IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 333cf507465fbebb3727f5b53e77538467df312a upstream.
With commit c9f3401313a5 ("powerpc: Always enable queued spinlocks for
64s, disable for others") CONFIG_PPC_QUEUED_SPINLOCKS is always
enabled on ppc64le, external modules that use spinlock APIs are
failing.
ERROR: modpost: GPL-incompatible module XXX.ko uses GPL-only symbol 'shared_processor'
Before the above commit, modules were able to build without any
issues. Also this problem is not seen on other architectures. This
problem can be workaround if CONFIG_UNINLINE_SPIN_UNLOCK is enabled in
the config. However CONFIG_UNINLINE_SPIN_UNLOCK is not enabled by
default and only enabled in certain conditions like
CONFIG_DEBUG_SPINLOCKS is set in the kernel config.
#include <linux/module.h>
spinlock_t spLock;
static int __init spinlock_test_init(void)
{
spin_lock_init(&spLock);
spin_lock(&spLock);
spin_unlock(&spLock);
return 0;
}
static void __exit spinlock_test_exit(void)
{
printk("spinlock_test unloaded\n");
}
module_init(spinlock_test_init);
module_exit(spinlock_test_exit);
MODULE_DESCRIPTION ("spinlock_test");
MODULE_LICENSE ("non-GPL");
MODULE_AUTHOR ("Srikar Dronamraju");
Given that spin locks are one of the basic facilities for module code,
this effectively makes it impossible to build/load almost any non GPL
modules on ppc64le.
This was first reported at https://github.com/openzfs/zfs/issues/11172
Currently shared_processor is exported as GPL only symbol.
Fix this for parity with other architectures by exposing
shared_processor to non-GPL modules too.
Fixes: 14c73bd344da ("powerpc/vcpu: Assume dedicated processors as non-preempt")
Cc: stable@vger.kernel.org # v5.5+
Reported-by: marc.c.dionne@gmail.com
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210729060449.292780-1-srikar@linux.vnet.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d9c57d3ed52a92536f5fa59dc5ccdd58b4875076 upstream.
The H_ENTER_NESTED hypercall is handled by the L0, and it is a request
by the L1 to switch the context of the vCPU over to that of its L2
guest, and return with an interrupt indication. The L1 is responsible
for switching some registers to guest context, and the L0 switches
others (including all the hypervisor privileged state).
If the L2 MSR has TM active, then the L1 is responsible for
recheckpointing the L2 TM state. Then the L1 exits to L0 via the
H_ENTER_NESTED hcall, and the L0 saves the TM state as part of the exit,
and then it recheckpoints the TM state as part of the nested entry and
finally HRFIDs into the L2 with TM active MSR. Not efficient, but about
the simplest approach for something that's horrendously complicated.
Problems arise if the L1 exits to the L0 with a TM state which does not
match the L2 TM state being requested. For example if the L1 is
transactional but the L2 MSR is non-transactional, or vice versa. The
L0's HRFID can take a TM Bad Thing interrupt and crash.
Fix this by disallowing H_ENTER_NESTED in TM[T] state entirely, and then
ensuring that if the L1 is suspended then the L2 must have TM active,
and if the L1 is not suspended then the L2 must not have TM active.
Fixes: 360cae313702 ("KVM: PPC: Book3S HV: Nested guest entry via hypercall")
Cc: stable@vger.kernel.org # v4.20+
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f62f3c20647ebd5fb6ecb8f0b477b9281c44c10a upstream.
The kvmppc_rtas_hcall() sets the host rtas_args.rets pointer based on
the rtas_args.nargs that was provided by the guest. That guest nargs
value is not range checked, so the guest can cause the host rets pointer
to be pointed outside the args array. The individual rtas function
handlers check the nargs and nrets values to ensure they are correct,
but if they are not, the handlers store a -3 (0xfffffffd) failure
indication in rets[0] which corrupts host memory.
Fix this by testing up front whether the guest supplied nargs and nret
would exceed the array size, and fail the hcall directly without storing
a failure indication to rets[0].
Also expand on a comment about why we kill the guest and try not to
return errors directly if we have a valid rets[0] pointer.
Fixes: 8e591cb72047 ("KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS calls")
Cc: stable@vger.kernel.org # v3.10+
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bc4188a2f56e821ea057aca6bf444e138d06c252 ]
vcpu_put is not called if the user copy fails. This can result in preempt
notifier corruption and crashes, among other issues.
Fixes: b3cebfe8c1ca ("KVM: PPC: Move vcpu_load/vcpu_put down to each ioctl case in kvm_arch_vcpu_ioctl")
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210716024310.164448-2-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bd31ecf44b8e18ccb1e5f6b50f85de6922a60de3 ]
When running CPU_FTR_P9_TM_HV_ASSIST, HFSCR[TM] is set for the guest
even if the host has CONFIG_TRANSACTIONAL_MEM=n, which causes it to be
unprepared to handle guest exits while transactional.
Normal guests don't have a problem because the HTM capability will not
be advertised, but a rogue or buggy one could crash the host.
Fixes: 4bb3c7a0208f ("KVM: PPC: Book3S HV: Work around transactional memory bugs in POWER9")
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210716024310.164448-1-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9733862e50fdba55e7f1554e4286fcc5302ff28e ]
Commit f959dcd6ddfd29235030e8026471ac1b022ad2b0 (dma-direct: Fix
potential NULL pointer dereference) added a null check on the
dma_mask pointer of the kernel's device structure.
Add a dma_mask variable to the ps3_dma_region structure and set
the device structure's dma_mask pointer to point to this new variable.
Fixes runtime errors like these:
# WARNING: Fixes tag on line 10 doesn't match correct format
# WARNING: Fixes tag on line 10 doesn't match correct format
ps3_system_bus_match:349: dev=8.0(sb_01), drv=8.0(ps3flash): match
WARNING: CPU: 0 PID: 1 at kernel/dma/mapping.c:151 .dma_map_page_attrs+0x34/0x1e0
ps3flash sb_01: ps3stor_setup:193: map DMA region failed
Signed-off-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/562d0c9ea0100a30c3b186bcc7adb34b0bbd2cd7.1622746428.git.geoff@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 015d98149b326e0f1f02e44413112ca8b4330543 upstream.
A change in clang 13 results in the __lwsync macro being defined as
__builtin_ppc_lwsync, which emits 'lwsync' or 'msync' depending on what
the target supports. This breaks the build because of -Werror in
arch/powerpc, along with thousands of warnings:
In file included from arch/powerpc/kernel/pmc.c:12:
In file included from include/linux/bug.h:5:
In file included from arch/powerpc/include/asm/bug.h:109:
In file included from include/asm-generic/bug.h:20:
In file included from include/linux/kernel.h:12:
In file included from include/linux/bitops.h:32:
In file included from arch/powerpc/include/asm/bitops.h:62:
arch/powerpc/include/asm/barrier.h:49:9: error: '__lwsync' macro redefined [-Werror,-Wmacro-redefined]
#define __lwsync() __asm__ __volatile__ (stringify_in_c(LWSYNC) : : :"memory")
^
<built-in>:308:9: note: previous definition is here
#define __lwsync __builtin_ppc_lwsync
^
1 error generated.
Undefine this macro so that the runtime patching introduced by
commit 2d1b2027626d ("powerpc: Fixup lwsync at runtime") continues to
work properly with clang and the build no longer breaks.
