: Add and use make_task_dead.
commit 0e25498f8cd43c1b5aa327f373dd094e9a006da7 upstream.

There are two big uses of do_exit.  The first is it's design use to be
the guts of the exit(2) system call.  The second use is to terminate
a task after something catastrophic has happened like a NULL pointer
in kernel code.

Add a function make_task_dead that is initialy exactly the same as
do_exit to cover the cases where do_exit is called to handle
catastrophic failure.  In time this can probably be reduced to just a
light wrapper around do_task_dead. For now keep it exactly the same so
that there will be no behavioral differences introducing this new
concept.

Replace all of the uses of do_exit that use it for catastraphic
task cleanup with make_task_dead to make it clear what the code
is doing.

As part of this rename rewind_stack_do_exit
rewind_stack_and_make_dead.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:20 +01:00
Tiezhu Yang
e4cd210032 panic: unset panic_on_warn inside panic()
commit 1a2383e8b84c0451fd9b1eec3b9aab16f30b597c upstream.

In the current code, the following three places need to unset
panic_on_warn before calling panic() to avoid recursive panics:

kernel/kcsan/report.c: print_report()
kernel/sched/core.c: __schedule_bug()
mm/kfence/report.c: kfence_report_error()

In order to avoid copy-pasting "panic_on_warn = 0" all over the places,
it is better to move it inside panic() and then remove it from the other
places.

Link: https://lkml.kernel.org/r/1644324666-15947-4-git-send-email-yangtiezhu@loongson.cn
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Xuefeng Li <lixuefeng@loongson.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:20 +01:00
tangmeng
191f1f1f6a kernel/panic: move panic sysctls to its own file
commit 9df918698408fd914493aba0b7858fef50eba63a upstream.

kernel/sysctl.c is a kitchen sink where everyone leaves their dirty
dishes, this makes it very difficult to maintain.

To help with this maintenance let's start by moving sysctls to places
where they actually belong.  The proc sysctl maintainers do not want to
know what sysctl knobs you wish to add for your own piece of code, we
just care about the core logic.

All filesystem syctls now get reviewed by fs folks. This commit
follows the commit of fs, move the oops_all_cpu_backtrace sysctl to
its own file, kernel/panic.c.

Signed-off-by: tangmeng <tangmeng@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:20 +01:00
Max Filippov
f0e6dcae14 kcsan: test: don't put the expect array on the stack
[ Upstream commit 5b24ac2dfd3eb3e36f794af3aa7f2828b19035bd ]

Size of the 'expect' array in the __report_matches is 1536 bytes, which
is exactly the default frame size warning limit of the xtensa
architecture.
As a result allmodconfig xtensa kernel builds with the gcc that does not
support the compiler plugins (which otherwise would push the said
warning limit to 2K) fail with the following message:

  kernel/kcsan/kcsan_test.c:257:1: error: the frame size of 1680 bytes
    is larger than 1536 bytes

Fix it by dynamically allocating the 'expect' array.

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Marco Elver <elver@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:16 +01:00
Luis Gerhorst
01bdcc73db bpf: Fix pointer-leak due to insufficient speculative store bypass mitigation
[ Upstream commit e4f4db47794c9f474b184ee1418f42e6a07412b6 ]

To mitigate Spectre v4, 2039f26f3aca ("bpf: Fix leakage due to
insufficient speculative store bypass mitigation") inserts lfence
instructions after 1) initializing a stack slot and 2) spilling a
pointer to the stack.

However, this does not cover cases where a stack slot is first
initialized with a pointer (subject to sanitization) but then
overwritten with a scalar (not subject to sanitization because
the slot was already initialized). In this case, the second write
may be subject to speculative store bypass (SSB) creating a
speculative pointer-as-scalar type confusion. This allows the
program to subsequently leak the numerical pointer value using,
for example, a branch-based cache side channel.

To fix this, also sanitize scalars if they write a stack slot
that previously contained a pointer. Assuming that pointer-spills
are only generated by LLVM on register-pressure, the performance
impact on most real-world BPF programs should be small.

