IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 64b7f674c292207624b3d788eda2dde3dc1415df upstream.
On setxattr() syscall path due to an apprent typo the size of a dynamically
allocated memory chunk for storing struct smb2_file_full_ea_info object is
computed incorrectly, to be more precise the first addend is the size of
a pointer instead of the wanted object size. Coincidentally it makes no
difference on 64-bit platforms, however on 32-bit targets the following
memcpy() writes 4 bytes of data outside of the dynamically allocated memory.
=============================================================================
BUG kmalloc-16 (Not tainted): Redzone overwritten
-----------------------------------------------------------------------------
Disabling lock debugging due to kernel taint
INFO: 0x79e69a6f-0x9e5cdecf @offset=368. First byte 0x73 instead of 0xcc
INFO: Slab 0xd36d2454 objects=85 used=51 fp=0xf7d0fc7a flags=0x35000201
INFO: Object 0x6f171df3 @offset=352 fp=0x00000000
Redzone 5d4ff02d: cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc ................
Object 6f171df3: 00 00 00 00 00 05 06 00 73 6e 72 75 62 00 66 69 ........snrub.fi
Redzone 79e69a6f: 73 68 32 0a sh2.
Padding 56254d82: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
CPU: 0 PID: 8196 Comm: attr Tainted: G B 5.9.0-rc8+ #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1 04/01/2014
Call Trace:
dump_stack+0x54/0x6e
print_trailer+0x12c/0x134
check_bytes_and_report.cold+0x3e/0x69
check_object+0x18c/0x250
free_debug_processing+0xfe/0x230
__slab_free+0x1c0/0x300
kfree+0x1d3/0x220
smb2_set_ea+0x27d/0x540
cifs_xattr_set+0x57f/0x620
__vfs_setxattr+0x4e/0x60
__vfs_setxattr_noperm+0x4e/0x100
__vfs_setxattr_locked+0xae/0xd0
vfs_setxattr+0x4e/0xe0
setxattr+0x12c/0x1a0
path_setxattr+0xa4/0xc0
__ia32_sys_lsetxattr+0x1d/0x20
__do_fast_syscall_32+0x40/0x70
do_fast_syscall_32+0x29/0x60
do_SYSENTER_32+0x15/0x20
entry_SYSENTER_32+0x9f/0xf2
Fixes: 5517554e4313 ("cifs: Add support for writing attributes on SMB2+")
Signed-off-by: Vladimir Zapolskiy <vladimir@tuxera.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6d4572a9d71d5fc2affee0258d8582d39859188c upstream.
[BUG]
When the data space is exhausted, even if the inode has NOCOW attribute,
we will still refuse to truncate unaligned range due to ENOSPC.
The following script can reproduce it pretty easily:
#!/bin/bash
dev=/dev/test/test
mnt=/mnt/btrfs
umount $dev &> /dev/null
umount $mnt &> /dev/null
mkfs.btrfs -f $dev -b 1G
mount -o nospace_cache $dev $mnt
touch $mnt/foobar
chattr +C $mnt/foobar
xfs_io -f -c "pwrite -b 4k 0 4k" $mnt/foobar > /dev/null
xfs_io -f -c "pwrite -b 4k 0 1G" $mnt/padding &> /dev/null
sync
xfs_io -c "fpunch 0 2k" $mnt/foobar
umount $mnt
Currently this will fail at the fpunch part.
[CAUSE]
Because btrfs_truncate_block() always reserves space without checking
the NOCOW attribute.
Since the writeback path follows NOCOW bit, we only need to bother the
space reservation code in btrfs_truncate_block().
[FIX]
Make btrfs_truncate_block() follow btrfs_buffered_write() to try to
reserve data space first, and fall back to NOCOW check only when we
don't have enough space.
Such always-try-reserve is an optimization introduced in
btrfs_buffered_write(), to avoid expensive btrfs_check_can_nocow() call.
This patch will export check_can_nocow() as btrfs_check_can_nocow(), and
use it in btrfs_truncate_block() to fix the problem.
Reported-by: Martin Doucha <martin.doucha@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 260a63395f90f67d6ab89e4266af9e3dc34a77e9 upstream.
If we attempt to do a RWF_NOWAIT write against a file range for which we
can only do NOCOW for a part of it, due to the existence of holes or
shared extents for example, we proceed with the write as if it were
possible to NOCOW the whole range.
Example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ touch /mnt/sdj/bar
$ chattr +C /mnt/sdj/bar
$ xfs_io -d -c "pwrite -S 0xab -b 256K 0 256K" /mnt/bar
wrote 262144/262144 bytes at offset 0
256 KiB, 1 ops; 0.0003 sec (694.444 MiB/sec and 2777.7778 ops/sec)
$ xfs_io -c "fpunch 64K 64K" /mnt/bar
$ sync
$ xfs_io -d -c "pwrite -N -V 1 -b 128K -S 0xfe 0 128K" /mnt/bar
wrote 131072/131072 bytes at offset 0
128 KiB, 1 ops; 0.0007 sec (160.051 MiB/sec and 1280.4097 ops/sec)
This last write should fail with -EAGAIN since the file range from 64K to
128K is a hole. On xfs it fails, as expected, but on ext4 it currently
succeeds because apparently it is expensive to check if there are extents
allocated for the whole range, but I'll check with the ext4 people.
Fix the issue by checking if check_can_nocow() returns a number of
NOCOW'able bytes smaller then the requested number of bytes, and if it
does return -EAGAIN.
Fixes: edf064e7c6fec3 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6b7faadd985c990324b5b5bd18cc4ba5c395eb65 upstream.
[BUG]
When deleting large files (which cross block group boundary) with
discard mount option, we find some btrfs_discard_extent() calls only
trimmed part of its space, not the whole range:
btrfs_discard_extent: type=0x1 start=19626196992 len=2144530432 trimmed=1073741824 ratio=50%
type: bbio->map_type, in above case, it's SINGLE DATA.
start: Logical address of this trim
len: Logical length of this trim
trimmed: Physically trimmed bytes
ratio: trimmed / len
Thus leaving some unused space not discarded.
[CAUSE]
When discard mount option is specified, after a transaction is fully
committed (super block written to disk), we begin to cleanup pinned
extents in the following call chain:
btrfs_commit_transaction()
|- btrfs_finish_extent_commit()
|- find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY);
|- btrfs_discard_extent()
However, pinned extents are recorded in an extent_io_tree, which can
merge adjacent extent states.