Cc: stable@vger.kernel.org
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://github.com/ClangBuiltLinux/linux/issues/1386
Link: 62b5df7fe2
Link: https://lore.kernel.org/r/20210528182752.1852002-1-nathan@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cd5d5e602f502895e47e18cd46804d6d7014e65c upstream.
The powerpc kernel is not prepared to handle exec faults from kernel.
Especially, the function is_exec_fault() will return 'false' when an
exec fault is taken by kernel, because the check is based on reading
current->thread.regs->trap which contains the trap from user.
For instance, when provoking a LKDTM EXEC_USERSPACE test,
current->thread.regs->trap is set to SYSCALL trap (0xc00), and
the fault taken by the kernel is not seen as an exec fault by
set_access_flags_filter().
Commit d7df2443cd5f ("powerpc/mm: Fix spurious segfaults on radix
with autonuma") made it clear and handled it properly. But later on
commit d3ca587404b3 ("powerpc/mm: Fix reporting of kernel execute
faults") removed that handling, introducing test based on error_code.
And here is the problem, because on the 603 all upper bits of SRR1
get cleared when the TLB instruction miss handler bails out to ISI.
Until commit cbd7e6ca0210 ("powerpc/fault: Avoid heavy
search_exception_tables() verification"), an exec fault from kernel
at a userspace address was indirectly caught by the lack of entry for
that address in the exception tables. But after that commit the
kernel mainly relies on KUAP or on core mm handling to catch wrong
user accesses. Here the access is not wrong, so mm handles it.
It is a minor fault because PAGE_EXEC is not set,
set_access_flags_filter() should set PAGE_EXEC and voila.
But as is_exec_fault() returns false as explained in the beginning,
set_access_flags_filter() bails out without setting PAGE_EXEC flag,
which leads to a forever minor exec fault.
As the kernel is not prepared to handle such exec faults, the thing to
do is to fire in bad_kernel_fault() for any exec fault taken by the
kernel, as it was prior to commit d3ca587404b3.
Fixes: d3ca587404b3 ("powerpc/mm: Fix reporting of kernel execute faults")
Cc: stable@vger.kernel.org # v4.14+
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/024bb05105050f704743a0083fe3548702be5706.1625138205.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bab26238bbd44d5a4687c0a64fd2c7f2755ea937 ]
printk_safe_flush_on_panic() has special lock breaking code for the case
where we panic()ed with the console lock held. It relies on panic IPI
causing other CPUs to mark themselves offline.
Do as most other architectures do.
This effectively reverts commit de6e5d38417e ("powerpc: smp_send_stop do
not offline stopped CPUs"), unfortunately it may result in some false
positive warnings, but the alternative is more situations where we can
crash without getting messages out.
Fixes: de6e5d38417e ("powerpc: smp_send_stop do not offline stopped CPUs")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210623041245.865134-1-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 77bbbc0cf84834ed130838f7ac1988567f4d0288 ]
The POWER9 vCPU TLB management code assumes all threads in a core share
a TLB, and that TLBIEL execued by one thread will invalidate TLBs for
all threads. This is not the case for SMT8 capable POWER9 and POWER10
(big core) processors, where the TLB is split between groups of threads.
This results in TLB multi-hits, random data corruption, etc.
Fix this by introducing cpu_first_tlb_thread_sibling etc., to determine
which siblings share TLBs, and use that in the guest TLB flushing code.
[npiggin@gmail.com: add changelog and comment]
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210602040441.3984352-1-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7c6986ade69e3c81bac831645bc72109cd798a80 upstream.
In raise_backtrace_ipi() we iterate through the cpumask of CPUs, sending
each an IPI asking them to do a backtrace, but we don't wait for the
backtrace to happen.
We then iterate through the CPU mask again, and if any CPU hasn't done
the backtrace and cleared itself from the mask, we print a trace on its
behalf, noting that the trace may be "stale".
This works well enough when a CPU is not responding, because in that
case it doesn't receive the IPI and the sending CPU is left to print the
trace. But when all CPUs are responding we are left with a race between
the sending and receiving CPUs, if the sending CPU wins the race then it
will erroneously print a trace.
This leads to spurious "stale" traces from the sending CPU, which can
then be interleaved messily with the receiving CPU, note the CPU
numbers, eg:
[ 1658.929157][ C7] rcu: Stack dump where RCU GP kthread last ran:
[ 1658.929223][ C7] Sending NMI from CPU 7 to CPUs 1:
[ 1658.929303][ C1] NMI backtrace for cpu 1
[ 1658.929303][ C7] CPU 1 didn't respond to backtrace IPI, inspecting paca.
[ 1658.929362][ C1] CPU: 1 PID: 325 Comm: kworker/1:1H Tainted: G W E 5.13.0-rc2+ #46
[ 1658.929405][ C7] irq_soft_mask: 0x01 in_mce: 0 in_nmi: 0 current: 325 (kworker/1:1H)
[ 1658.929465][ C1] Workqueue: events_highpri test_work_fn [test_lockup]
[ 1658.929549][ C7] Back trace of paca->saved_r1 (0xc0000000057fb400) (possibly stale):
[ 1658.929592][ C1] NIP: c00000000002cf50 LR: c008000000820178 CTR: c00000000002cfa0
To fix it, change the logic so that the sending CPU waits 5s for the
receiving CPU to print its trace. If the receiving CPU prints its trace
successfully then the sending CPU just continues, avoiding any spurious
"stale" trace.
This has the added benefit of allowing all CPUs to print their traces in
order and avoids any interleaving of their output.
Fixes: 5cc05910f26e ("powerpc/64s: Wire up arch_trigger_cpumask_backtrace()")
Cc: stable@vger.kernel.org # v4.18+
Reported-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210625140408.3351173-1-mpe@ellerman.id.au
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 51696f39cbee5bb684e7959c0c98b5f54548aa34 upstream.
LLVM does not emit optimal byteswap assembly, which results in high
stack usage in kvmhv_enter_nested_guest() due to the inlining of
byteswap_pt_regs(). With LLVM 12.0.0:
arch/powerpc/kvm/book3s_hv_nested.c:289:6: error: stack frame size of
2512 bytes in function 'kvmhv_enter_nested_guest' [-Werror,-Wframe-larger-than=]
long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
^
1 error generated.
While this gets fixed in LLVM, mark byteswap_pt_regs() as
noinline_for_stack so that it does not get inlined and break the build
due to -Werror by default in arch/powerpc/. Not inlining saves
approximately 800 bytes with LLVM 12.0.0:
arch/powerpc/kvm/book3s_hv_nested.c:290:6: warning: stack frame size of
1728 bytes in function 'kvmhv_enter_nested_guest' [-Wframe-larger-than=]
long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
^
1 warning generated.
Cc: stable@vger.kernel.org # v4.20+
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://github.com/ClangBuiltLinux/linux/issues/1292
Link: https://bugs.llvm.org/show_bug.cgi?id=49610
Link: https://lore.kernel.org/r/202104031853.vDT0Qjqj-lkp@intel.com/
Link: https://gist.github.com/ba710e3703bf45043a31e2806c843ffd
Link: https://lore.kernel.org/r/20210621182440.990242-1-nathan@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 19ae697a1e4edf1d755b413e3aa38da65e2db23b ]
The i2c controllers on the P1010 have an erratum where the documented
scheme for i2c bus recovery will not work (A-004447). A different
mechanism is needed which is documented in the P1010 Chip Errata Rev L.
Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Wolfram Sang <wsa@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7adc7b225cddcfd0f346d10144fd7a3d3d9f9ea7 ]
The i2c controllers on the P2040/P2041 have an erratum where the
documented scheme for i2c bus recovery will not work (A-004447). A
different mechanism is needed which is documented in the P2040 Chip
Errata Rev Q (latest available at the time of writing).
Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Wolfram Sang <wsa@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit aec86b052df6541cc97c5fca44e5934cbea4963b upstream.
The entry flush mitigation can be enabled/disabled at runtime via a
debugfs file (entry_flush), which causes the kernel to patch itself to
enable/disable the relevant mitigations.
However depending on which mitigation we're using, it may not be safe to
do that patching while other CPUs are active. For example the following
crash:
sleeper[15639]: segfault (11) at c000000000004c20 nip c000000000004c20 lr c000000000004c20
Shows that we returned to userspace with a corrupted LR that points into
the kernel, due to executing the partially patched call to the fallback
entry flush (ie. we missed the LR restore).
Fix it by doing the patching under stop machine. The CPUs that aren't
doing the patching will be spinning in the core of the stop machine
logic. That is currently sufficient for our purposes, because none of
the patching we do is to that code or anywhere in the vicinity.
Fixes: f79643787e0a ("powerpc/64s: flush L1D on kernel entry")
Cc: stable@vger.kernel.org # v5.10+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210506044959.1298123-2-mpe@ellerman.id.au
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8ec7791bae1327b1c279c5cd6e929c3b12daaf0a upstream.
The STF (store-to-load forwarding) barrier mitigation can be
enabled/disabled at runtime via a debugfs file (stf_barrier), which
causes the kernel to patch itself to enable/disable the relevant
mitigations.
However depending on which mitigation we're using, it may not be safe to
do that patching while other CPUs are active. For example the following
crash:
User access of kernel address (c00000003fff5af0) - exploit attempt? (uid: 0)
segfault (11) at c00000003fff5af0 nip 7fff8ad12198 lr 7fff8ad121f8 code 1
code: 40820128 e93c00d0 e9290058 7c292840 40810058 38600000 4bfd9a81 e8410018
code: 2c030006 41810154 3860ffb6 e9210098 <e94d8ff0> 7d295279 39400000 40820a3c
Shows that we returned to userspace without restoring the user r13
value, due to executing the partially patched STF exit code.
Fix it by doing the patching under stop machine. The CPUs that aren't
doing the patching will be spinning in the core of the stop machine
logic. That is currently sufficient for our purposes, because none of
the patching we do is to that code or anywhere in the vicinity.
Fixes: a048a07d7f45 ("powerpc/64s: Add support for a store forwarding barrier at kernel entry/exit")
Cc: stable@vger.kernel.org # v4.17+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210506044959.1298123-1-mpe@ellerman.id.au
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cc7130bf119add37f36238343a593b71ef6ecc1e ]
The IOMMU table is divided into pools for concurrent mappings and each
pool has a separate spinlock. When taking the ownership of an IOMMU group
to pass through a device to a VM, we lock these spinlocks which triggers
a false negative warning in lockdep (below).
This fixes it by annotating the large pool's spinlock as a nest lock
which makes lockdep not complaining when locking nested locks if
the nest lock is locked already.
===
WARNING: possible recursive locking detected
5.11.0-le_syzkaller_a+fstn1 #100 Not tainted
--------------------------------------------
qemu-system-ppc/4129 is trying to acquire lock:
c0000000119bddb0 (&(p->lock)/1){....}-{2:2}, at: iommu_take_ownership+0xac/0x1e0
but task is already holding lock:
c0000000119bdd30 (&(p->lock)/1){....}-{2:2}, at: iommu_take_ownership+0xac/0x1e0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(p->lock)/1);
lock(&(p->lock)/1);
===
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210301063653.51003-1-aik@ozlabs.ru
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ed8029d7b472369a010a1901358567ca3b6dbb0d ]
RCU complains about us calling printk() from an offline CPU:
=============================
WARNING: suspicious RCU usage
5.12.0-rc7-02874-g7cf90e481cb8 #1 Not tainted
-----------------------------
kernel/locking/lockdep.c:3568 RCU-list traversed in non-reader section!!
other info that might help us debug this:
RCU used illegally from offline CPU!
rcu_scheduler_active = 2, debug_locks = 1
no locks held by swapper/0/0.
stack backtrace:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.12.0-rc7-02874-g7cf90e481cb8 #1
Call Trace:
dump_stack+0xec/0x144 (unreliable)
lockdep_rcu_suspicious+0x124/0x144
__lock_acquire+0x1098/0x28b0
lock_acquire+0x128/0x600
_raw_spin_lock_irqsave+0x6c/0xc0
down_trylock+0x2c/0x70
__down_trylock_console_sem+0x60/0x140
vprintk_emit+0x1a8/0x4b0
vprintk_func+0xcc/0x200
printk+0x40/0x54
pseries_cpu_offline_self+0xc0/0x120
arch_cpu_idle_dead+0x54/0x70
do_idle+0x174/0x4a0
cpu_startup_entry+0x38/0x40
rest_init+0x268/0x388
start_kernel+0x748/0x790
start_here_common+0x1c/0x614
Which happens because by the time we get to rtas_stop_self() we are
already offline. In addition the message can be spammy, and is not that
helpful for users, so remove it.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210418135413.1204031-1-mpe@ellerman.id.au
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 38d0b1c9cec71e6d0f3bddef0bbce41d05a3e796 ]
The pci_bus->bridge reference may no longer be valid after
pci_bus_remove() resulting in passing a bad value to device_unregister()
for the associated bridge device.
Store the host_bridge reference in a separate variable prior to
pci_bus_remove().
Fixes: 7340056567e3 ("powerpc/pci: Reorder pci bus/bridge unregistration during PHB removal")
Signed-off-by: Tyrel Datwyler <tyreld@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210211182435.47968-1-tyreld@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 33e4bc5946432a4ac173fd08e8e30a13ab94d06d ]
When under xmon, the "dxi" command dumps the state of the XIVE
interrupts. If an interrupt number is specified, only the state of
the associated XIVE interrupt is dumped. This form of the command
lacks an irq_data parameter which is nevertheless used by
xmon_xive_get_irq_config(), leading to an xmon crash.
Fix that by doing a lookup in the system IRQ mapping to query the IRQ
descriptor data. Invalid interrupt numbers, or not belonging to the
XIVE IRQ domain, OPAL event interrupt number for instance, should be
caught by the previous query done at the firmware level.
Fixes: 97ef27507793 ("powerpc/xive: Fix xmon support on the PowerNV platform")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210331144514.892250-8-clg@kaod.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5088eb4092df12d701af8e0e92860b7186365279 ]
The host CTRL (runlatch) value is not restored after guest exit. The
host CTRL should always be 1 except in CPU idle code, so this can result
in the host running with runlatch clear, and potentially switching to
a different vCPU which then runs with runlatch clear as well.