The following unprivileged BPF bytecode drafts a minimal exploit
and the mitigation:

  [...]
  // r6 = 0 or 1 (skalar, unknown user input)
  // r7 = accessible ptr for side channel
  // r10 = frame pointer (fp), to be leaked
  //
  r9 = r10 # fp alias to encourage ssb
  *(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked
  // lfence added here because of pointer spill to stack.
  //
  // Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor
  // for no r9-r10 dependency.
  //
  *(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr
  // 2039f26f3aca: no lfence added because stack slot was not STACK_INVALID,
  // store may be subject to SSB
  //
  // fix: also add an lfence when the slot contained a ptr
  //
  r8 = *(u64 *)(r9 - 8)
  // r8 = architecturally a scalar, speculatively a ptr
  //
  // leak ptr using branch-based cache side channel:
  r8 &= 1 // choose bit to leak
  if r8 == 0 goto SLOW // no mispredict
  // architecturally dead code if input r6 is 0,
  // only executes speculatively iff ptr bit is 1
  r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast)
SLOW:
  [...]

After running this, the program can time the access to *(r7 + 0) to
determine whether the chosen pointer bit was 0 or 1. Repeat this 64
times to recover the whole address on amd64.

In summary, sanitization can only be skipped if one scalar is
overwritten with another scalar. Scalar-confusion due to speculative
store bypass can not lead to invalid accesses because the pointer
bounds deducted during verification are enforced using branchless
logic. See 979d63d50c0c ("bpf: prevent out of bounds speculation on
pointer arithmetic") for details.

Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks}
because speculative leaks are likely unexpected if these were enabled.
For example, leaking the address to a protected log file may be acceptable
while disabling the mitigation might unintentionally leak the address
into the cached-state of a map that is accessible to unprivileged
processes.

Fixes: 2039f26f3aca ("bpf: Fix leakage due to insufficient speculative store bypass mitigation")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Henriette Hofmeier <henriette.hofmeier@rub.de>
Link: https://lore.kernel.org/bpf/edc95bad-aada-9cfc-ffe2-fa9bb206583c@cs.fau.de
Link: https://lore.kernel.org/bpf/20230109150544.41465-1-gerhorst@cs.fau.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:27:07 +01:00
Paul Moore
6508788b2c bpf: restore the ebpf program ID for BPF_AUDIT_UNLOAD and PERF_BPF_EVENT_PROG_UNLOAD
commit ef01f4e25c1760920e2c94f1c232350277ace69b upstream.

When changing the ebpf program put() routines to support being called
from within IRQ context the program ID was reset to zero prior to
calling the perf event and audit UNLOAD record generators, which
resulted in problems as the ebpf program ID was bogus (always zero).
This patch addresses this problem by removing an unnecessary call to
bpf_prog_free_id() in __bpf_prog_offload_destroy() and adjusting
__bpf_prog_put() to only call bpf_prog_free_id() after audit and perf
have finished their bpf program unload tasks in
bpf_prog_put_deferred().  For the record, no one can determine, or
remember, why it was necessary to free the program ID, and remove it
from the IDR, prior to executing bpf_prog_put_deferred();
regardless, both Stanislav and Alexei agree that the approach in this
patch should be safe.

It is worth noting that when moving the bpf_prog_free_id() call, the
do_idr_lock parameter was forced to true as the ebpf devs determined
this was the correct as the do_idr_lock should always be true.  The
do_idr_lock parameter will be removed in a follow-up patch, but it
was kept here to keep the patch small in an effort to ease any stable
backports.

I also modified the bpf_audit_prog() logic used to associate the
AUDIT_BPF record with other associated records, e.g. @ctx != NULL.
Instead of keying off the operation, it now keys off the execution
context, e.g. '!in_irg && !irqs_disabled()', which is much more
appropriate and should help better connect the UNLOAD operations with
the associated audit state (other audit records).

Cc: stable@vger.kernel.org
Fixes: d809e134be7a ("bpf: Prepare bpf_prog_put() to be called from irq context.")
Reported-by: Burn Alting <burn.alting@iinet.net.au>
Reported-by: Jiri Olsa <olsajiri@gmail.com>
Suggested-by: Stanislav Fomichev <sdf@google.com>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230106154400.74211-1-paul@paul-moore.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:22:46 +01:00
Greg Kroah-Hartman
f01aefe374 prlimit: do_prlimit needs to have a speculation check
commit 739790605705ddcf18f21782b9c99ad7d53a8c11 upstream.

do_prlimit() adds the user-controlled resource value to a pointer that
will subsequently be dereferenced.  In order to help prevent this
codepath from being used as a spectre "gadget" a barrier needs to be
added after checking the range.

Reported-by: Jordy Zomer <jordyzomer@google.com>
Tested-by: Jordy Zomer <jordyzomer@google.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:22:44 +01:00
Waiman Long
b22faa21b6 sched/core: Fix use-after-free bug in dup_user_cpus_ptr()
commit 87ca4f9efbd7cc649ff43b87970888f2812945b8 upstream.