When a large file gets deleted and it has adjacent file extents across
block group boundary, we will get a large merged range like this:
|<--- BG1 --->|<--- BG2 --->|
|//////|<-- Range to discard --->|/////|
To discard that range, we have the following calls:
btrfs_discard_extent()
|- btrfs_map_block()
| Returned bbio will end at BG1's end. As btrfs_map_block()
| never returns result across block group boundary.
|- btrfs_issuse_discard()
Issue discard for each stripe.
So we will only discard the range in BG1, not the remaining part in BG2.
Furthermore, this bug is not that reliably observed, for above case, if
there is no other extent in BG2, BG2 will be empty and btrfs will trim
all space of BG2, covering up the bug.
[FIX]
- Allow __btrfs_map_block_for_discard() to modify @length parameter
btrfs_map_block() uses its @length paramter to notify the caller how
many bytes are mapped in current call.
With __btrfs_map_block_for_discard() also modifing the @length,
btrfs_discard_extent() now understands when to do extra trim.
- Call btrfs_map_block() in a loop until we hit the range end Since we
now know how many bytes are mapped each time, we can iterate through
each block group boundary and issue correct trim for each range.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2d974619a77f106f3d1341686dea95c0eaad601f upstream.
The old code goes:
offset = logical - em->start;
length = min_t(u64, em->len - offset, length);
Where @length calculation is dependent on offset, it can take reader
several more seconds to find it's just the same code as:
offset = logical - em->start;
length = min_t(u64, em->start + em->len - logical, length);
Use above code to make the length calculate independent from other
variable, thus slightly increase the readability.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9722b10148504c4153a74a9c89725af271e490fc upstream.
When doing an incremental send and a file has extents shared with itself
at different file offsets, it's possible for send to emit clone operations
that will fail at the destination because the source range goes beyond the
file's current size. This happens when the file size has increased in the
send snapshot, there is a hole between the shared extents and both shared
extents are at file offsets which are greater the file's size in the
parent snapshot.
Example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt/sdb
$ xfs_io -f -c "pwrite -S 0xf1 0 64K" /mnt/sdb/foobar
$ btrfs subvolume snapshot -r /mnt/sdb /mnt/sdb/base
$ btrfs send -f /tmp/1.snap /mnt/sdb/base
# Create a 320K extent at file offset 512K.
$ xfs_io -c "pwrite -S 0xab 512K 64K" /mnt/sdb/foobar
$ xfs_io -c "pwrite -S 0xcd 576K 64K" /mnt/sdb/foobar
$ xfs_io -c "pwrite -S 0xef 640K 64K" /mnt/sdb/foobar
$ xfs_io -c "pwrite -S 0x64 704K 64K" /mnt/sdb/foobar
$ xfs_io -c "pwrite -S 0x73 768K 64K" /mnt/sdb/foobar
# Clone part of that 320K extent into a lower file offset (192K).
# This file offset is greater than the file's size in the parent
# snapshot (64K). Also the clone range is a bit behind the offset of
# the 320K extent so that we leave a hole between the shared extents.
$ xfs_io -c "reflink /mnt/sdb/foobar 448K 192K 192K" /mnt/sdb/foobar
$ btrfs subvolume snapshot -r /mnt/sdb /mnt/sdb/incr
$ btrfs send -p /mnt/sdb/base -f /tmp/2.snap /mnt/sdb/incr
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ btrfs receive -f /tmp/1.snap /mnt/sdc
$ btrfs receive -f /tmp/2.snap /mnt/sdc
ERROR: failed to clone extents to foobar: Invalid argument
The problem is that after processing the extent at file offset 256K, which
refers to the first 128K of the 320K extent created by the buffered write
operations, we have 'cur_inode_next_write_offset' set to 384K, which
corresponds to the end offset of the partially shared extent (256K + 128K)
and to the current file size in the receiver. Then when we process the
extent at offset 512K, we do extent backreference iteration to figure out
if we can clone the extent from some other inode or from the same inode,
and we consider the extent at offset 256K of the same inode as a valid
source for a clone operation, which is not correct because at that point
the current file size in the receiver is 384K, which corresponds to the
end of last processed extent (at file offset 256K), so using a clone
source range from 256K to 256K + 320K is invalid because that goes past
the current size of the file (384K) - this makes the receiver get an
-EINVAL error when attempting the clone operation.
So fix this by excluding clone sources that have a range that goes beyond
the current file size in the receiver when iterating extent backreferences.
A test case for fstests follows soon.
Fixes: 11f2069c113e02 ("Btrfs: send, allow clone operations within the same file")
CC: stable@vger.kernel.org # 5.5+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 11f2069c113e02971b8db6fda62f9b9cd31a030f upstream.
For send we currently skip clone operations when the source and
destination files are the same. This is so because clone didn't support
this case in its early days, but support for it was added back in May
2013 by commit a96fbc72884fcb ("Btrfs: allow file data clone within a
file"). This change adds support for it.
Example:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt/sdd
$ xfs_io -f -c "pwrite -S 0xab -b 64K 0 64K" /mnt/sdd/foobar
$ xfs_io -c "reflink /mnt/sdd/foobar 0 64K 64K" /mnt/sdd/foobar
$ btrfs subvolume snapshot -r /mnt/sdd /mnt/sdd/snap
$ mkfs.btrfs -f /dev/sde
$ mount /dev/sde /mnt/sde
$ btrfs send /mnt/sdd/snap | btrfs receive /mnt/sde
Without this change file foobar at the destination has a single 128Kb
extent:
$ filefrag -v /mnt/sde/snap/foobar
Filesystem type is: 9123683e
File size of /mnt/sde/snap/foobar is 131072 (32 blocks of 4096 bytes)
ext: logical_offset: physical_offset: length: expected: flags:
0: 0.. 31: 0.. 31: 32: last,unknown_loc,delalloc,eof
/mnt/sde/snap/foobar: 1 extent found
With this we get a single 64Kb extent that is shared at file offsets 0
and 64K, just like in the source filesystem:
$ filefrag -v /mnt/sde/snap/foobar
Filesystem type is: 9123683e
File size of /mnt/sde/snap/foobar is 131072 (32 blocks of 4096 bytes)
ext: logical_offset: physical_offset: length: expected: flags:
0: 0.. 15: 3328.. 3343: 16: shared
1: 16.. 31: 3328.. 3343: 16: 3344: last,shared,eof
/mnt/sde/snap/foobar: 2 extents found
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If we queue work in io_poll_wake(), it will leads to list double
add. So we should add the list when the callback func is the
io_sq_wq_submit_work.