This has little effect on P9 machines, CTRL is only responsible for some
PMU counter logic in the host and so other than corner cases of software
relying on that, or explicitly reading the runlatch value (Linux does
not appear to be affected but it's possible non-Linux guests could be),
there should be no execution correctness problem, though it could be
used as a covert channel between guests.
There may be microcontrollers, firmware or monitoring tools that sample
the runlatch value out-of-band, however since the register is writable
by guests, these values would (should) not be relied upon for correct
operation of the host, so suboptimal performance or incorrect reporting
should be the worst problem.
Fixes: 95a6432ce9038 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210412014845.1517916-2-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b27dadecdf9102838331b9a0b41ffc1cfe288154 ]
When neither CONFIG_PCI nor CONFIG_IBMVIO is set/enabled, iommu.c has a
build error. The fault injection code is not useful in that kernel config,
so make the FAIL_IOMMU option depend on PCI || IBMVIO.
Prevents this build error (warning escalated to error):
../arch/powerpc/kernel/iommu.c:178:30: error: 'fail_iommu_bus_notifier' defined but not used [-Werror=unused-variable]
178 | static struct notifier_block fail_iommu_bus_notifier = {
Fixes: d6b9a81b2a45 ("powerpc: IOMMU fault injection")
Reported-by: kernel test robot <lkp@intel.com>
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210404192623.10697-1-rdunlap@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 10f8f96179ecc7f69c927f6d231f6d02736cea83 ]
The power PMU group constraints includes check for EBB events to make
sure all events in a group must agree on EBB. This will prevent
scheduling EBB and non-EBB events together. But in the existing check,
settings for constraint mask and value is interchanged. Patch fixes the
same.
Before the patch, PMU selftest "cpu_event_pinned_vs_ebb_test" fails with
below in dmesg logs. This happens because EBB event gets enabled along
with a non-EBB cpu event.
[35600.453346] cpu_event_pinne[41326]: illegal instruction (4)
at 10004a18 nip 10004a18 lr 100049f8 code 1 in
cpu_event_pinned_vs_ebb_test[10000000+10000]
Test results after the patch:
$ ./pmu/ebb/cpu_event_pinned_vs_ebb_test
test: cpu_event_pinned_vs_ebb
tags: git_version:v5.12-rc5-93-gf28c3125acd3-dirty
Binding to cpu 8
EBB Handler is at 0x100050c8
read error on event 0x7fffe6bd4040!
PM_RUN_INST_CMPL: result 9872 running/enabled 37930432
success: cpu_event_pinned_vs_ebb
This bug was hidden by other logic until commit 1908dc911792 (perf:
Tweak perf_event_attr::exclusive semantics).
Fixes: 4df489991182 ("powerpc/perf: Add power8 EBB support")
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
[mpe: Mention commit 1908dc911792]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1617725761-1464-1-git-send-email-atrajeev@linux.vnet.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b8b2f37cf632434456182e9002d63cbc4cccc50c ]
When adding a PTE a ptesync is needed to order the update of the PTE
with subsequent accesses otherwise a spurious fault may be raised.
radix__set_pte_at() does not do this for performance gains. For
non-kernel memory this is not an issue as any faults of this kind are
corrected by the page fault handler. For kernel memory these faults
are not handled. The current solution is that there is a ptesync in
flush_cache_vmap() which should be called when mapping from the
vmalloc region.
However, map_kernel_page() does not call flush_cache_vmap(). This is
troublesome in particular for code patching with Strict RWX on radix.
In do_patch_instruction() the page frame that contains the instruction
to be patched is mapped and then immediately patched. With no ordering
or synchronization between setting up the PTE and writing to the page
it is possible for faults.
As the code patching is done using __put_user_asm_goto() the resulting
fault is obscured - but using a normal store instead it can be seen:
BUG: Unable to handle kernel data access on write at 0xc008000008f24a3c
Faulting instruction address: 0xc00000000008bd74
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in: nop_module(PO+) [last unloaded: nop_module]
CPU: 4 PID: 757 Comm: sh Tainted: P O 5.10.0-rc5-01361-ge3c1b78c8440-dirty #43
NIP: c00000000008bd74 LR: c00000000008bd50 CTR: c000000000025810
REGS: c000000016f634a0 TRAP: 0300 Tainted: P O (5.10.0-rc5-01361-ge3c1b78c8440-dirty)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 44002884 XER: 00000000
CFAR: c00000000007c68c DAR: c008000008f24a3c DSISR: 42000000 IRQMASK: 1
This results in the kind of issue reported here:
https://lore.kernel.org/linuxppc-dev/15AC5B0E-A221-4B8C-9039-FA96B8EF7C88@lca.pw/
Chris Riedl suggested a reliable way to reproduce the issue:
$ mount -t debugfs none /sys/kernel/debug
$ (while true; do echo function > /sys/kernel/debug/tracing/current_tracer ; echo nop > /sys/kernel/debug/tracing/current_tracer ; done) &
Turning ftrace on and off does a large amount of code patching which
in usually less then 5min will crash giving a trace like:
ftrace-powerpc: (____ptrval____): replaced (4b473b11) != old (60000000)
------------[ ftrace bug ]------------
ftrace failed to modify
[<c000000000bf8e5c>] napi_busy_loop+0xc/0x390
actual: 11:3b:47:4b
Setting ftrace call site to call ftrace function
ftrace record flags: 80000001
(1)
expected tramp: c00000000006c96c
------------[ cut here ]------------
WARNING: CPU: 4 PID: 809 at kernel/trace/ftrace.c:2065 ftrace_bug+0x28c/0x2e8
Modules linked in: nop_module(PO-) [last unloaded: nop_module]
CPU: 4 PID: 809 Comm: sh Tainted: P O 5.10.0-rc5-01360-gf878ccaf250a #1
NIP: c00000000024f334 LR: c00000000024f330 CTR: c0000000001a5af0
REGS: c000000004c8b760 TRAP: 0700 Tainted: P O (5.10.0-rc5-01360-gf878ccaf250a)
MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28008848 XER: 20040000
CFAR: c0000000001a9c98 IRQMASK: 0
GPR00: c00000000024f330 c000000004c8b9f0 c000000002770600 0000000000000022
GPR04: 00000000ffff7fff c000000004c8b6d0 0000000000000027 c0000007fe9bcdd8
GPR08: 0000000000000023 ffffffffffffffd8 0000000000000027 c000000002613118
GPR12: 0000000000008000 c0000007fffdca00 0000000000000000 0000000000000000
GPR16: 0000000023ec37c5 0000000000000000 0000000000000000 0000000000000008
GPR20: c000000004c8bc90 c0000000027a2d20 c000000004c8bcd0 c000000002612fe8
GPR24: 0000000000000038 0000000000000030 0000000000000028 0000000000000020
GPR28: c000000000ff1b68 c000000000bf8e5c c00000000312f700 c000000000fbb9b0
NIP ftrace_bug+0x28c/0x2e8
LR ftrace_bug+0x288/0x2e8
Call Trace:
ftrace_bug+0x288/0x2e8 (unreliable)
ftrace_modify_all_code+0x168/0x210
arch_ftrace_update_code+0x18/0x30
ftrace_run_update_code+0x44/0xc0
ftrace_startup+0xf8/0x1c0
register_ftrace_function+0x4c/0xc0
function_trace_init+0x80/0xb0
tracing_set_tracer+0x2a4/0x4f0
tracing_set_trace_write+0xd4/0x130
vfs_write+0xf0/0x330
ksys_write+0x84/0x140
system_call_exception+0x14c/0x230
system_call_common+0xf0/0x27c
To fix this when updating kernel memory PTEs using ptesync.