Since commit 07ec77a1d4e8 ("sched: Allow task CPU affinity to be
restricted on asymmetric systems"), the setting and clearing of
user_cpus_ptr are done under pi_lock for arm64 architecture. However,
dup_user_cpus_ptr() accesses user_cpus_ptr without any lock
protection. Since sched_setaffinity() can be invoked from another
process, the process being modified may be undergoing fork() at
the same time.  When racing with the clearing of user_cpus_ptr in
__set_cpus_allowed_ptr_locked(), it can lead to user-after-free and
possibly double-free in arm64 kernel.

Commit 8f9ea86fdf99 ("sched: Always preserve the user requested
cpumask") fixes this problem as user_cpus_ptr, once set, will never
be cleared in a task's lifetime. However, this bug was re-introduced
in commit 851a723e45d1 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") which allows the clearing of user_cpus_ptr in
do_set_cpus_allowed(). This time, it will affect all arches.

Fix this bug by always clearing the user_cpus_ptr of the newly
cloned/forked task before the copying process starts and check the
user_cpus_ptr state of the source task under pi_lock.

Note to stable, this patch won't be applicable to stable releases.
Just copy the new dup_user_cpus_ptr() function over.

Fixes: 07ec77a1d4e8 ("sched: Allow task CPU affinity to be restricted on asymmetric systems")
Fixes: 851a723e45d1 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Reported-by: David Wang 王标 <wangbiao3@xiaomi.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221231041120.440785-2-longman@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:48:52 +01:00
Zheng Yejian
394514ddf9 tracing: Fix issue of missing one synthetic field
commit ff4837f7fe59ff018eca4705a70eca5e0b486b97 upstream.

The maximum number of synthetic fields supported is defined as
SYNTH_FIELDS_MAX which value currently is 64, but it actually fails
when try to generate a synthetic event with 64 fields by executing like:

  # echo "my_synth_event int v1; int v2; int v3; int v4; int v5; int v6;\
   int v7; int v8; int v9; int v10; int v11; int v12; int v13; int v14;\
   int v15; int v16; int v17; int v18; int v19; int v20; int v21; int v22;\
   int v23; int v24; int v25; int v26; int v27; int v28; int v29; int v30;\
   int v31; int v32; int v33; int v34; int v35; int v36; int v37; int v38;\
   int v39; int v40; int v41; int v42; int v43; int v44; int v45; int v46;\
   int v47; int v48; int v49; int v50; int v51; int v52; int v53; int v54;\
   int v55; int v56; int v57; int v58; int v59; int v60; int v61; int v62;\
   int v63; int v64" >> /sys/kernel/tracing/synthetic_events

Correct the field counting to fix it.

Link: https://lore.kernel.org/linux-trace-kernel/20221207091557.3137904-1-zhengyejian1@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <zanussi@kernel.org>
Cc: stable@vger.kernel.org
Fixes: c9e759b1e845 ("tracing: Rework synthetic event command parsing")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
[Fix conflict due to lack of c24be24aed405d64ebcf04526614c13b2adfb1d2]
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:59:03 +01:00
Yang Jihong
4f5de49d8c tracing: Fix infinite loop in tracing_read_pipe on overflowed print_trace_line
commit c1ac03af6ed45d05786c219d102f37eb44880f28 upstream.

print_trace_line may overflow seq_file buffer. If the event is not
consumed, the while loop keeps peeking this event, causing a infinite loop.

Link: https://lkml.kernel.org/r/20221129113009.182425-1-yangjihong1@huawei.com

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 088b1e427dbba ("ftrace: pipe fixes")
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:55 +01:00
Steven Rostedt (Google)
17becbc4dd tracing/probes: Handle system names with hyphens
commit 575b76cb885532aae13a9d979fd476bb2b156cb9 upstream.

When creating probe names, a check is done to make sure it matches basic C
standard variable naming standards. Basically, starts with alphabetic or
underline, and then the rest of the characters have alpha-numeric or
underline in them.

But system names do not have any true naming conventions, as they are
created by the TRACE_SYSTEM macro and nothing tests to see what they are.
The "xhci-hcd" trace events has a '-' in the system name. When trying to
attach a eprobe to one of these trace points, it fails because the system
name does not follow the variable naming convention because of the
hyphen, and the eprobe checks fail on this.

Allow hyphens in the system name so that eprobes can attach to the
"xhci-hcd" trace events.

