5699 Commits

Author SHA1 Message Date
Sean Christopherson
4f76285f6d KVM: x86/mmu: Treat NX as used (not reserved) for all !TDP shadow MMUs
commit 112022bdb5bc372e00e6e43cb88ee38ea67b97bd upstream

Mark NX as being used for all non-nested shadow MMUs, as KVM will set the
NX bit for huge SPTEs if the iTLB mutli-hit mitigation is enabled.
Checking the mitigation itself is not sufficient as it can be toggled on
at any time and KVM doesn't reset MMU contexts when that happens.  KVM
could reset the contexts, but that would require purging all SPTEs in all
MMUs, for no real benefit.  And, KVM already forces EFER.NX=1 when TDP is
disabled (for WP=0, SMEP=1, NX=0), so technically NX is never reserved
for shadow MMUs.

Fixes: b8e8c8303ff2 ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sudip: use old path]
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03 10:08:16 +02:00
Maxim Levitsky
a17f2f2c89 KVM: nSVM: always intercept VMLOAD/VMSAVE when nested (CVE-2021-3656)
commit c7dfa4009965a9b2d7b329ee970eb8da0d32f0bc upstream.

If L1 disables VMLOAD/VMSAVE intercepts, and doesn't enable
Virtual VMLOAD/VMSAVE (currently not supported for the nested hypervisor),
then VMLOAD/VMSAVE must operate on the L1 physical memory, which is only
possible by making L0 intercept these instructions.

Failure to do so allowed the nested guest to run VMLOAD/VMSAVE unintercepted,
and thus read/write portions of the host physical memory.

Fixes: 89c8a4984fc9 ("KVM: SVM: Enable Virtual VMLOAD VMSAVE feature")

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18 08:57:04 +02:00
Maxim Levitsky
7c1c96ffb6 KVM: nSVM: avoid picking up unsupported bits from L2 in int_ctl (CVE-2021-3653)
commit 0f923e07124df069ba68d8bb12324398f4b6b709 upstream.

* Invert the mask of bits that we pick from L2 in
  nested_vmcb02_prepare_control

* Invert and explicitly use VIRQ related bits bitmask in svm_clear_vintr

This fixes a security issue that allowed a malicious L1 to run L2 with
AVIC enabled, which allowed the L2 to exploit the uninitialized and enabled
AVIC to read/write the host physical memory at some offsets.

Fixes: 3d6368ef580a ("KVM: SVM: Add VMRUN handler")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18 08:57:04 +02:00
Sean Christopherson
a6ff0f3f9f KVM: VMX: Use current VMCS to query WAITPKG support for MSR emulation
commit 7b9cae027ba3aaac295ae23a62f47876ed97da73 upstream.

Use the secondary_exec_controls_get() accessor in vmx_has_waitpkg() to
effectively get the controls for the current VMCS, as opposed to using
vmx->secondary_exec_controls, which is the cached value of KVM's desired
controls for vmcs01 and truly not reflective of any particular VMCS.

While the waitpkg control is not dynamic, i.e. vmcs01 will always hold
the same waitpkg configuration as vmx->secondary_exec_controls, the same
does not hold true for vmcs02 if the L1 VMM hides the feature from L2.
If L1 hides the feature _and_ does not intercept MSR_IA32_UMWAIT_CONTROL,
L2 could incorrectly read/write L1's virtual MSR instead of taking a #GP.

Fixes: 6e3ba4abcea5 ("KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18 08:57:03 +02:00
Lai Jiangshan
d28adaabbb KVM: X86: MMU: Use the correct inherited permissions to get shadow page
commit b1bd5cba3306691c771d558e94baa73e8b0b96b7 upstream.

When computing the access permissions of a shadow page, use the effective
permissions of the walk up to that point, i.e. the logic AND of its parents'
permissions.  Two guest PxE entries that point at the same table gfn need to
be shadowed with different shadow pages if their parents' permissions are
different.  KVM currently uses the effective permissions of the last
non-leaf entry for all non-leaf entries.  Because all non-leaf SPTEs have
full ("uwx") permissions, and the effective permissions are recorded only
in role.access and merged into the leaves, this can lead to incorrect
reuse of a shadow page and eventually to a missing guest protection page
fault.