The following oops was seen:
list_add double add: new=ffff9ca6a8f1b0e0, prev=ffff9ca62001cee8,
next=ffff9ca6a8f1b0e0.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:31!
Call Trace:
<IRQ>
io_poll_wake+0xf3/0x230
__wake_up_common+0x91/0x170
__wake_up_common_lock+0x7a/0xc0
io_commit_cqring+0xea/0x280
? blkcg_iolatency_done_bio+0x2b/0x610
io_cqring_add_event+0x3e/0x60
io_complete_rw+0x58/0x80
dio_complete+0x106/0x250
blk_update_request+0xa0/0x3b0
blk_mq_end_request+0x1a/0x110
blk_mq_complete_request+0xd0/0xe0
nvme_irq+0x129/0x270 [nvme]
__handle_irq_event_percpu+0x7b/0x190
handle_irq_event_percpu+0x30/0x80
handle_irq_event+0x3c/0x60
handle_edge_irq+0x91/0x1e0
do_IRQ+0x4d/0xd0
common_interrupt+0xf/0xf
Fixes: 1c4404efcf2c ("io_uring: make sure async workqueue is canceled on exit")
Reported-by: Jiachen Zhang <zhangjiachen.jaycee@bytedance.com>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If the process 0 has been initialized io_uring is complete, and
then fork process 1. If process 1 exits and it leads to delete
all reqs from the task_list. If we kill process 0. We will not
send SIGINT signal to the kworker. So we can not remove the req
from the task_list. The io_sq_wq_submit_work() can do that for
us.
Fixes: 1c4404efcf2c ("io_uring: make sure async workqueue is canceled on exit")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The store to req->flags and load req->work_task should not be
reordering in io_cancel_async_work(). We should make sure that
either we store REQ_F_CANCE flag to req->flags or we see the
req->work_task setted in io_sq_wq_submit_work().
Fixes: 1c4404efcf2c ("io_uring: make sure async workqueue is canceled on exit")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The commit
1c4404efcf2c0> ("<io_uring: make sure async workqueue is canceled on exit>")
doesn't solve the resource leak problem totally! When kworker is doing a
io task for the io_uring, The process which submitted the io task has
received a SIGKILL signal from the user. Then the io_cancel_async_work
function could have sent a SIGINT signal to the kworker, but the judging
condition is wrong. So it doesn't send a SIGINT signal to the kworker,
then caused the resource leaking problem.
Why the juding condition is wrong? The process is a multi-threaded process,
we call the thread of the process which has submitted the io task Thread1.
So the req->task is the current macro of the Thread1. when all the threads
of the process have done exit procedure, the last thread will call the
io_cancel_async_work, but the last thread may not the Thread1, so the task
is not equal and doesn't send the SIGINT signal. To fix this bug, we alter
the task attribute of the req with struct files_struct. And check the files
instead.
Fixes: 1c4404efcf2c0 ("io_uring: make sure async workqueue is canceled on exit")
Signed-off-by: Yinyin Zhu <zhuyinyin@bytedance.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3701cb59d892b88d569427586f01491552f377b1 upstream.
or get freed, for that matter, if it's a long (separately stored)
name.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fe0a916c1eae8e17e86c3753d13919177d63ed7e upstream.
Checking for the lack of epitems refering to the epoll we want to insert into
is not enough; we might have an insertion of that epoll into another one that
has already collected the set of files to recheck for excessive reverse paths,
but hasn't gotten to creating/inserting the epitem for it.
However, any such insertion in progress can be detected - it will update the
generation count in our epoll when it's done looking through it for files
to check. That gets done under ->mtx of our epoll and that allows us to
detect that safely.
We are *not* holding epmutex here, so the generation count is not stable.
However, since both the update of ep->gen by loop check and (later)
insertion into ->f_ep_link are done with ep->mtx held, we are fine -
the sequence is
grab epmutex
bump loop_check_gen
...
grab tep->mtx // 1
tep->gen = loop_check_gen
...
drop tep->mtx // 2
...
grab tep->mtx // 3
...
insert into ->f_ep_link
...
drop tep->mtx // 4
bump loop_check_gen
drop epmutex
and if the fastpath check in another thread happens for that
eventpoll, it can come
* before (1) - in that case fastpath is just fine
* after (4) - we'll see non-empty ->f_ep_link, slow path
taken
* between (2) and (3) - loop_check_gen is stable,
with ->mtx providing barriers and we end up taking slow path.
Note that ->f_ep_link emptiness check is slightly racy - we are protected
against insertions into that list, but removals can happen right under us.
Not a problem - in the worst case we'll end up taking a slow path for
no good reason.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 18306c404abe18a0972587a6266830583c60c928 upstream.
removes the need to clear it, along with the races.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d33030e2ee3508d65db5644551435310df86010e ]
nfs_readdir_page_filler() iterates over entries in a directory, reusing
the same security label buffer, but does not reset the buffer's length.
This causes decode_attr_security_label() to return -ERANGE if an entry's
security label is longer than the previous one's. This error, in
nfs4_decode_dirent(), only gets passed up as -EAGAIN, which causes another
failed attempt to copy into the buffer. The second error is ignored and
the remaining entries do not show up in ls, specifically the getdents64()
syscall.
Reproduce by creating multiple files in NFS and giving one of the later
files a longer security label. ls will not see that file nor any that are
added afterwards, though they will exist on the backend.
In nfs_readdir_page_filler(), reset security label buffer length before
every reuse
Signed-off-by: Jeffrey Mitchell <jeffrey.mitchell@starlab.io>
Fixes: b4487b935452 ("nfs: Fix getxattr kernel panic and memory overflow")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 933a3752babcf6513117d5773d2b70782d6ad149 ]
the callers rely upon having any iov_iter_truncate() done inside
->direct_IO() countered by iov_iter_reexpand().
Reported-by: Qian Cai <cai@redhat.com>
Tested-by: Qian Cai <cai@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
A bug existed in the XFS reflink code between v5.1 and v5.5 in which
the mapping for a COW IO was not trimmed to the mapping of the COW
extent that was found. This resulted in a too-short copy, and
corruption of other files which shared the original extent.
(This happened only when extent size hints were set, which bypasses
delalloc and led to this code path.)
This was (inadvertently) fixed upstream with
36adcbace24e "xfs: fill out the srcmap in iomap_begin"
and related patches which moved lots of this functionality to
the iomap subsystem.