Link: https://lore.kernel.org/all/Y3eJ8GiGnEvVd8%2FN@macondo/
Link: https://lore.kernel.org/linux-trace-kernel/20221122122345.160f5077@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 5b7a96220900e ("tracing/probe: Check event/group naming rule at parsing")
Reported-by: Rafael Mendonca <rafaelmendsr@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:55 +01:00
Zheng Yejian
2442e655a6 tracing/hist: Fix wrong return value in parse_action_params()
commit 2cc6a528882d0e0ccbc1bca5f95b8c963cedac54 upstream.

When number of synth fields is more than SYNTH_FIELDS_MAX,
parse_action_params() should return -EINVAL.

Link: https://lore.kernel.org/linux-trace-kernel/20221207034635.2253990-1-zhengyejian1@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <zanussi@kernel.org>
Cc: stable@vger.kernel.org
Fixes: c282a386a397 ("tracing: Add 'onmatch' hist trigger action support")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:55 +01:00
Masami Hiramatsu (Google)
2a81ff5ce8 tracing: Fix complicated dependency of CONFIG_TRACER_MAX_TRACE
commit e25e43a4e5d8cb2323553d8b6a7ba08d2ebab21f upstream.

Both CONFIG_OSNOISE_TRACER and CONFIG_HWLAT_TRACER partially enables the
CONFIG_TRACER_MAX_TRACE code, but that is complicated and has
introduced a bug; It declares tracing_max_lat_fops data structure outside
of #ifdefs, but since it is defined only when CONFIG_TRACER_MAX_TRACE=y
or CONFIG_HWLAT_TRACER=y, if only CONFIG_OSNOISE_TRACER=y, that
declaration comes to a definition(!).

To fix this issue, and do not repeat the similar problem, makes
CONFIG_OSNOISE_TRACER and CONFIG_HWLAT_TRACER enables the
CONFIG_TRACER_MAX_TRACE always. It has there benefits;
- Fix the tracing_max_lat_fops bug
- Simplify the #ifdefs
- CONFIG_TRACER_MAX_TRACE code is fully enabled, or not.

Link: https://lore.kernel.org/linux-trace-kernel/167033628155.4111793.12185405690820208159.stgit@devnote3

Fixes: 424b650f35c7 ("tracing: Fix missing osnoise tracer on max_latency")
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: stable@vger.kernel.org
Reported-by: David Howells <dhowells@redhat.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/all/166992525941.1716618.13740663757583361463.stgit@warthog.procyon.org.uk/ (original thread and v1)
Link: https://lore.kernel.org/all/202212052253.VuhZ2ulJ-lkp@intel.com/T/#u (v1 error report)
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:55 +01:00
Steven Rostedt (Google)
fe8c35c6ff tracing: Fix race where eprobes can be called before the event
commit d5f30a7da8ea8e6450250275cec5670cee3c4264 upstream.

The flag that tells the event to call its triggers after reading the event
is set for eprobes after the eprobe is enabled. This leads to a race where
the eprobe may be triggered at the beginning of the event where the record
information is NULL. The eprobe then dereferences the NULL record causing
a NULL kernel pointer bug.

Test for a NULL record to keep this from happening.

Link: https://lore.kernel.org/linux-trace-kernel/20221116192552.1066630-1-rafaelmendsr@gmail.com/
Link: https://lore.kernel.org/all/20221117214249.2addbe10@gandalf.local.home/

Cc: stable@vger.kernel.org
Fixes: 7491e2c442781 ("tracing: Add a probe that attaches to trace events")
Reported-by: Rafael Mendonca <rafaelmendsr@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:54 +01:00
Namhyung Kim
7eddcdb09f perf/core: Call LSM hook after copying perf_event_attr
commit 0a041ebca4956292cadfb14a63ace3a9c1dcb0a3 upstream.

It passes the attr struct to the security_perf_event_open() but it's
not initialized yet.

Fixes: da97e18458fb ("perf_event: Add support for LSM and SELinux checks")
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221220223140.4020470-1-namhyung@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:53 +01:00
Zheng Yejian
15697f6533 tracing/hist: Fix out-of-bound write on 'action_data.var_ref_idx'
commit 82470f7d9044842618c847a7166de2b7458157a7 upstream.

When generate a synthetic event with many params and then create a trace
action for it [1], kernel panic happened [2].

It is because that in trace_action_create() 'data->n_params' is up to
SYNTH_FIELDS_MAX (current value is 64), and array 'data->var_ref_idx'
keeps indices into array 'hist_data->var_refs' for each synthetic event
param, but the length of 'data->var_ref_idx' is TRACING_MAP_VARS_MAX
(current value is 16), so out-of-bound write happened when 'data->n_params'
more than 16. In this case, 'data->match_data.event' is overwritten and
eventually cause the panic.