For example, here is a shared pagetable:

   pgd[]   pud[]        pmd[]            virtual address pointers
                     /->pmd1(u--)->pte1(uw-)->page1 <- ptr1 (u--)
        /->pud1(uw-)--->pmd2(uw-)->pte2(uw-)->page2 <- ptr2 (uw-)
   pgd-|           (shared pmd[] as above)
        \->pud2(u--)--->pmd1(u--)->pte1(uw-)->page1 <- ptr3 (u--)
                     \->pmd2(uw-)->pte2(uw-)->page2 <- ptr4 (u--)

  pud1 and pud2 point to the same pmd table, so:
  - ptr1 and ptr3 points to the same page.
  - ptr2 and ptr4 points to the same page.

(pud1 and pud2 here are pud entries, while pmd1 and pmd2 here are pmd entries)

- First, the guest reads from ptr1 first and KVM prepares a shadow
  page table with role.access=u--, from ptr1's pud1 and ptr1's pmd1.
  "u--" comes from the effective permissions of pgd, pud1 and
  pmd1, which are stored in pt->access.  "u--" is used also to get
  the pagetable for pud1, instead of "uw-".

- Then the guest writes to ptr2 and KVM reuses pud1 which is present.
  The hypervisor set up a shadow page for ptr2 with pt->access is "uw-"
  even though the pud1 pmd (because of the incorrect argument to
  kvm_mmu_get_page in the previous step) has role.access="u--".

- Then the guest reads from ptr3.  The hypervisor reuses pud1's
  shadow pmd for pud2, because both use "u--" for their permissions.
  Thus, the shadow pmd already includes entries for both pmd1 and pmd2.

- At last, the guest writes to ptr4.  This causes no vmexit or pagefault,
  because pud1's shadow page structures included an "uw-" page even though
  its role.access was "u--".

Any kind of shared pagetable might have the similar problem when in
virtual machine without TDP enabled if the permissions are different
from different ancestors.

In order to fix the problem, we change pt->access to be an array, and
any access in it will not include permissions ANDed from child ptes.

The test code is: https://lore.kernel.org/kvm/20210603050537.19605-1-jiangshanlai@gmail.com/
Remember to test it with TDP disabled.

The problem had existed long before the commit 41074d07c78b ("KVM: MMU:
Fix inherited permissions for emulated guest pte updates"), and it
is hard to find which is the culprit.  So there is no fixes tag here.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210603052455.21023-1-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
Fixes: cea0f0e7ea54 ("[PATCH] KVM: MMU: Shadow page table caching")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[OP: - apply arch/x86/kvm/mmu/* changes to arch/x86/kvm
     - apply documentation changes to Documentation/virt/kvm/mmu.txt
     - adjusted context in arch/x86/kvm/paging_tmpl.h]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:04 +02:00
Sean Christopherson
5b774238e8 KVM: SVM: Fix off-by-one indexing when nullifying last used SEV VMCB
[ Upstream commit 179c6c27bf487273652efc99acd3ba512a23c137 ]

Use the raw ASID, not ASID-1, when nullifying the last used VMCB when
freeing an SEV ASID.  The consumer, pre_sev_run(), indexes the array by
the raw ASID, thus KVM could get a false negative when checking for a
different VMCB if KVM manages to reallocate the same ASID+VMCB combo for
a new VM.

Note, this cannot cause a functional issue _in the current code_, as
pre_sev_run() also checks which pCPU last did VMRUN for the vCPU, and
last_vmentry_cpu is initialized to -1 during vCPU creation, i.e. is
guaranteed to mismatch on the first VMRUN.  However, prior to commit
8a14fe4f0c54 ("kvm: x86: Move last_cpu into kvm_vcpu_arch as
last_vmentry_cpu"), SVM tracked pCPU on its own and zero-initialized the
last_cpu variable.  Thus it's theoretically possible that older versions
of KVM could miss a TLB flush if the first VMRUN is on pCPU0 and the ASID
and VMCB exactly match those of a prior VM.