Hence, this is a -stable only patch, targeted to fix this
corruption vector without other major code changes.
Fixes: 78f0cc9d55cb ("xfs: don't use delalloc extents for COW on files with extsize hints")
Cc: <stable@vger.kernel.org> # 5.4.x
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4c8f353272dd1262013873990c0fafd0e3c8f274 upstream.
We use a device's allocation state tree to track ranges in a device used
for allocated chunks, and we set ranges in this tree when allocating a new
chunk. However after a device replace operation, we were not setting the
allocated ranges in the new device's allocation state tree, so that tree
is empty after a device replace.
This means that a fitrim operation after a device replace will trim the
device ranges that have allocated chunks and extents, as we trim every
range for which there is not a range marked in the device's allocation
state tree. It is also important during chunk allocation, since the
device's allocation state is used to determine if a range is already
allocated when allocating a new chunk.
This is trivial to reproduce and the following script triggers the bug:
$ cat reproducer.sh
#!/bin/bash
DEV1="/dev/sdg"
DEV2="/dev/sdh"
DEV3="/dev/sdi"
wipefs -a $DEV1 $DEV2 $DEV3 &> /dev/null
# Create a raid1 test fs on 2 devices.
mkfs.btrfs -f -m raid1 -d raid1 $DEV1 $DEV2 > /dev/null
mount $DEV1 /mnt/btrfs
xfs_io -f -c "pwrite -S 0xab 0 10M" /mnt/btrfs/foo
echo "Starting to replace $DEV1 with $DEV3"
btrfs replace start -B $DEV1 $DEV3 /mnt/btrfs
echo
echo "Running fstrim"
fstrim /mnt/btrfs
echo
echo "Unmounting filesystem"
umount /mnt/btrfs
echo "Mounting filesystem in degraded mode using $DEV3 only"
wipefs -a $DEV1 $DEV2 &> /dev/null
mount -o degraded $DEV3 /mnt/btrfs
if [ $? -ne 0 ]; then
dmesg | tail
echo
echo "Failed to mount in degraded mode"
exit 1
fi
echo
echo "File foo data (expected all bytes = 0xab):"
od -A d -t x1 /mnt/btrfs/foo
umount /mnt/btrfs
When running the reproducer:
$ ./replace-test.sh
wrote 10485760/10485760 bytes at offset 0
10 MiB, 2560 ops; 0.0901 sec (110.877 MiB/sec and 28384.5216 ops/sec)
Starting to replace /dev/sdg with /dev/sdi
Running fstrim
Unmounting filesystem
Mounting filesystem in degraded mode using /dev/sdi only
mount: /mnt/btrfs: wrong fs type, bad option, bad superblock on /dev/sdi, missing codepage or helper program, or other error.
[19581.748641] BTRFS info (device sdg): dev_replace from /dev/sdg (devid 1) to /dev/sdi started
[19581.803842] BTRFS info (device sdg): dev_replace from /dev/sdg (devid 1) to /dev/sdi finished
[19582.208293] BTRFS info (device sdi): allowing degraded mounts
[19582.208298] BTRFS info (device sdi): disk space caching is enabled
[19582.208301] BTRFS info (device sdi): has skinny extents
[19582.212853] BTRFS warning (device sdi): devid 2 uuid 1f731f47-e1bb-4f00-bfbb-9e5a0cb4ba9f is missing
[19582.213904] btree_readpage_end_io_hook: 25839 callbacks suppressed
[19582.213907] BTRFS error (device sdi): bad tree block start, want 30490624 have 0
[19582.214780] BTRFS warning (device sdi): failed to read root (objectid=7): -5
[19582.231576] BTRFS error (device sdi): open_ctree failed
Failed to mount in degraded mode
So fix by setting all allocated ranges in the replace target device when
the replace operation is finishing, when we are holding the chunk mutex
and we can not race with new chunk allocations.
A test case for fstests follows soon.
Fixes: 1c11b63eff2a67 ("btrfs: replace pending/pinned chunks lists with io tree")
CC: stable@vger.kernel.org # 5.2+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fa91e4aa1716004ea8096d5185ec0451e206aea0 ]
[BUG]
When running tests like generic/013 on test device with btrfs quota
enabled, it can normally lead to data leak, detected at unmount time:
BTRFS warning (device dm-3): qgroup 0/5 has unreleased space, type 0 rsv 4096
------------[ cut here ]------------
WARNING: CPU: 11 PID: 16386 at fs/btrfs/disk-io.c:4142 close_ctree+0x1dc/0x323 [btrfs]
RIP: 0010:close_ctree+0x1dc/0x323 [btrfs]
Call Trace:
btrfs_put_super+0x15/0x17 [btrfs]
generic_shutdown_super+0x72/0x110
kill_anon_super+0x18/0x30
btrfs_kill_super+0x17/0x30 [btrfs]
deactivate_locked_super+0x3b/0xa0
deactivate_super+0x40/0x50
cleanup_mnt+0x135/0x190
__cleanup_mnt+0x12/0x20
task_work_run+0x64/0xb0
__prepare_exit_to_usermode+0x1bc/0x1c0
__syscall_return_slowpath+0x47/0x230
do_syscall_64+0x64/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace caf08beafeca2392 ]---
BTRFS error (device dm-3): qgroup reserved space leaked
[CAUSE]
In the offending case, the offending operations are:
2/6: writev f2X[269 1 0 0 0 0] [1006997,67,288] 0
2/7: truncate f2X[269 1 0 0 48 1026293] 18388 0
The following sequence of events could happen after the writev():
CPU1 (writeback) | CPU2 (truncate)
-----------------------------------------------------------------
btrfs_writepages() |
|- extent_write_cache_pages() |
|- Got page for 1003520 |
| 1003520 is Dirty, no writeback |
| So (!clear_page_dirty_for_io()) |
| gets called for it |
|- Now page 1003520 is Clean. |
| | btrfs_setattr()
| | |- btrfs_setsize()
| | |- truncate_setsize()
| | New i_size is 18388
|- __extent_writepage() |
| |- page_offset() > i_size |
|- btrfs_invalidatepage() |
|- Page is clean, so no qgroup |
callback executed
This means, the qgroup reserved data space is not properly released in
btrfs_invalidatepage() as the page is Clean.
[FIX]
Instead of checking the dirty bit of a page, call
btrfs_qgroup_free_data() unconditionally in btrfs_invalidatepage().