To solve the issue, adjust the length of 'data->var_ref_idx' to be
SYNTH_FIELDS_MAX and add sanity checks to avoid out-of-bound write.

[1]
 # cd /sys/kernel/tracing/
 # echo "my_synth_event int v1; int v2; int v3; int v4; int v5; int v6;\
int v7; int v8; int v9; int v10; int v11; int v12; int v13; int v14;\
int v15; int v16; int v17; int v18; int v19; int v20; int v21; int v22;\
int v23; int v24; int v25; int v26; int v27; int v28; int v29; int v30;\
int v31; int v32; int v33; int v34; int v35; int v36; int v37; int v38;\
int v39; int v40; int v41; int v42; int v43; int v44; int v45; int v46;\
int v47; int v48; int v49; int v50; int v51; int v52; int v53; int v54;\
int v55; int v56; int v57; int v58; int v59; int v60; int v61; int v62;\
int v63" >> synthetic_events
 # echo 'hist:keys=pid:ts0=common_timestamp.usecs if comm=="bash"' >> \
events/sched/sched_waking/trigger
 # echo "hist:keys=next_pid:onmatch(sched.sched_waking).my_synth_event(\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,pid,\
pid,pid,pid,pid,pid,pid,pid,pid,pid)" >> events/sched/sched_switch/trigger

[2]
BUG: unable to handle page fault for address: ffff91c900000000
PGD 61001067 P4D 61001067 PUD 0
Oops: 0000 [] PREEMPT SMP NOPTI
CPU: 2 PID: 322 Comm: bash Tainted: G        W          6.1.0-rc8+ 
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:strcmp+0xc/0x30
Code: 75 f7 31 d2 44 0f b6 04 16 44 88 04 11 48 83 c2 01 45 84 c0 75 ee
c3 cc cc cc cc 0f 1f 00 31 c0 eb 08 48 83 c0 01 84 d2 74 13 <0f> b6 14
07 3a 14 06 74 ef 19 c0 83 c8 01 c3 cc cc cc cc 31 c3
RSP: 0018:ffff9b3b00f53c48 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffffffffba958a68 RCX: 0000000000000000
RDX: 0000000000000010 RSI: ffff91c943d33a90 RDI: ffff91c900000000
RBP: ffff91c900000000 R08: 00000018d604b529 R09: 0000000000000000
R10: ffff91c9483eddb1 R11: ffff91ca483eddab R12: ffff91c946171580
R13: ffff91c9479f0538 R14: ffff91c9457c2848 R15: ffff91c9479f0538
FS:  00007f1d1cfbe740(0000) GS:ffff91c9bdc80000(0000)
knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff91c900000000 CR3: 0000000006316000 CR4: 00000000000006e0
Call Trace:
 <TASK>
 __find_event_file+0x55/0x90
 action_create+0x76c/0x1060
 event_hist_trigger_parse+0x146d/0x2060
 ? event_trigger_write+0x31/0xd0
 trigger_process_regex+0xbb/0x110
 event_trigger_write+0x6b/0xd0
 vfs_write+0xc8/0x3e0
 ? alloc_fd+0xc0/0x160
 ? preempt_count_add+0x4d/0xa0
 ? preempt_count_add+0x70/0xa0
 ksys_write+0x5f/0xe0
 do_syscall_64+0x3b/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f1d1d0cf077
Code: 64 89 02 48 c7 c0 ff ff ff ff eb bb 0f 1f 80 00 00 00 00 f3 0f 1e
fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00
f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74
RSP: 002b:00007ffcebb0e568 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000143 RCX: 00007f1d1d0cf077
RDX: 0000000000000143 RSI: 00005639265aa7e0 RDI: 0000000000000001
RBP: 00005639265aa7e0 R08: 000000000000000a R09: 0000000000000142
R10: 000056392639c017 R11: 0000000000000246 R12: 0000000000000143
R13: 00007f1d1d1ae6a0 R14: 00007f1d1d1aa4a0 R15: 00007f1d1d1a98a0
 </TASK>
Modules linked in:
CR2: ffff91c900000000
---[ end trace 0000000000000000 ]---
RIP: 0010:strcmp+0xc/0x30
Code: 75 f7 31 d2 44 0f b6 04 16 44 88 04 11 48 83 c2 01 45 84 c0 75 ee
c3 cc cc cc cc 0f 1f 00 31 c0 eb 08 48 83 c0 01 84 d2 74 13 <0f> b6 14
07 3a 14 06 74 ef 19 c0 83 c8 01 c3 cc cc cc cc 31 c3
RSP: 0018:ffff9b3b00f53c48 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffffffffba958a68 RCX: 0000000000000000
RDX: 0000000000000010 RSI: ffff91c943d33a90 RDI: ffff91c900000000
RBP: ffff91c900000000 R08: 00000018d604b529 R09: 0000000000000000
R10: ffff91c9483eddb1 R11: ffff91ca483eddab R12: ffff91c946171580
R13: ffff91c9479f0538 R14: ffff91c9457c2848 R15: ffff91c9479f0538
FS:  00007f1d1cfbe740(0000) GS:ffff91c9bdc80000(0000)
knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff91c900000000 CR3: 0000000006316000 CR4: 00000000000006e0