Fixes: 70cd94e60c73 ("KVM: SVM: VMRUN should use associated ASID when SEV is enabled")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-15 13:08:02 +02:00
Sean Christopherson
90e498ef3f KVM: x86/mmu: Fix per-cpu counter corruption on 32-bit builds
commit d5aaad6f83420efb8357ac8e11c868708b22d0a9 upstream.

Take a signed 'long' instead of an 'unsigned long' for the number of
pages to add/subtract to the total number of pages used by the MMU.  This
fixes a zero-extension bug on 32-bit kernels that effectively corrupts
the per-cpu counter used by the shrinker.

Per-cpu counters take a signed 64-bit value on both 32-bit and 64-bit
kernels, whereas kvm_mod_used_mmu_pages() takes an unsigned long and thus
an unsigned 32-bit value on 32-bit kernels.  As a result, the value used
to adjust the per-cpu counter is zero-extended (unsigned -> signed), not
sign-extended (signed -> signed), and so KVM's intended -1 gets morphed to
4294967295 and effectively corrupts the counter.

This was found by a staggering amount of sheer dumb luck when running
kvm-unit-tests on a 32-bit KVM build.  The shrinker just happened to kick
in while running tests and do_shrink_slab() logged an error about trying
to free a negative number of objects.  The truly lucky part is that the
kernel just happened to be a slightly stale build, as the shrinker no
longer yells about negative objects as of commit 18bb473e5031 ("mm:
vmscan: shrink deferred objects proportional to priority").

 vmscan: shrink_slab: mmu_shrink_scan+0x0/0x210 [kvm] negative objects to delete nr=-858993460

Fixes: bc8a3d8925a8 ("kvm: mmu: Fix overflow on kvm mmu page limit calculation")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210804214609.1096003-1-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-12 13:21:03 +02:00
Paolo Bonzini
43486cd739 KVM: x86: accept userspace interrupt only if no event is injected
commit fa7a549d321a4189677b0cea86e58d9db7977f7b upstream.

Once an exception has been injected, any side effects related to
the exception (such as setting CR2 or DR6) have been taked place.
Therefore, once KVM sets the VM-entry interruption information
field or the AMD EVENTINJ field, the next VM-entry must deliver that
exception.

Pending interrupts are processed after injected exceptions, so
in theory it would not be a problem to use KVM_INTERRUPT when
an injected exception is present.  However, DOSEMU is using
run->ready_for_interrupt_injection to detect interrupt windows
and then using KVM_SET_SREGS/KVM_SET_REGS to inject the
interrupt manually.  For this to work, the interrupt window
must be delayed after the completion of the previous event
injection.

Cc: stable@vger.kernel.org
Reported-by: Stas Sergeev <stsp2@yandex.ru>
Tested-by: Stas Sergeev <stsp2@yandex.ru>
Fixes: 71cc849b7093 ("KVM: x86: Fix split-irqchip vs interrupt injection window request")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-12 13:21:03 +02:00
Juergen Gross
7a94dfe5e2 x86/kvm: fix vcpu-id indexed array sizes
commit 76b4f357d0e7d8f6f0013c733e6cba1773c266d3 upstream.

KVM_MAX_VCPU_ID is the maximum vcpu-id of a guest, and not the number
of vcpu-ids. Fix array indexed by vcpu-id to have KVM_MAX_VCPU_ID+1
elements.

Note that this is currently no real problem, as KVM_MAX_VCPU_ID is
an odd number, resulting in always enough padding being available at
the end of those arrays.

Nevertheless this should be fixed in order to avoid rare problems in
case someone is using an even number for KVM_MAX_VCPU_ID.

Signed-off-by: Juergen Gross <jgross@suse.com>
Message-Id: <20210701154105.23215-2-jgross@suse.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04 12:27:37 +02:00
Maxim Levitsky
af45f3527a KVM: x86: determine if an exception has an error code only when injecting it.
commit b97f074583736c42fb36f2da1164e28c73758912 upstream.