As qgroup rsv are completely bound to the QGROUP_RESERVED bit of
io_tree, not bound to page status, thus we won't cause double freeing
anyway.
Fixes: 0b34c261e235 ("btrfs: qgroup: Prevent qgroup->reserved from going subzero")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5be5945864ea143fda628e8179c8474457af1f43 ]
When sunrpc trace points are not enabled, the recorded task ID
information alone is not helpful.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dc3da0461cc4b76f2d0c5b12247fcb3b520edbbf ]
Nothing ensures that session will still be valid by the time we
dereference the pointer. Take and put a reference.
In principle, we should always be able to get a reference here, but
throw a warning if that's ever not the case.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c36cac28cb94e58f7e21ff43bdc6064346dab32c ]
In btrfs_submit_direct(), if we fail to allocate the btrfs_dio_private,
we complete the ordered extent range. However, we don't mark that the
range doesn't need to be cleaned up from btrfs_direct_IO() until later.
Therefore, if we fail to allocate the btrfs_dio_private, we complete the
ordered extent range twice. We could fix this by updating
unsubmitted_oe_range earlier, but it's cleaner to reorganize the code so
that creating the btrfs_dio_private and submitting the bios are
separate, and once the btrfs_dio_private is created, cleanup always
happens through the btrfs_dio_private.
The logic around unsubmitted_oe_range_end and unsubmitted_oe_range_start
is really subtle. We have the following:
1. btrfs_direct_IO sets those two to the same value.
2. When we call __blockdev_direct_IO unless
btrfs_get_blocks_direct->btrfs_get_blocks_direct_write is called to
modify unsubmitted_oe_range_start so that start < end. Cleanup
won't happen.
3. We come into btrfs_submit_direct - if it dip allocation fails we'd
return with oe_range_end now modified so cleanup will happen.
4. If we manage to allocate the dip we reset the unsubmitted range
members to be equal so that cleanup happens from
btrfs_endio_direct_write.
This 4-step logic is not really obvious, especially given it's scattered
across 3 functions.
Fixes: f28a49287817 ("Btrfs: fix leaking of ordered extents after direct IO write error")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
[ add range start/end logic explanation from Nikolay ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7c09c03091ac562ddca2b393e5d65c1d37da79f1 ]
Deleting a subvolume on a full filesystem leads to ENOSPC followed by a
forced read-only. This is not a transaction abort and the filesystem is
otherwise ok, so the error should be just propagated to the callers.
This is caused by unnecessary call to btrfs_handle_fs_error for all
errors, except EAGAIN. This does not make sense as the standard
transaction abort mechanism is in btrfs_drop_snapshot so all relevant
failures are handled.
Originally in commit cb1b69f4508a ("Btrfs: forced readonly when
btrfs_drop_snapshot() fails") there was no return value at all, so the
btrfs_std_error made some sense but once the error handling and
propagation has been implemented we don't need it anymore.
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5ddd9ced9aef6cfa76af27d384c17c9e2d610ce8 ]
A GETATTR request can race with FUSE_NOTIFY_INVAL_INODE, resulting in the
attribute cache being updated with stale information after the
invalidation.
Fix this by bumping the attribute version in fuse_reverse_inval_inode().
Reported-by: Krzysztof Rusek <rusek@9livesdata.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 32f98877c57bee6bc27f443a96f49678a2cd6a50 ]
page_count() is unstable. Unless there has been an RCU grace period
between when the page was removed from the page cache and now, a
speculative reference may exist from the page cache.
Reported-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b849dd84b6ccfe32622988b79b7b073861fcf9f7 ]
While trying to "dd" to the block device for a USB stick, I
encountered a hung task warning (blocked for > 120 seconds). I
managed to come up with an easy way to reproduce this on my system
(where /dev/sdb is the block device for my USB stick) with:
while true; do dd if=/dev/zero of=/dev/sdb bs=4M; done
With my reproduction here are the relevant bits from the hung task
detector:
INFO: task udevd:294 blocked for more than 122 seconds.
...
udevd D 0 294 1 0x00400008
Call trace:
...
mutex_lock_nested+0x40/0x50
__blkdev_get+0x7c/0x3d4
blkdev_get+0x118/0x138
blkdev_open+0x94/0xa8
do_dentry_open+0x268/0x3a0
vfs_open+0x34/0x40
path_openat+0x39c/0xdf4
do_filp_open+0x90/0x10c
do_sys_open+0x150/0x3c8
...
...
Showing all locks held in the system:
...
1 lock held by dd/2798:
#0: ffffff814ac1a3b8 (&bdev->bd_mutex){+.+.}, at: __blkdev_put+0x50/0x204
...
dd D 0 2798 2764 0x00400208
Call trace:
...
schedule+0x8c/0xbc
io_schedule+0x1c/0x40
wait_on_page_bit_common+0x238/0x338
__lock_page+0x5c/0x68
write_cache_pages+0x194/0x500
generic_writepages+0x64/0xa4
blkdev_writepages+0x24/0x30
do_writepages+0x48/0xa8
__filemap_fdatawrite_range+0xac/0xd8
filemap_write_and_wait+0x30/0x84
__blkdev_put+0x88/0x204
blkdev_put+0xc4/0xe4
blkdev_close+0x28/0x38
__fput+0xe0/0x238
____fput+0x1c/0x28
task_work_run+0xb0/0xe4
do_notify_resume+0xfc0/0x14bc
work_pending+0x8/0x14
The problem appears related to the fact that my USB disk is terribly
slow and that I have a lot of RAM in my system to cache things.
Specifically my writes seem to be happening at ~15 MB/s and I've got
~4 GB of RAM in my system that can be used for buffering. To write 4
GB of buffer to disk thus takes ~4000 MB / ~15 MB/s = ~267 seconds.
The 267 second number is a problem because in __blkdev_put() we call
sync_blockdev() while holding the bd_mutex. Any other callers who
want the bd_mutex will be blocked for the whole time.
The problem is made worse because I believe blkdev_put() specifically
tells other tasks (namely udev) to go try to access the device at right
around the same time we're going to hold the mutex for a long time.
Putting some traces around this (after disabling the hung task detector),
I could confirm:
dd: 437.608600: __blkdev_put() right before sync_blockdev() for sdb
udevd: 437.623901: blkdev_open() right before blkdev_get() for sdb
dd: 661.468451: __blkdev_put() right after sync_blockdev() for sdb
udevd: 663.820426: blkdev_open() right after blkdev_get() for sdb
A simple fix for this is to realize that sync_blockdev() works fine if
you're not holding the mutex. Also, it's not the end of the world if
you sync a little early (though it can have performance impacts).