Link: https://lore.kernel.org/linux-trace-kernel/20221207035143.2278781-1-zhengyejian1@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <zanussi@kernel.org>
Cc: stable@vger.kernel.org
Fixes: d380dcde9a07 ("tracing: Fix now invalid var_ref_vals assumption in trace action")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:53 +01:00
Paul E. McKenney
cd0f597c8a rcu-tasks: Simplify trc_read_check_handler() atomic operations
commit 96017bf9039763a2e02dcc6adaa18592cd73a39d upstream.

Currently, trc_wait_for_one_reader() atomically increments
the trc_n_readers_need_end counter before sending the IPI
invoking trc_read_check_handler().  All failure paths out of
trc_read_check_handler() and also from the smp_call_function_single()
within trc_wait_for_one_reader() must carefully atomically decrement
this counter.  This is more complex than it needs to be.

This commit therefore simplifies things and saves a few lines of
code by dispensing with the atomic decrements in favor of having
trc_read_check_handler() do the atomic increment only in the success case.
In theory, this represents no change in functionality.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:49 +01:00
Marco Elver
ae4f70b2fe kcsan: Instrument memcpy/memset/memmove with newer Clang
commit 7c201739beef1a586d806463f1465429cdce34c5 upstream.

With Clang version 16+, -fsanitize=thread will turn
memcpy/memset/memmove calls in instrumented functions into
__tsan_memcpy/__tsan_memset/__tsan_memmove calls respectively.

Add these functions to the core KCSAN runtime, so that we (a) catch data
races with mem* functions, and (b) won't run into linker errors with
such newer compilers.

Cc: stable@vger.kernel.org # v5.10+
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[ elver@google.com: adjust check_access() call for v5.15 and earlier. ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:48 +01:00
Rickard x Andersson
ca8bcb348a gcov: add support for checksum field
commit e96b95c2b7a63a454b6498e2df67aac14d046d13 upstream.

In GCC version 12.1 a checksum field was added.

This patch fixes a kernel crash occurring during boot when using
gcov-kernel with GCC version 12.2.  The crash occurred on a system running
on i.MX6SX.

Link: https://lkml.kernel.org/r/20221220102318.3418501-1-rickaran@axis.com
Fixes: 977ef30a7d88 ("gcov: support GCC 12.1 and newer compilers")
Signed-off-by: Rickard x Andersson <rickaran@axis.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Tested-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reviewed-by: Martin Liska <mliska@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-31 13:14:47 +01:00
Stanislav Fomichev
b327c68ace bpf: Prevent decl_tag from being referenced in func_proto arg
[ Upstream commit f17472d4599697d701aa239b4c475a506bccfd19 ]

Syzkaller managed to hit another decl_tag issue:

  btf_func_proto_check kernel/bpf/btf.c:4506 [inline]
  btf_check_all_types kernel/bpf/btf.c:4734 [inline]
  btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763
  btf_parse kernel/bpf/btf.c:5042 [inline]
  btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709
  bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342
  __sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034
  __do_sys_bpf kernel/bpf/syscall.c:5093 [inline]
  __se_sys_bpf kernel/bpf/syscall.c:5091 [inline]
  __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091
  do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48

This seems similar to commit ea68376c8bed ("bpf: prevent decl_tag from being
referenced in func_proto") but for the argument.