A page fault can be queued while vCPU is in real paged mode on AMD, and
AMD manual asks the user to always intercept it
(otherwise result is undefined).
The resulting VM exit, does have an error code.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210225154135.405125-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Zubin Mithra <zsm@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-31 08:19:37 +02:00
Lai Jiangshan
22257d3c68 KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run()
commit f85d40160691881a17a397c448d799dfc90987ba upstream.

When the host is using debug registers but the guest is not using them
nor is the guest in guest-debug state, the kvm code does not reset
the host debug registers before kvm_x86->run().  Rather, it relies on
the hardware vmentry instruction to automatically reset the dr7 registers
which ensures that the host breakpoints do not affect the guest.

This however violates the non-instrumentable nature around VM entry
and exit; for example, when a host breakpoint is set on vcpu->arch.cr2,

Another issue is consistency.  When the guest debug registers are active,
the host breakpoints are reset before kvm_x86->run(). But when the
guest debug registers are inactive, the host breakpoints are delayed to
be disabled.  The host tracing tools may see different results depending
on what the guest is doing.

To fix the problems, we clear %db7 unconditionally before kvm_x86->run()
if the host has set any breakpoints, no matter if the guest is using
them or not.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210628172632.81029-1-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
[Only clear %db7 instead of reloading all debug registers. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-20 16:10:40 +02:00
Sean Christopherson
dc91a480ac KVM: x86: Use guest MAXPHYADDR from CPUID.0x8000_0008 iff TDP is enabled
commit 4bf48e3c0aafd32b960d341c4925b48f416f14a5 upstream.

Ignore the guest MAXPHYADDR reported by CPUID.0x8000_0008 if TDP, i.e.
NPT, is disabled, and instead use the host's MAXPHYADDR.  Per AMD'S APM:

  Maximum guest physical address size in bits. This number applies only
  to guests using nested paging. When this field is zero, refer to the
  PhysAddrSize field for the maximum guest physical address size.

Fixes: 24c82e576b78 ("KVM: Sanitize cpuid")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-20 16:10:40 +02:00
Sean Christopherson
032fd28ed5 KVM: nVMX: Ensure 64-bit shift when checking VMFUNC bitmap
[ Upstream commit 0e75225dfa4c5d5d51291f54a3d2d5895bad38da ]

Use BIT_ULL() instead of an open-coded shift to check whether or not a
function is enabled in L1's VMFUNC bitmap.  This is a benign bug as KVM
supports only bit 0, and will fail VM-Enter if any other bits are set,
i.e. bits 63:32 are guaranteed to be zero.

Note, "function" is bounded by hardware as VMFUNC will #UD before taking
a VM-Exit if the function is greater than 63.

Before:
  if ((vmcs12->vm_function_control & (1 << function)) == 0)
   0x000000000001a916 <+118>:	mov    $0x1,%eax
   0x000000000001a91b <+123>:	shl    %cl,%eax
   0x000000000001a91d <+125>:	cltq
   0x000000000001a91f <+127>:	and    0x128(%rbx),%rax

After:
  if (!(vmcs12->vm_function_control & BIT_ULL(function & 63)))
   0x000000000001a955 <+117>:	mov    0x128(%rbx),%rdx
   0x000000000001a95c <+124>:	bt     %rax,%rdx

Fixes: 27c42a1bb867 ("KVM: nVMX: Enable VMFUNC for the L1 hypervisor")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14 16:53:23 +02:00
Alper Gun
a05499b29a KVM: SVM: Call SEV Guest Decommission if ASID binding fails
commit 934002cd660b035b926438244b4294e647507e13 upstream.

Send SEV_CMD_DECOMMISSION command to PSP firmware if ASID binding
fails. If a failure happens after  a successful LAUNCH_START command,
a decommission command should be executed. Otherwise, guest context
will be unfreed inside the AMD SP. After the firmware will not have
memory to allocate more SEV guest context, LAUNCH_START command will
begin to fail with SEV_RET_RESOURCE_LIMIT error.

The existing code calls decommission inside sev_unbind_asid, but it is
not called if a failure happens before guest activation succeeds. If
sev_bind_asid fails, decommission is never called. PSP firmware has a
limit for the number of guests. If sev_asid_binding fails many times,
PSP firmware will not have resources to create another guest context.