Thus we can make a guess that we're going to need to do the sync and
then do it without holding the mutex. We still do one last sync with
the mutex but it should be much, much faster.
With this, my hung task warnings for my test case are gone.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit aec7db3b13a07d515c15ada752a7287a44a79ea0 ]
I made a mistake with my previous fix, I assumed that we didn't need to
mess with the reloc roots once we were out of the part of relocation where
we are actually moving the extents.
The subtle thing that I missed is that btrfs_init_reloc_root() also
updates the last_trans for the reloc root when we do
btrfs_record_root_in_trans() for the corresponding fs_root. I've added a
comment to make sure future me doesn't make this mistake again.
This showed up as a WARN_ON() in btrfs_copy_root() because our
last_trans didn't == the current transid. This could happen if we
snapshotted a fs root with a reloc root after we set
rc->create_reloc_tree = 0, but before we actually merge the reloc root.
Worth mentioning that the regression produced the following warning
when running snapshot creation and balance in parallel:
BTRFS info (device sdc): relocating block group 30408704 flags metadata|dup
------------[ cut here ]------------
WARNING: CPU: 0 PID: 12823 at fs/btrfs/ctree.c:191 btrfs_copy_root+0x26f/0x430 [btrfs]
CPU: 0 PID: 12823 Comm: btrfs Tainted: G W 5.6.0-rc7-btrfs-next-58 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_copy_root+0x26f/0x430 [btrfs]
RSP: 0018:ffffb96e044279b8 EFLAGS: 00010202
RAX: 0000000000000009 RBX: ffff9da70bf61000 RCX: ffffb96e04427a48
RDX: ffff9da733a770c8 RSI: ffff9da70bf61000 RDI: ffff9da694163818
RBP: ffff9da733a770c8 R08: fffffffffffffff8 R09: 0000000000000002
R10: ffffb96e044279a0 R11: 0000000000000000 R12: ffff9da694163818
R13: fffffffffffffff8 R14: ffff9da6d2512000 R15: ffff9da714cdac00
FS: 00007fdeacf328c0(0000) GS:ffff9da735e00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055a2a5b8a118 CR3: 00000001eed78002 CR4: 00000000003606f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? create_reloc_root+0x49/0x2b0 [btrfs]
? kmem_cache_alloc_trace+0xe5/0x200
create_reloc_root+0x8b/0x2b0 [btrfs]
btrfs_reloc_post_snapshot+0x96/0x5b0 [btrfs]
create_pending_snapshot+0x610/0x1010 [btrfs]
create_pending_snapshots+0xa8/0xd0 [btrfs]
btrfs_commit_transaction+0x4c7/0xc50 [btrfs]
? btrfs_mksubvol+0x3cd/0x560 [btrfs]
btrfs_mksubvol+0x455/0x560 [btrfs]
__btrfs_ioctl_snap_create+0x15f/0x190 [btrfs]
btrfs_ioctl_snap_create_v2+0xa4/0xf0 [btrfs]
? mem_cgroup_commit_charge+0x6e/0x540
btrfs_ioctl+0x12d8/0x3760 [btrfs]
? do_raw_spin_unlock+0x49/0xc0
? _raw_spin_unlock+0x29/0x40
? __handle_mm_fault+0x11b3/0x14b0
? ksys_ioctl+0x92/0xb0
ksys_ioctl+0x92/0xb0
? trace_hardirqs_off_thunk+0x1a/0x1c
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x5c/0x280
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7fdeabd3bdd7
Fixes: 2abc726ab4b8 ("btrfs: do not init a reloc root if we aren't relocating")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 08ca8b21f760c0ed5034a5c122092eec22ccf8f4 ]
When a subrequest is being detached from the subgroup, we want to
ensure that it is not holding the group lock, or in the process
of waiting for the group lock.
Fixes: 5b2b5187fa85 ("NFS: Fix nfs_page_group_destroy() and nfs_lock_and_join_requests() race cases")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit acc5af3efa303d5f36cc8c0f61716161f6ca1384 ]
In “ubifs_check_node”, when the value of "node_len" is abnormal,
the code will goto label of "out_len" for execution. Then, in the
following "ubifs_dump_node", if inode type is "UBIFS_DATA_NODE",
in "print_hex_dump", an out-of-bounds access may occur due to the
wrong "ch->len".
Therefore, when the value of "node_len" is abnormal, data length
should to be adjusted to a reasonable safe range. At this time,
structured data is not credible, so dump the corrupted data directly
for analysis.
Signed-off-by: Liu Song <liu.song11@zte.com.cn>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 81423c78551654953d746250f1721300b470be0e ]
When inodes with extended attributes are evicted, xent is not freed in one
exit branch.
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Fixes: 9ca2d732644484488db3112 ("ubifs: Limit number of xattrs per inode")
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 27fb5a72f50aa770dd38b0478c07acacef97e3e7 ]
I noticed that fsfreeze can take a very long time to freeze an XFS if
there happens to be a GETFSMAP caller running in the background. I also
happened to notice the following in dmesg:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 43492 at fs/xfs/xfs_super.c:853 xfs_quiesce_attr+0x83/0x90 [xfs]
Modules linked in: xfs libcrc32c ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 ip_set_hash_ip ip_set_hash_net xt_tcpudp xt_set ip_set_hash_mac ip_set nfnetlink ip6table_filter ip6_tables bfq iptable_filter sch_fq_codel ip_tables x_tables nfsv4 af_packet [last unloaded: xfs]
CPU: 2 PID: 43492 Comm: xfs_io Not tainted 5.6.0-rc4-djw #rc4
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:xfs_quiesce_attr+0x83/0x90 [xfs]
Code: 7c 07 00 00 85 c0 75 22 48 89 df 5b e9 96 c1 00 00 48 c7 c6 b0 2d 38 a0 48 89 df e8 57 64 ff ff 8b 83 7c 07 00 00 85 c0 74 de <0f> 0b 48 89 df 5b e9 72 c1 00 00 66 90 0f 1f 44 00 00 41 55 41 54
RSP: 0018:ffffc900030f3e28 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff88802ac54000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff81e4a6f0 RDI: 00000000ffffffff
RBP: ffff88807859f070 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000010 R12: 0000000000000000
R13: ffff88807859f388 R14: ffff88807859f4b8 R15: ffff88807859f5e8
FS: 00007fad1c6c0fc0(0000) GS:ffff88807e000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0c7d237000 CR3: 0000000077f01003 CR4: 00000000001606a0
Call Trace:
xfs_fs_freeze+0x25/0x40 [xfs]
freeze_super+0xc8/0x180
do_vfs_ioctl+0x70b/0x750
? __fget_files+0x135/0x210
ksys_ioctl+0x3a/0xb0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x50/0x1a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
These two things appear to be related. The assertion trips when another
thread initiates a fsmap request (which uses an empty transaction) after
the freezer waited for m_active_trans to hit zero but before the the
freezer executes the WARN_ON just prior to calling xfs_log_quiesce.