Fixes: f1cb8f9beba8 ("powerpc/64s/radix: avoid ptesync after set_pte and ptep_set_access_flags")
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Tidy up change log slightly]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210208032957.1232102-1-jniethe5@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4fe529449d85e78972fa327999961ecc83a0b6db ]
When compiling the powerpc with the SMP disabled, it shows the issue:
arch/powerpc/kernel/watchdog.c: In function ‘watchdog_smp_panic’:
arch/powerpc/kernel/watchdog.c:177:4: error: implicit declaration of function ‘smp_send_nmi_ipi’; did you mean ‘smp_send_stop’? [-Werror=implicit-function-declaration]
177 | smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
| ^~~~~~~~~~~~~~~~
| smp_send_stop
cc1: all warnings being treated as errors
make[2]: *** [scripts/Makefile.build:273: arch/powerpc/kernel/watchdog.o] Error 1
make[1]: *** [scripts/Makefile.build:534: arch/powerpc/kernel] Error 2
make: *** [Makefile:1980: arch/powerpc] Error 2
make: *** Waiting for unfinished jobs....
We found that powerpc used ipi to implement hardlockup watchdog, so the
HAVE_HARDLOCKUP_DETECTOR_ARCH should depend on the SMP.
Fixes: 2104180a5369 ("powerpc/64s: implement arch-specific hardlockup watchdog")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Chen Huang <chenhuang5@huawei.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210327094900.938555-1-chenhuang5@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1ef1dd9c7ed27b080445e1576e8a05957e0e4dfc ]
If identical_pvr_fixup() is not inlined, there are two modpost warnings:
WARNING: modpost: vmlinux.o(.text+0x54e8): Section mismatch in reference
from the function identical_pvr_fixup() to the function
.init.text:of_get_flat_dt_prop()
The function identical_pvr_fixup() references
the function __init of_get_flat_dt_prop().
This is often because identical_pvr_fixup lacks a __init
annotation or the annotation of of_get_flat_dt_prop is wrong.
WARNING: modpost: vmlinux.o(.text+0x551c): Section mismatch in reference
from the function identical_pvr_fixup() to the function
.init.text:identify_cpu()
The function identical_pvr_fixup() references
the function __init identify_cpu().
This is often because identical_pvr_fixup lacks a __init
annotation or the annotation of identify_cpu is wrong.
identical_pvr_fixup() calls two functions marked as __init and is only
called by a function marked as __init so it should be marked as __init
as well. At the same time, remove the inline keywork as it is not
necessary to inline this function. The compiler is still free to do so
if it feels it is worthwhile since commit 889b3c1245de ("compiler:
remove CONFIG_OPTIMIZE_INLINING entirely").
Fixes: 14b3d926a22b ("[POWERPC] 4xx: update 440EP(x)/440GR(x) identical PVR issue workaround")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://github.com/ClangBuiltLinux/linux/issues/1316
Link: https://lore.kernel.org/r/20210302200829.2680663-1-nathan@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fbced1546eaaab57a32e56c974ea8acf10c6abd8 ]
If fadump_calculate_reserve_size() is not inlined, there is a modpost
warning:
WARNING: modpost: vmlinux.o(.text+0x5196c): Section mismatch in
reference from the function fadump_calculate_reserve_size() to the
function .init.text:parse_crashkernel()
The function fadump_calculate_reserve_size() references
the function __init parse_crashkernel().
This is often because fadump_calculate_reserve_size lacks a __init
annotation or the annotation of parse_crashkernel is wrong.
fadump_calculate_reserve_size() calls parse_crashkernel(), which is
marked as __init and fadump_calculate_reserve_size() is called from
within fadump_reserve_mem(), which is also marked as __init.
Mark fadump_calculate_reserve_size() as __init to fix the section
mismatch. Additionally, remove the inline keyword as it is not necessary
to inline this function; the compiler is still free to do so if it feels
it is worthwhile since commit 889b3c1245de ("compiler: remove
CONFIG_OPTIMIZE_INLINING entirely").
Fixes: 11550dc0a00b ("powerpc/fadump: reuse crashkernel parameter for fadump memory reservation")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://github.com/ClangBuiltLinux/linux/issues/1300
Link: https://lore.kernel.org/r/20210302195013.2626335-1-nathan@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7de21e679e6a789f3729e8402bc440b623a28eae upstream.
A few archs like powerpc have different errno.h values for macros
EDEADLOCK and EDEADLK. In code including both libc and linux versions of
errno.h, this can result in multiple definitions of EDEADLOCK in the
include chain. Definitions to the same value (e.g. seen with mips) do
not raise warnings, but on powerpc there are redefinitions changing the
value, which raise warnings and errors (if using "-Werror").
Guard against these redefinitions to avoid build errors like the following,
first seen cross-compiling libbpf v5.8.9 for powerpc using GCC 8.4.0 with
musl 1.1.24:
In file included from ../../arch/powerpc/include/uapi/asm/errno.h:5,
from ../../include/linux/err.h:8,
from libbpf.c:29:
../../include/uapi/asm-generic/errno.h:40: error: "EDEADLOCK" redefined [-Werror]
#define EDEADLOCK EDEADLK
In file included from toolchain-powerpc_8540_gcc-8.4.0_musl/include/errno.h:10,
from libbpf.c:26:
toolchain-powerpc_8540_gcc-8.4.0_musl/include/bits/errno.h:58: note: this is the location of the previous definition
#define EDEADLOCK 58
cc1: all warnings being treated as errors
Cc: Stable <stable@vger.kernel.org>
Reported-by: Rosen Penev <rosenp@gmail.com>
Signed-off-by: Tony Ambardar <Tony.Ambardar@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200917135437.1238787-1-Tony.Ambardar@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5ae5bc12d0728db60a0aa9b62160ffc038875f1a upstream.
During the EEH MMIO error checking, the current implementation fails to map
the (virtual) MMIO address back to the pci device on radix with hugepage
mappings for I/O. This results into failure to dispatch EEH event with no
recovery even when EEH capability has been enabled on the device.
eeh_check_failure(token) # token = virtual MMIO address
addr = eeh_token_to_phys(token);
edev = eeh_addr_cache_get_dev(addr);
if (!edev)
return 0;
eeh_dev_check_failure(edev); <= Dispatch the EEH event
In case of hugepage mappings, eeh_token_to_phys() has a bug in virt -> phys
translation that results in wrong physical address, which is then passed to
eeh_addr_cache_get_dev() to match it against cached pci I/O address ranges
to get to a PCI device. Hence, it fails to find a match and the EEH event
never gets dispatched leaving the device in failed state.
The commit 33439620680be ("powerpc/eeh: Handle hugepages in ioremap space")
introduced following logic to translate virt to phys for hugepage mappings:
eeh_token_to_phys():
+ pa = pte_pfn(*ptep);
+
+ /* On radix we can do hugepage mappings for io, so handle that */
+ if (hugepage_shift) {
+ pa <<= hugepage_shift; <= This is wrong
+ pa |= token & ((1ul << hugepage_shift) - 1);
+ }
This patch fixes the virt -> phys translation in eeh_token_to_phys()
function.