Cc: stable@vger.kernel.org
Fixes: 59414c989220 ("KVM: SVM: Add support for KVM_SEV_LAUNCH_START command")
Reported-by: Peter Gonda <pgonda@google.com>
Signed-off-by: Alper Gun <alpergun@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210610174604.2554090-1-alpergun@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-11 12:52:07 +02:00
David Rientjes
abbd42939d KVM: SVM: Periodically schedule when unregistering regions on destroy
commit 7be74942f184fdfba34ddd19a0d995deb34d4a03 upstream.

There may be many encrypted regions that need to be unregistered when a
SEV VM is destroyed.  This can lead to soft lockups.  For example, on a
host running 4.15:

watchdog: BUG: soft lockup - CPU#206 stuck for 11s! [t_virtual_machi:194348]
CPU: 206 PID: 194348 Comm: t_virtual_machi
RIP: 0010:free_unref_page_list+0x105/0x170
...
Call Trace:
 [<0>] release_pages+0x159/0x3d0
 [<0>] sev_unpin_memory+0x2c/0x50 [kvm_amd]
 [<0>] __unregister_enc_region_locked+0x2f/0x70 [kvm_amd]
 [<0>] svm_vm_destroy+0xa9/0x200 [kvm_amd]
 [<0>] kvm_arch_destroy_vm+0x47/0x200
 [<0>] kvm_put_kvm+0x1a8/0x2f0
 [<0>] kvm_vm_release+0x25/0x30
 [<0>] do_exit+0x335/0xc10
 [<0>] do_group_exit+0x3f/0xa0
 [<0>] get_signal+0x1bc/0x670
 [<0>] do_signal+0x31/0x130

Although the CLFLUSH is no longer issued on every encrypted region to be
unregistered, there are no other changes that can prevent soft lockups for
very large SEV VMs in the latest kernel.

Periodically schedule if necessary.  This still holds kvm->lock across the
resched, but since this only happens when the VM is destroyed this is
assumed to be acceptable.

Signed-off-by: David Rientjes <rientjes@google.com>
Message-Id: <alpine.DEB.2.23.453.2008251255240.2987727@chino.kir.corp.google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[iwamatsu: adjust filename.]
Reference: CVE-2020-36311
Signed-off-by: Nobuhiro Iwamatsu (CIP) <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-11 12:52:07 +02:00
Sean Christopherson
cbb425f62d KVM: x86: Immediately reset the MMU context when the SMM flag is cleared
commit 78fcb2c91adfec8ce3a2ba6b4d0dda89f2f4a7c6 upstream.

Immediately reset the MMU context when the vCPU's SMM flag is cleared so
that the SMM flag in the MMU role is always synchronized with the vCPU's
flag.  If RSM fails (which isn't correctly emulated), KVM will bail
without calling post_leave_smm() and leave the MMU in a bad state.

The bad MMU role can lead to a NULL pointer dereference when grabbing a
shadow page's rmap for a page fault as the initial lookups for the gfn
will happen with the vCPU's SMM flag (=0), whereas the rmap lookup will
use the shadow page's SMM flag, which comes from the MMU (=1).  SMM has
an entirely different set of memslots, and so the initial lookup can find
a memslot (SMM=0) and then explode on the rmap memslot lookup (SMM=1).