The lengthy delays in freezing happen because the freezer calls
xfs_wait_buftarg to clean out the buffer lru list. Meanwhile, the
GETFSMAP caller is continuing to grab and release buffers, which means
that it can take a very long time for the buffer lru list to empty out.
We fix both of these races by calling sb_start_write to obtain freeze
protection while using empty transactions for GETFSMAP and for metadata
scrubbing. The other two users occur during mount, during which time we
cannot fs freeze.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 76518d3798855242817e8a8ed76b2d72f4415624 ]
This changes do_io_accounting to use the new exec_update_mutex
instead of cred_guard_mutex.
This fixes possible deadlocks when the trace is accessing
/proc/$pid/io for instance.
This should be safe, as the credentials are only used for reading.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2db9dbf71bf98d02a0bf33e798e5bfd2a9944696 ]
This changes lock_trace to use the new exec_update_mutex
instead of cred_guard_mutex.
This fixes possible deadlocks when the trace is accessing
/proc/$pid/stack for instance.
This should be safe, as the credentials are only used for reading,
and task->mm is updated on execve under the new exec_update_mutex.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit eea9673250db4e854e9998ef9da6d4584857f0ea ]
The cred_guard_mutex is problematic as it is held over possibly
indefinite waits for userspace. The possible indefinite waits for
userspace that I have identified are: The cred_guard_mutex is held in
PTRACE_EVENT_EXIT waiting for the tracer. The cred_guard_mutex is
held over "put_user(0, tsk->clear_child_tid)" in exit_mm(). The
cred_guard_mutex is held over "get_user(futex_offset, ...") in
exit_robust_list. The cred_guard_mutex held over copy_strings.
The functions get_user and put_user can trigger a page fault which can
potentially wait indefinitely in the case of userfaultfd or if
userspace implements part of the page fault path.
In any of those cases the userspace process that the kernel is waiting
for might make a different system call that winds up taking the
cred_guard_mutex and result in deadlock.
Holding a mutex over any of those possibly indefinite waits for
userspace does not appear necessary. Add exec_update_mutex that will
just cover updating the process during exec where the permissions and
the objects pointed to by the task struct may be out of sync.
The plan is to switch the users of cred_guard_mutex to
exec_update_mutex one by one. This lets us move forward while still
being careful and not introducing any regressions.
Link: https://lore.kernel.org/lkml/20160921152946.GA24210@dhcp22.suse.cz/
Link: https://lore.kernel.org/lkml/AM6PR03MB5170B06F3A2B75EFB98D071AE4E60@AM6PR03MB5170.eurprd03.prod.outlook.com/
Link: https://lore.kernel.org/linux-fsdevel/20161102181806.GB1112@redhat.com/
Link: https://lore.kernel.org/lkml/20160923095031.GA14923@redhat.com/
Link: https://lore.kernel.org/lkml/20170213141452.GA30203@redhat.com/
Ref: 45c1a159b85b ("Add PTRACE_O_TRACEVFORKDONE and PTRACE_O_TRACEEXIT facilities.")
Ref: 456f17cd1a28 ("[PATCH] user-vm-unlock-2.5.31-A2")
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1a0afa0ecfc4dbc8d7583d03cafd3f68f781df0c ]
If we have an error while processing the reloc roots we could leak roots
that were added to rc->reloc_roots before we hit the error. We could
have also not removed the reloc tree mapping from our rb_tree, so clean
up any remaining nodes in the reloc root rb_tree.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ use rbtree_postorder_for_each_entry_safe ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2abc726ab4b83db774e315c660ab8da21477092f ]
We previously were checking if the root had a dead root before accessing
root->reloc_root in order to avoid a use-after-free type bug. However
this scenario happens after we've unset the reloc control, so we would
have been saved if we'd simply checked for fs_info->reloc_control. At
this point during relocation we no longer need to be creating new reloc
roots, so simply move this check above the reloc_root checks to avoid
any future races and confusion.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a451b12311aa8c96c6f6e01c783a86995dc3ec6b ]
In NFSv4, the lock stateids are tied to the lockowner, and the open stateid,
so that the action of closing the file also results in either an automatic
loss of the locks, or an error of the form NFS4ERR_LOCKS_HELD.
In practice this means we must not add new locks to the open stateid
after the close process has been invoked. In fact doing so, can result
in the following panic:
kernel BUG at lib/list_debug.c:51!
invalid opcode: 0000 [#1] SMP NOPTI
CPU: 2 PID: 1085 Comm: nfsd Not tainted 5.6.0-rc3+ #2
Hardware name: VMware, Inc. VMware7,1/440BX Desktop Reference Platform, BIOS VMW71.00V.14410784.B64.1908150010 08/15/2019
RIP: 0010:__list_del_entry_valid.cold+0x31/0x55
Code: 1a 3d 9b e8 74 10 c2 ff 0f 0b 48 c7 c7 f0 1a 3d 9b e8 66 10 c2 ff 0f 0b 48 89 f2 48 89 fe 48 c7 c7 b0 1a 3d 9b e8 52 10 c2 ff <0f> 0b 48 89 fe 4c 89 c2 48 c7 c7 78 1a 3d 9b e8 3e 10 c2 ff 0f 0b
RSP: 0018:ffffb296c1d47d90 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff8ba032456ec8 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff8ba039e99cc8 RDI: ffff8ba039e99cc8
RBP: ffff8ba032456e60 R08: 0000000000000781 R09: 0000000000000003
R10: 0000000000000000 R11: 0000000000000001 R12: ffff8ba009a4abe0
R13: ffff8ba032456e8c R14: 0000000000000000 R15: ffff8ba00adb01d8
FS: 0000000000000000(0000) GS:ffff8ba039e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb213f0b008 CR3: 00000001347de006 CR4: 00000000003606e0
Call Trace:
release_lock_stateid+0x2b/0x80 [nfsd]
nfsd4_free_stateid+0x1e9/0x210 [nfsd]
nfsd4_proc_compound+0x414/0x700 [nfsd]
? nfs4svc_decode_compoundargs+0x407/0x4c0 [nfsd]
nfsd_dispatch+0xc1/0x200 [nfsd]
svc_process_common+0x476/0x6f0 [sunrpc]
? svc_sock_secure_port+0x12/0x30 [sunrpc]
? svc_recv+0x313/0x9c0 [sunrpc]
? nfsd_svc+0x2d0/0x2d0 [nfsd]
svc_process+0xd4/0x110 [sunrpc]
nfsd+0xe3/0x140 [nfsd]
kthread+0xf9/0x130
? nfsd_destroy+0x50/0x50 [nfsd]
? kthread_park+0x90/0x90
ret_from_fork+0x1f/0x40
The fix is to ensure that lock creation tests for whether or not the
open stateid is unhashed, and to fail if that is the case.