Reported-by: syzbot+8dd0551dda6020944c5d@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221123035422.872531-2-sdf@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:42 +01:00
Zheng Yejian
ebe16676e1 acct: fix potential integer overflow in encode_comp_t()
[ Upstream commit c5f31c655bcc01b6da53b836ac951c1556245305 ]

The integer overflow is descripted with following codes:
  > 317 static comp_t encode_comp_t(u64 value)
  > 318 {
  > 319         int exp, rnd;
    ......
  > 341         exp <<= MANTSIZE;
  > 342         exp += value;
  > 343         return exp;
  > 344 }

Currently comp_t is defined as type of '__u16', but the variable 'exp' is
type of 'int', so overflow would happen when variable 'exp' in line 343 is
greater than 65535.

Link: https://lkml.kernel.org/r/20210515140631.369106-3-zhengyejian1@huawei.com
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Jinhao <zhangjinhao2@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:40 +01:00
Zqiang
98a5b1265a rcu: Fix __this_cpu_read() lockdep warning in rcu_force_quiescent_state()
[ Upstream commit ceb1c8c9b8aa9199da46a0f29d2d5f08d9b44c15 ]

Running rcutorture with non-zero fqs_duration module parameter in a
kernel built with CONFIG_PREEMPTION=y results in the following splat:

BUG: using __this_cpu_read() in preemptible [00000000]
code: rcu_torture_fqs/398
caller is __this_cpu_preempt_check+0x13/0x20
CPU: 3 PID: 398 Comm: rcu_torture_fqs Not tainted 6.0.0-rc1-yoctodev-standard+
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x86
dump_stack+0x10/0x16
check_preemption_disabled+0xe5/0xf0
__this_cpu_preempt_check+0x13/0x20
rcu_force_quiescent_state.part.0+0x1c/0x170
rcu_force_quiescent_state+0x1e/0x30
rcu_torture_fqs+0xca/0x160
? rcu_torture_boost+0x430/0x430
kthread+0x192/0x1d0
? kthread_complete_and_exit+0x30/0x30
ret_from_fork+0x22/0x30
</TASK>

The problem is that rcu_force_quiescent_state() uses __this_cpu_read()
in preemptible code instead of the proper raw_cpu_read().  This commit
therefore changes __this_cpu_read() to raw_cpu_read().

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:39 +01:00
Zheng Yejian
a44102d36a tracing/hist: Fix issue of losting command info in error_log
[ Upstream commit 608c6ed3337850c767ab0dd6c583477922233e29 ]

When input some constructed invalid 'trigger' command, command info
in 'error_log' are lost [1].

The root cause is that there is a path that event_hist_trigger_parse()
is recursely called once and 'last_cmd' which save origin command is
cleared, then later calling of hist_err() will no longer record origin
command info:

  event_hist_trigger_parse() {
    last_cmd_set()  // <1> 'last_cmd' save origin command here at first
    create_actions() {
      onmatch_create() {
        action_create() {
          trace_action_create() {
            trace_action_create_field_var() {
              create_field_var_hist() {
                event_hist_trigger_parse() {  // <2> recursely called once
                  hist_err_clear()  // <3> 'last_cmd' is cleared here
                }
                hist_err()  // <4> No longer find origin command!!!

Since 'glob' is empty string while running into the recurse call, we
can trickly check it and bypass the call of hist_err_clear() to solve it.

[1]
 # cd /sys/kernel/tracing
 # echo "my_synth_event int v1; int v2; int v3;" >> synthetic_events
 # echo 'hist:keys=pid' >> events/sched/sched_waking/trigger
 # echo "hist:keys=next_pid:onmatch(sched.sched_waking).my_synth_event(\
pid,pid1)" >> events/sched/sched_switch/trigger
 # cat error_log
[  8.405018] hist:sched:sched_switch: error: Couldn't find synthetic event
  Command:
hist:keys=next_pid:onmatch(sched.sched_waking).my_synth_event(pid,pid1)
                                                          ^
[  8.816902] hist:sched:sched_switch: error: Couldn't find field
  Command:
hist:keys=next_pid:onmatch(sched.sched_waking).my_synth_event(pid,pid1)
                          ^
[  8.816902] hist:sched:sched_switch: error: Couldn't parse field variable
  Command:
hist:keys=next_pid:onmatch(sched.sched_waking).my_synth_event(pid,pid1)
                          ^
[  8.999880] : error: Couldn't find field
  Command:
           ^
[  8.999880] : error: Couldn't parse field variable
  Command:
           ^
[  8.999880] : error: Couldn't find field
  Command:
           ^
[  8.999880] : error: Couldn't create histogram for field
  Command:
           ^

Link: https://lore.kernel.org/linux-trace-kernel/20221207135326.3483216-1-zhengyejian1@huawei.com

Cc: <mhiramat@kernel.org>
Cc: <zanussi@kernel.org>
Fixes: f404da6e1d46 ("tracing: Add 'last error' error facility for hist triggers")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:31 +01:00
Daniel Jordan
26c0f7e1ac padata: Fix list iterator in padata_do_serial()
[ Upstream commit 57ddfecc72a6c9941d159543e1c0c0a74fe9afdd ]

list_for_each_entry_reverse() assumes that the iterated list is nonempty
and that every list_head is embedded in the same type, but its use in
padata_do_serial() breaks both rules.