  general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
  KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
  CPU: 1 PID: 8410 Comm: syz-executor382 Not tainted 5.13.0-rc5-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  RIP: 0010:__gfn_to_rmap arch/x86/kvm/mmu/mmu.c:935 [inline]
  RIP: 0010:gfn_to_rmap+0x2b0/0x4d0 arch/x86/kvm/mmu/mmu.c:947
  Code: <42> 80 3c 20 00 74 08 4c 89 ff e8 f1 79 a9 00 4c 89 fb 4d 8b 37 44
  RSP: 0018:ffffc90000ffef98 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: ffff888015b9f414 RCX: ffff888019669c40
  RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000001
  RBP: 0000000000000001 R08: ffffffff811d9cdb R09: ffffed10065a6002
  R10: ffffed10065a6002 R11: 0000000000000000 R12: dffffc0000000000
  R13: 0000000000000003 R14: 0000000000000001 R15: 0000000000000000
  FS:  000000000124b300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000000 CR3: 0000000028e31000 CR4: 00000000001526e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   rmap_add arch/x86/kvm/mmu/mmu.c:965 [inline]
   mmu_set_spte+0x862/0xe60 arch/x86/kvm/mmu/mmu.c:2604
   __direct_map arch/x86/kvm/mmu/mmu.c:2862 [inline]
   direct_page_fault+0x1f74/0x2b70 arch/x86/kvm/mmu/mmu.c:3769
   kvm_mmu_do_page_fault arch/x86/kvm/mmu.h:124 [inline]
   kvm_mmu_page_fault+0x199/0x1440 arch/x86/kvm/mmu/mmu.c:5065
   vmx_handle_exit+0x26/0x160 arch/x86/kvm/vmx/vmx.c:6122
   vcpu_enter_guest+0x3bdd/0x9630 arch/x86/kvm/x86.c:9428
   vcpu_run+0x416/0xc20 arch/x86/kvm/x86.c:9494
   kvm_arch_vcpu_ioctl_run+0x4e8/0xa40 arch/x86/kvm/x86.c:9722
   kvm_vcpu_ioctl+0x70f/0xbb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3460
   vfs_ioctl fs/ioctl.c:51 [inline]
   __do_sys_ioctl fs/ioctl.c:1069 [inline]
   __se_sys_ioctl+0xfb/0x170 fs/ioctl.c:1055
   do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x440ce9

Cc: stable@vger.kernel.org
Reported-by: syzbot+fb0b6a7e8713aeb0319c@syzkaller.appspotmail.com
Fixes: 9ec19493fb86 ("KVM: x86: clear SMM flags before loading state while leaving SMM")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-23 14:41:29 +02:00
Jim Mattson
bf99ea5297 kvm: LAPIC: Restore guard to prevent illegal APIC register access
[ Upstream commit 218bf772bddd221489c38dde6ef8e917131161f6 ]

Per the SDM, "any access that touches bytes 4 through 15 of an APIC
register may cause undefined behavior and must not be executed."
Worse, such an access in kvm_lapic_reg_read can result in a leak of
kernel stack contents. Prior to commit 01402cf81051 ("kvm: LAPIC:
write down valid APIC registers"), such an access was explicitly
disallowed. Restore the guard that was removed in that commit.

Fixes: 01402cf81051 ("kvm: LAPIC: write down valid APIC registers")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Message-Id: <20210602205224.3189316-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-23 14:41:23 +02:00
Sean Christopherson
796d3bd4ac KVM: x86: Ensure liveliness of nested VM-Enter fail tracepoint message
commit f31500b0d437a2464ca5972d8f5439e156b74960 upstream.

Use the __string() machinery provided by the tracing subystem to make a
copy of the string literals consumed by the "nested VM-Enter failed"
tracepoint.  A complete copy is necessary to ensure that the tracepoint
can't outlive the data/memory it consumes and deference stale memory.

Because the tracepoint itself is defined by kvm, if kvm-intel and/or
kvm-amd are built as modules, the memory holding the string literals
defined by the vendor modules will be freed when the module is unloaded,
whereas the tracepoint and its data in the ring buffer will live until
kvm is unloaded (or "indefinitely" if kvm is built-in).

This bug has existed since the tracepoint was added, but was recently
exposed by a new check in tracing to detect exactly this type of bug.