$ cat /sys/kernel/debug/powerpc/eeh_address_cache
mem addr range [0x0000040080000000-0x00000400807fffff]: 0030:01:00.1
mem addr range [0x0000040080800000-0x0000040080ffffff]: 0030:01:00.1
mem addr range [0x0000040081000000-0x00000400817fffff]: 0030:01:00.0
mem addr range [0x0000040081800000-0x0000040081ffffff]: 0030:01:00.0
mem addr range [0x0000040082000000-0x000004008207ffff]: 0030:01:00.1
mem addr range [0x0000040082080000-0x00000400820fffff]: 0030:01:00.0
mem addr range [0x0000040082100000-0x000004008210ffff]: 0030:01:00.1
mem addr range [0x0000040082110000-0x000004008211ffff]: 0030:01:00.0
Above is the list of cached io address ranges of pci 0030:01:00.<fn>.
Before this patch:
Tracing 'arg1' of function eeh_addr_cache_get_dev() during error injection
clearly shows that 'addr=' contains wrong physical address:
kworker/u16:0-7 [001] .... 108.883775: eeh_addr_cache_get_dev:
(eeh_addr_cache_get_dev+0xc/0xf0) addr=0x80103000a510
dmesg shows no EEH recovery messages:
[ 108.563768] bnx2x: [bnx2x_timer:5801(eth2)]MFW seems hanged: drv_pulse (0x9ae) != mcp_pulse (0x7fff)
[ 108.563788] bnx2x: [bnx2x_hw_stats_update:870(eth2)]NIG timer max (4294967295)
[ 108.883788] bnx2x: [bnx2x_acquire_hw_lock:2013(eth1)]lock_status 0xffffffff resource_bit 0x1
[ 108.884407] bnx2x 0030:01:00.0 eth1: MDC/MDIO access timeout
[ 108.884976] bnx2x 0030:01:00.0 eth1: MDC/MDIO access timeout
<..>
After this patch:
eeh_addr_cache_get_dev() trace shows correct physical address:
<idle>-0 [001] ..s. 1043.123828: eeh_addr_cache_get_dev:
(eeh_addr_cache_get_dev+0xc/0xf0) addr=0x40080bc7cd8
dmesg logs shows EEH recovery getting triggerred:
[ 964.323980] bnx2x: [bnx2x_timer:5801(eth2)]MFW seems hanged: drv_pulse (0x746f) != mcp_pulse (0x7fff)
[ 964.323991] EEH: Recovering PHB#30-PE#10000
[ 964.324002] EEH: PE location: N/A, PHB location: N/A
[ 964.324006] EEH: Frozen PHB#30-PE#10000 detected
<..>
Fixes: 33439620680b ("powerpc/eeh: Handle hugepages in ioremap space")
Cc: stable@vger.kernel.org # v5.3+
Reported-by: Dominic DeMarco <ddemarc@us.ibm.com>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/161821396263.48361.2796709239866588652.stgit@jupiter
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit eed5fae00593ab9d261a0c1ffc1bdb786a87a55a ]
The code relies on constant folding of cpu_has_feature() based
on possible and always true values as defined per
CPU_FTRS_ALWAYS and CPU_FTRS_POSSIBLE.
Build failure is encountered with for instance
book3e_all_defconfig on kisskb in the AMDGPU driver which uses
cpu_has_feature(CPU_FTR_VSX_COMP) to decide whether calling
kernel_enable_vsx() or not.
The failure is due to cpu_has_feature() not being inlined with
that configuration with gcc 4.9.
In the same way as commit acdad8fb4a15 ("powerpc: Force inlining of
mmu_has_feature to fix build failure"), for inlining of
cpu_has_feature().
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b231dfa040ce4cc37f702f5c3a595fdeabfe0462.1615378209.git.christophe.leroy@csgroup.eu
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit eead089311f4d935ab5d1d8fbb0c42ad44699ada ]
lkp reported a build error in fsp2.o:
CC arch/powerpc/platforms/44x/fsp2.o
{standard input}:577: Error: unsupported relocation against base
Which comes from:
pr_err("GESR0: 0x%08x\n", mfdcr(base + PLB4OPB_GESR0));
Where our mfdcr() macro is stringifying "base + PLB4OPB_GESR0", and
passing that to the assembler, which obviously doesn't work.
The mfdcr() macro already checks that the argument is constant using
__builtin_constant_p(), and if not calls the out-of-line version of
mfdcr(). But in this case GCC is smart enough to notice that "base +
PLB4OPB_GESR0" will be constant, even though it's not something we can
immediately stringify into a register number.
Segher pointed out that passing the register number to the inline asm
as a constant would be better, and in fact it fixes the build error,
presumably because it gives GCC a chance to resolve the value.
While we're at it, change mtdcr() similarly.
Reported-by: kernel test robot <lkp@intel.com>
Suggested-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210218123058.748882-1-mpe@ellerman.id.au
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit cea15316ceee2d4a51dfdecd79e08a438135416c upstream.
'lis r2,N' is 'addis r2,0,N' and the instruction encoding in the macro
LIS_R2 is incorrect (it currently maps to 'addis r0,r2,N'). Fix the
same.
Fixes: c71b7eff426f ("powerpc: Add ABIv2 support to ppc_function_entry")
Cc: stable@vger.kernel.org # v3.16+
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210304020411.16796-1-naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e3de1e291fa58a1ab0f471a4b458eff2514e4b5f ]
In commit bf13718bc57a ("powerpc: show registers when unwinding
interrupt frames") we changed our stack dumping logic to show the full
registers whenever we find an interrupt frame on the stack.
However we didn't notice that on 64-bit this doesn't show the final
frame, ie. the interrupt that brought us in from userspace, whereas on
32-bit it does.
That is due to confusion about the size of that last frame. The code
in show_stack() calls validate_sp(), passing it STACK_INT_FRAME_SIZE
to check the sp is at least that far below the top of the stack.
However on 64-bit that size is too large for the final frame, because
it includes the red zone, but we don't allocate a red zone for the
first frame.
So add a new define that encodes the correct size for 32-bit and
64-bit, and use it in show_stack().