This doesn't cause any issues now because padata_priv and padata_list
happen to have their list fields at the same offset, but we really
shouldn't be relying on that.

Fixes: bfde23ce200e ("padata: unbind parallel jobs from specific CPUs")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:24 +01:00
Daniel Jordan
17afa98bcc padata: Always leave BHs disabled when running ->parallel()
[ Upstream commit 34c3a47d20ae55b3600fed733bf96eafe9c500d5 ]

A deadlock can happen when an overloaded system runs ->parallel() in the
context of the current task:

    padata_do_parallel
      ->parallel()
        pcrypt_aead_enc/dec
          padata_do_serial
            spin_lock(&reorder->lock) // BHs still enabled
              <interrupt>
                ...
                  __do_softirq
                    ...
                      padata_do_serial
                        spin_lock(&reorder->lock)

It's a bug for BHs to be on in _do_serial as Steffen points out, so
ensure they're off in the "current task" case like they are in
padata_parallel_worker to avoid this situation.

Reported-by: syzbot+bc05445bc14148d51915@syzkaller.appspotmail.com
Fixes: 4611ce224688 ("padata: allocate work structures for parallel jobs from a pool")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:24 +01:00
Björn Töpel
e515881ade bpf: Do not zero-extend kfunc return values
[ Upstream commit d35af0a7feb077c43ff0233bba5a8c6e75b73e35 ]

In BPF all global functions, and BPF helpers return a 64-bit
value. For kfunc calls, this is not the case, and they can return
e.g. 32-bit values.

The return register R0 for kfuncs calls can therefore be marked as
subreg_def != DEF_NOT_SUBREG. In general, if a register is marked with
subreg_def != DEF_NOT_SUBREG, some archs (where bpf_jit_needs_zext()
returns true) require the verifier to insert explicit zero-extension
instructions.

For kfuncs calls, however, the caller should do sign/zero extension
for return values. In other words, the compiler is responsible to
insert proper instructions, not the verifier.

An example, provided by Yonghong Song:

$ cat t.c
extern unsigned foo(void);
unsigned bar1(void) {
     return foo();
}
unsigned bar2(void) {
     if (foo()) return 10; else return 20;
}

$ clang -target bpf -mcpu=v3 -O2 -c t.c && llvm-objdump -d t.o
t.o:    file format elf64-bpf

Disassembly of section .text:

0000000000000000 <bar1>:
	0:       85 10 00 00 ff ff ff ff call -0x1
	1:       95 00 00 00 00 00 00 00 exit

0000000000000010 <bar2>:
	2:       85 10 00 00 ff ff ff ff call -0x1
	3:       bc 01 00 00 00 00 00 00 w1 = w0
	4:       b4 00 00 00 14 00 00 00 w0 = 0x14
	5:       16 01 01 00 00 00 00 00 if w1 == 0x0 goto +0x1 <LBB1_2>
	6:       b4 00 00 00 0a 00 00 00 w0 = 0xa

0000000000000038 <LBB1_2>:
	7:       95 00 00 00 00 00 00 00 exit

If the return value of 'foo()' is used in the BPF program, the proper
zero-extension will be done.

Currently, the verifier correctly marks, say, a 32-bit return value as
subreg_def != DEF_NOT_SUBREG, but will fail performing the actual
zero-extension, due to a verifier bug in
opt_subreg_zext_lo32_rnd_hi32(). load_reg is not properly set to R0,
and the following path will be taken:

		if (WARN_ON(load_reg == -1)) {
			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
			return -EFAULT;
		}

A longer discussion from v1 can be found in the link below.

Correct the verifier by avoiding doing explicit zero-extension of R0
for kfunc calls. Note that R0 will still be marked as a sub-register
for return values smaller than 64-bit.

Fixes: 83a2881903f3 ("bpf: Account for BPF_FETCH in insn_has_def32()")
Link: https://lore.kernel.org/bpf/20221202103620.1915679-1-bjorn@kernel.org/
Suggested-by: Yonghong Song <yhs@meta.com>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221207103540.396496-1-bjorn@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-31 13:14:18 +01:00