Fixes: 659aefb68eca ("nfsd: Ensure we don't recognise lock stateids after freeing them")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit eb5760863fc28feab28b567ddcda7e667e638da0 ]
We already has similar code in ext4_mb_complex_scan_group(), but
ext4_mb_simple_scan_group() still affected.
Other reports: https://www.spinics.net/lists/linux-ext4/msg60231.html
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Dmitry Monakhov <dmonakhov@gmail.com>
Link: https://lore.kernel.org/r/20200310150156.641-1-dmonakhov@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2e107cf869eecc770e3f630060bb4e5f547d0fd8 ]
In xchk_dir_actor, we attempt to validate the directory hash structures
by performing a directory entry lookup by (hashed) name. If the lookup
returns ENOENT, that means that the hash information is corrupt. The
_process_error functions don't catch this, so we have to add that
explicitly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1cb5deb5bc095c070c09a4540c45f9c9ba24be43 ]
If we decide that a directory free block is corrupt, we must take care
not to leak a buffer pointer to the caller. After xfs_trans_brelse
returns, the buffer can be freed or reused, which means that we have to
set *bpp back to NULL.
Callers are supposed to notice the nonzero return value and not use the
buffer pointer, but we should code more defensively, even if all current
callers handle this situation correctly.
Fixes: de14c5f541e7 ("xfs: verify free block header fields")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dce8e237100f60c28cc66effb526ba65a01d8cb3 ]
KCSAN find inode->i_disksize could be accessed concurrently.
BUG: KCSAN: data-race in ext4_mark_iloc_dirty / ext4_write_end
write (marked) to 0xffff8b8932f40090 of 8 bytes by task 66792 on cpu 0:
ext4_write_end+0x53f/0x5b0
ext4_da_write_end+0x237/0x510
generic_perform_write+0x1c4/0x2a0
ext4_buffered_write_iter+0x13a/0x210
ext4_file_write_iter+0xe2/0x9b0
new_sync_write+0x29c/0x3a0
__vfs_write+0x92/0xa0
vfs_write+0xfc/0x2a0
ksys_write+0xe8/0x140
__x64_sys_write+0x4c/0x60
do_syscall_64+0x8a/0x2a0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
read to 0xffff8b8932f40090 of 8 bytes by task 14414 on cpu 1:
ext4_mark_iloc_dirty+0x716/0x1190
ext4_mark_inode_dirty+0xc9/0x360
ext4_convert_unwritten_extents+0x1bc/0x2a0
ext4_convert_unwritten_io_end_vec+0xc5/0x150
ext4_put_io_end+0x82/0x130
ext4_writepages+0xae7/0x16f0
do_writepages+0x64/0x120
__writeback_single_inode+0x7d/0x650
writeback_sb_inodes+0x3a4/0x860
__writeback_inodes_wb+0xc4/0x150
wb_writeback+0x43f/0x510
wb_workfn+0x3b2/0x8a0
process_one_work+0x39b/0x7e0
worker_thread+0x88/0x650
kthread+0x1d4/0x1f0
ret_from_fork+0x35/0x40
The plain read is outside of inode->i_data_sem critical section
which results in a data race. Fix it by adding READ_ONCE().
Signed-off-by: Qiujun Huang <hqjagain@gmail.com>
Link: https://lore.kernel.org/r/1582556566-3909-1-git-send-email-hqjagain@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a9ceb060b3cf37987b6162223575eaf4f4e0fc36 ]
perf does not know how to deal with a __builtin_bswap32() call, and
complains. All other functions just store the xid etc in host endian
form, so let's do that in the tracepoint for nfsd_file_acquire too.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9a6bed4fe0c8bf57785cbc4db9f86086cb9b193d ]
If the caller passes in a NULL cap_reservation, and we can't allocate
one then ensure that we fail gracefully.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 90d2f1da832fd23290ef0c0d964d97501e5e8553 ]
If nfsd_file_mark_find_or_create() keeps winning the race for the
nfsd_file_fsnotify_group->mark_mutex against nfsd_file_mark_put()
then it can soft lock up, since fsnotify_add_inode_mark() ends
up always finding an existing entry.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f6d2a5c263afca84646cf3300dc13061bedbd99e ]
Inspired by btrfs-progs github issue #208, where chunk item in chunk
tree has invalid num_stripes (0).
Although that can already be caught by current btrfs_check_chunk_valid(),
that function doesn't really check item size as it needs to handle chunk
item in super block sys_chunk_array().
This patch will add two extra checks for chunk items in chunk tree:
- Basic chunk item size
If the item is smaller than btrfs_chunk (which already contains one
stripe), exit right now as reading num_stripes may even go beyond
eb boundary.
- Item size check against num_stripes
If item size doesn't match with calculated chunk size, then either the
item size or the num_stripes is corrupted. Error out anyway.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b1de6fc7520fe12949c070af0e8c0e4044cd3420 ]
Omar Sandoval reported that a 4G fallocate on the realtime device causes
filesystem shutdowns due to a log reservation overflow that happens when
we log the rtbitmap updates. Factor rtbitmap/rtsummary updates into the
the tr_write and tr_itruncate log reservation calculation.
"The following reproducer results in a transaction log overrun warning
for me:
mkfs.xfs -f -r rtdev=/dev/vdc -d rtinherit=1 -m reflink=0 /dev/vdb
mount -o rtdev=/dev/vdc /dev/vdb /mnt
fallocate -l 4G /mnt/foo
Reported-by: Omar Sandoval <osandov@osandov.com>
Tested-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>