This results in the full trace being shown on 64-bit, eg:
sysrq: Trigger a crash
Kernel panic - not syncing: sysrq triggered crash
CPU: 0 PID: 83 Comm: sh Not tainted 5.11.0-rc2-gcc-8.2.0-00188-g571abcb96b10-dirty #649
Call Trace:
[c00000000a1c3ac0] [c000000000897b70] dump_stack+0xc4/0x114 (unreliable)
[c00000000a1c3b00] [c00000000014334c] panic+0x178/0x41c
[c00000000a1c3ba0] [c00000000094e600] sysrq_handle_crash+0x40/0x50
[c00000000a1c3c00] [c00000000094ef98] __handle_sysrq+0xd8/0x210
[c00000000a1c3ca0] [c00000000094f820] write_sysrq_trigger+0x100/0x188
[c00000000a1c3ce0] [c0000000005559dc] proc_reg_write+0x10c/0x1b0
[c00000000a1c3d10] [c000000000479950] vfs_write+0xf0/0x360
[c00000000a1c3d60] [c000000000479d9c] ksys_write+0x7c/0x140
[c00000000a1c3db0] [c00000000002bf5c] system_call_exception+0x19c/0x2c0
[c00000000a1c3e10] [c00000000000d35c] system_call_common+0xec/0x278
--- interrupt: c00 at 0x7fff9fbab428
NIP: 00007fff9fbab428 LR: 000000001000b724 CTR: 0000000000000000
REGS: c00000000a1c3e80 TRAP: 0c00 Not tainted (5.11.0-rc2-gcc-8.2.0-00188-g571abcb96b10-dirty)
MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 22002884 XER: 00000000
IRQMASK: 0
GPR00: 0000000000000004 00007fffc3cb8960 00007fff9fc59900 0000000000000001
GPR04: 000000002a4b32d0 0000000000000002 0000000000000063 0000000000000063
GPR08: 000000002a4b32d0 0000000000000000 0000000000000000 0000000000000000
GPR12: 0000000000000000 00007fff9fcca9a0 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000000 00000000100b8fd0
GPR20: 000000002a4b3485 00000000100b8f90 0000000000000000 0000000000000000
GPR24: 000000002a4b0440 00000000100e77b8 0000000000000020 000000002a4b32d0
GPR28: 0000000000000001 0000000000000002 000000002a4b32d0 0000000000000001
NIP [00007fff9fbab428] 0x7fff9fbab428
LR [000000001000b724] 0x1000b724
--- interrupt: c00
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210209141627.2898485-1-mpe@ellerman.id.au
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d137845c973147a22622cc76c7b0bc16f6206323 ]
While sampling for marked events, currently we record the sample only
if the SIAR valid bit of Sampled Instruction Event Register (SIER) is
set. SIAR_VALID bit is used for fetching the instruction address from
Sampled Instruction Address Register(SIAR). But there are some
usecases, where the user is interested only in the PMU stats at each
counter overflow and the exact IP of the overflow event is not
required. Dropping SIAR invalid samples will fail to record some of
the counter overflows in such cases.
Example of such usecase is dumping the PMU stats (event counts) after
some regular amount of instructions/events from the userspace (ex: via
ptrace). Here counter overflow is indicated to userspace via signal
handler, and captured by monitoring and enabling I/O signaling on the
event file descriptor. In these cases, we expect to get
sample/overflow indication after each specified sample_period.
Perf event attribute will not have PERF_SAMPLE_IP set in the
sample_type if exact IP of the overflow event is not requested. So
while profiling if SAMPLE_IP is not set, just record the counter
overflow irrespective of SIAR_VALID check.
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
[mpe: Reflow comment and if formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1612516492-1428-1-git-send-email-atrajeev@linux.vnet.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 11cb0a25f71818ca7ab4856548ecfd83c169aa4d ]
If an unrecoverable system reset hits in process context, the system
does not have to panic. Similar to machine check, call nmi_exit()
before die().
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-26-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5537fcb319d016ce387f818dd774179bc03217f5 ]
On many powerpc platforms the discovery and initalisation of
pci_controllers (PHBs) happens inside of setup_arch(). This is very early
in boot (pre-initcalls) and means that we're initialising the PHB long
before many basic kernel services (slab allocator, debugfs, a real ioremap)
are available.
On PowerNV this causes an additional problem since we map the PHB registers
with ioremap(). As of commit d538aadc2718 ("powerpc/ioremap: warn on early
use of ioremap()") a warning is printed because we're using the "incorrect"
API to setup and MMIO mapping in searly boot. The kernel does provide
early_ioremap(), but that is not intended to create long-lived MMIO
mappings and a seperate warning is printed by generic code if
early_ioremap() mappings are "leaked."
This is all fixable with dumb hacks like using early_ioremap() to setup
the initial mapping then replacing it with a real ioremap later on in
boot, but it does raise the question: Why the hell are we setting up the
PHB's this early in boot?
The old and wise claim it's due to "hysterical rasins." Aside from amused
grapes there doesn't appear to be any real reason to maintain the current
behaviour. Already most of the newer embedded platforms perform PHB
discovery in an arch_initcall and between the end of setup_arch() and the
start of initcalls none of the generic kernel code does anything PCI
related. On powerpc scanning PHBs occurs in a subsys_initcall so it should
be possible to move the PHB discovery to a core, postcore or arch initcall.
This patch adds the ppc_md.discover_phbs hook and a core_initcall stub that
calls it. The core_initcalls are the earliest to be called so this will
any possibly issues with dependency between initcalls. This isn't just an
academic issue either since on pseries and PowerNV EEH init occurs in an
arch_initcall and depends on the pci_controllers being available, similarly
the creation of pci_dns occurs at core_initcall_sync (i.e. between core and
postcore initcalls). These problems need to be addressed seperately.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
[mpe: Make discover_phbs() static]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201103043523.916109-1-oohall@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c119565a15a628efdfa51352f9f6c5186e506a1c upstream.
On book3s/32, page protection is defined by the PP bits in the PTE
which provide the following protection depending on the access
keys defined in the matching segment register:
- PP 00 means RW with key 0 and N/A with key 1.
- PP 01 means RW with key 0 and RO with key 1.
- PP 10 means RW with both key 0 and key 1.
- PP 11 means RO with both key 0 and key 1.
Since the implementation of kernel userspace access protection,
PP bits have been set as follows:
- PP00 for pages without _PAGE_USER
- PP01 for pages with _PAGE_USER and _PAGE_RW
- PP11 for pages with _PAGE_USER and without _PAGE_RW
For kernelspace segments, kernel accesses are performed with key 0
and user accesses are performed with key 1. As PP00 is used for
non _PAGE_USER pages, user can't access kernel pages not flagged
_PAGE_USER while kernel can.
For userspace segments, both kernel and user accesses are performed
with key 0, therefore pages not flagged _PAGE_USER are still
accessible to the user.
This shouldn't be an issue, because userspace is expected to be
accessible to the user. But unlike most other architectures, powerpc
implements PROT_NONE protection by removing _PAGE_USER flag instead of
flagging the page as not valid. This means that pages in userspace
that are not flagged _PAGE_USER shall remain inaccessible.
To get the expected behaviour, just mimic other architectures in the
TLB miss handler by checking _PAGE_USER permission on userspace
accesses as if it was the _PAGE_PRESENT bit.
Note that this problem only is only for 603 cores. The 604+ have
an hash table, and hash_page() function already implement the
verification of _PAGE_USER permission on userspace pages.
Fixes: f342adca3afc ("powerpc/32s: Prepare Kernel Userspace Access Protection")
Cc: stable@vger.kernel.org # v5.2+
Reported-by: Christoph Plattner <christoph.plattner@thalesgroup.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4a0c6e3bb8f0c162457bf54d9bc6fd8d7b55129f.1612160907.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f9619d5e5174867536b7e558683bc4408eab833f upstream.
Depending on the number of online CPUs in the original kernel, it is
likely for CPU #0 to be offline in a kdump kernel. The associated IRQs
in the affinity mappings provided by irq_create_affinity_masks() are
thus not started by irq_startup(), as per-design with managed IRQs.
This can be a problem with multi-queue block devices driven by blk-mq :
such a non-started IRQ is very likely paired with the single queue
enforced by blk-mq during kdump (see blk_mq_alloc_tag_set()). This
causes the device to remain silent and likely hangs the guest at
some point.
This is a regression caused by commit 9ea69a55b3b9 ("powerpc/pseries:
Pass MSI affinity to irq_create_mapping()"). Note that this only happens
with the XIVE interrupt controller because XICS has a workaround to bypass
affinity, which is activated during kdump with the "noirqdistrib" kernel
parameter.
The issue comes from a combination of factors:
- discrepancy between the number of queues detected by the multi-queue
block driver, that was used to create the MSI vectors, and the single
queue mode enforced later on by blk-mq because of kdump (i.e. keeping
all queues fixes the issue)
- CPU#0 offline (i.e. kdump always succeed with CPU#0)
Given that I couldn't reproduce on x86, which seems to always have CPU#0
online even during kdump, I'm not sure where this should be fixed. Hence
going for another approach : fine-grained affinity is for performance
and we don't really care about that during kdump. Simply revert to the
previous working behavior of ignoring affinity masks in this case only.
Fixes: 9ea69a55b3b9 ("powerpc/pseries: Pass MSI affinity to irq_create_mapping()")
Cc: stable@vger.kernel.org # v5.10+
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210215094506.1196119-1-groug@kaod.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 57fdfbce89137ae85cd5cef48be168040a47dd13 upstream.
Userspace Execution protection and fast syscall entry were implemented
independently from each other and were both merged in kernel 5.2,
leading to syscall entry missing userspace execution protection.
On syscall entry, execution of user space memory must be
locked in the same way as on exception entry.
Fixes: b86fb88855ea ("powerpc/32: implement fast entry for syscalls on non BOOKE")
Cc: stable@vger.kernel.org
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/c65e105b63aaf74f91a14f845bc77192350b84a6.1612796617.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ed5b00a05c2ae95b59adc3442f45944ec632e794 upstream.
The "ibm,arch-vec-5-platform-support" property is a list of pairs of
bytes representing the options and values supported by the platform
firmware. At boot time, Linux scans this list and activates the
available features it recognizes : Radix and XIVE.
A recent change modified the number of entries to loop on and 8 bytes,
4 pairs of { options, values } entries are always scanned. This is
fine on KVM but not on PowerVM which can advertises less. As a
consequence on this platform, Linux reads extra entries pointing to
random data, interprets these as available features and tries to
activate them, leading to a firmware crash in
ibm,client-architecture-support.
Fix that by using the property length of "ibm,arch-vec-5-platform-support".
Fixes: ab91239942a9 ("powerpc/prom: Remove VLA in prom_check_platform_support()")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210122075029.797013-1-clg@kaod.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 903178d0ce6bb30ef80a3604ab9ee2b57869fbc9 ]
For unimplemented instructions or unimplemented SPRs, the 8xx triggers
a "Software Emulation Exception" (0x1000). That interrupt doesn't set
reason bits in SRR1 as the "Program Check Exception" does.
Go through emulation_assist_interrupt() to set REASON_ILLEGAL.
Fixes: fbbcc3bb139e ("powerpc/8xx: Remove SoftwareEmulation()")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/ad782af87a222efc79cfb06079b0fd23d4224eaf.1612515180.git.christophe.leroy@csgroup.eu
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 768d70e19ba525debd571b36e6d0ab19956c63d7 ]
dlpar_configure_connector() has two problems in its handling of
ibm,configure-connector's return status:
1. When the status is -2 (busy, call again), we call
ibm,configure-connector again immediately without checking whether
to schedule, which can result in monopolizing the CPU.
2. Extended delay status (9900..9905) goes completely unhandled,
causing the configuration to unnecessarily terminate.
Fix both of these issues by using rtas_busy_delay().
Fixes: ab519a011caa ("powerpc/pseries: Kernel DLPAR Infrastructure")
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Tyrel Datwyler <tyreld@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210107025900.410369-1-nathanl@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 910a0cb6d259736a0c86e795d4c2f42af8d0d775 ]
PPC47x_TLBE_SIZE isn't defined for 256k pages, leading to a build
break if 256k pages is selected.
So change the kconfig so that 256k pages can't be selected for 47x.
Fixes: e7f75ad01d59 ("powerpc/47x: Base ppc476 support")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Expand change log to mention build break]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/2fed79b1154c872194f98bac4422c23918325e61.1611128938.git.christophe.leroy@csgroup.eu
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9236f57a9e51c72ce426ccd2e53e123de7196a0f ]
These are only used locally. It fixes these W=1 compile errors :
../arch/powerpc/kvm/powerpc.c:1521:5: error: no previous prototype for ‘kvmppc_get_vmx_dword’ [-Werror=missing-prototypes]
1521 | int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
| ^~~~~~~~~~~~~~~~~~~~
../arch/powerpc/kvm/powerpc.c:1539:5: error: no previous prototype for ‘kvmppc_get_vmx_word’ [-Werror=missing-prototypes]
1539 | int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
| ^~~~~~~~~~~~~~~~~~~
../arch/powerpc/kvm/powerpc.c:1557:5: error: no previous prototype for ‘kvmppc_get_vmx_hword’ [-Werror=missing-prototypes]
1557 | int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
| ^~~~~~~~~~~~~~~~~~~~
../arch/powerpc/kvm/powerpc.c:1575:5: error: no previous prototype for ‘kvmppc_get_vmx_byte’ [-Werror=missing-prototypes]
1575 | int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
| ^~~~~~~~~~~~~~~~~~~
Fixes: acc9eb9305fe ("KVM: PPC: Reimplement LOAD_VMX/STORE_VMX instruction mmio emulation with analyse_instr() input")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210104143206.695198-19-clg@kaod.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6553896666433e7efec589838b400a2a652b3ffa ]
Some code pathes, especially the low level entry code, must be protected
against instrumentation for various reasons:
- Low level entry code can be a fragile beast, especially on x86.
- With NO_HZ_FULL RCU state needs to be established before using it.
Having a dedicated section for such code allows to validate with tooling
that no unsafe functions are invoked.
Add the .noinstr.text section and the noinstr attribute to mark
functions. noinstr implies notrace. Kprobes will gain a section check
later.
Provide also a set of markers: instrumentation_begin()/end()
These are used to mark code inside a noinstr function which calls
into regular instrumentable text section as safe.
The instrumentation markers are only active when CONFIG_DEBUG_ENTRY is
enabled as the end marker emits a NOP to prevent the compiler from merging
the annotation points. This means the objtool verification requires a
kernel compiled with this option.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134100.075416272@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2225a8dda263edc35a0e8b858fe2945cf6240fde ]
This is a bug that causes early crashes in builds with an .exit.text
section smaller than a page and an .init.text section that ends in the
beginning of a physical page (this is kinda random, which might
explain why this wasn't really encountered before).
The init sections are ordered like this:
.init.text
.exit.text
.init.data
Currently, these sections aren't page aligned.
Because the init code might become read-only at runtime and because
the .init.text section can potentially reside on the same physical
page as .init.data, the beginning of .init.data might be mapped
read-only along with .init.text.
Then when the kernel tries to modify a variable in .init.data (like
kthreadd_done, used in kernel_init()) the kernel panics.
To avoid this, make _einittext page aligned and also align .exit.text
to make sure .init.data is always seperated from the text segments.
Fixes: 060ef9d89d18 ("powerpc32: PAGE_EXEC required for inittext")
Signed-off-by: Ariel Marcovitch <ariel.marcovitch@gmail.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210102201156.10805-1-ariel.marcovitch@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>