  fmt: '%s%s
  ' current_buffer: ' vmx_dirty_log_t-140127  [003] ....  kvm_nested_vmenter_failed: '
  WARNING: CPU: 3 PID: 140134 at kernel/trace/trace.c:3759 trace_check_vprintf+0x3be/0x3e0
  CPU: 3 PID: 140134 Comm: less Not tainted 5.13.0-rc1-ce2e73ce600a-req #184
  Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
  RIP: 0010:trace_check_vprintf+0x3be/0x3e0
  Code: <0f> 0b 44 8b 4c 24 1c e9 a9 fe ff ff c6 44 02 ff 00 49 8b 97 b0 20
  RSP: 0018:ffffa895cc37bcb0 EFLAGS: 00010282
  RAX: 0000000000000000 RBX: ffffa895cc37bd08 RCX: 0000000000000027
  RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff9766cfad74f8
  RBP: ffffffffc0a041d4 R08: ffff9766cfad74f0 R09: ffffa895cc37bad8
  R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffc0a041d4
  R13: ffffffffc0f4dba8 R14: 0000000000000000 R15: ffff976409f2c000
  FS:  00007f92fa200740(0000) GS:ffff9766cfac0000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000559bd11b0000 CR3: 000000019fbaa002 CR4: 00000000001726e0
  Call Trace:
   trace_event_printf+0x5e/0x80
   trace_raw_output_kvm_nested_vmenter_failed+0x3a/0x60 [kvm]
   print_trace_line+0x1dd/0x4e0
   s_show+0x45/0x150
   seq_read_iter+0x2d5/0x4c0
   seq_read+0x106/0x150
   vfs_read+0x98/0x180
   ksys_read+0x5f/0xe0
   do_syscall_64+0x40/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Cc: Steven Rostedt <rostedt@goodmis.org>
Fixes: 380e0055bc7e ("KVM: nVMX: trace nested VM-Enter failures detected by H/W")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Message-Id: <20210607175748.674002-1-seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-16 11:59:44 +02:00
Sean Christopherson
2295e87a5e KVM: SVM: Truncate GPR value for DR and CR accesses in !64-bit mode
commit 0884335a2e653b8a045083aa1d57ce74269ac81d upstream.

Drop bits 63:32 on loads/stores to/from DRs and CRs when the vCPU is not
in 64-bit mode.  The APM states bits 63:32 are dropped for both DRs and
CRs:

  In 64-bit mode, the operand size is fixed at 64 bits without the need
  for a REX prefix. In non-64-bit mode, the operand size is fixed at 32
  bits and the upper 32 bits of the destination are forced to 0.

Fixes: 7ff76d58a9dc ("KVM: SVM: enhance MOV CR intercept handler")
Fixes: cae3797a4639 ("KVM: SVM: enhance mov DR intercept handler")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sudip: manual backport to old file]
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:37:15 +02:00
Thomas Gleixner
187598fd82 KVM: x86: Cancel pvclock_gtod_work on module removal
commit 594b27e677b35f9734b1969d175ebc6146741109 upstream.

Nothing prevents the following:

  pvclock_gtod_notify()
    queue_work(system_long_wq, &pvclock_gtod_work);
  ...
  remove_module(kvm);
  ...
  work_queue_run()
    pvclock_gtod_work()	<- UAF

Ditto for any other operation on that workqueue list head which touches
pvclock_gtod_work after module removal.

Cancel the work in kvm_arch_exit() to prevent that.

Fixes: 16e8d74d2da9 ("KVM: x86: notifier for clocksource changes")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Message-Id: <87czu4onry.ffs@nanos.tec.linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-19 10:08:31 +02:00
Sean Christopherson
18cb19eab7 KVM: x86/mmu: Remove the defunct update_pte() paging hook
commit c5e2184d1544f9e56140791eff1a351bea2e63b9 upstream.

Remove the update_pte() shadow paging logic, which was obsoleted by
commit 4731d4c7a077 ("KVM: MMU: out of sync shadow core"), but never
removed.  As pointed out by Yu, KVM never write protects leaf page
tables for the purposes of shadow paging, and instead marks their
associated shadow page as unsync so that the guest can write PTEs at
will.

The update_pte() path, which predates the unsync logic, optimizes COW
scenarios by refreshing leaf SPTEs when they are written, as opposed to
zapping the SPTE, restarting the guest, and installing the new SPTE on
the subsequent fault.  Since KVM no longer write-protects leaf page
tables, update_pte() is unreachable and can be dropped.

Reported-by: Yu Zhang <yu.c.zhang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210115004051.4099250-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
(jwang: backport to 5.4 to fix a warning on AMD nested Virtualization)
Signed-off-by: Jack Wang <jinpu.wang@ionos.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-19 10:08:20 +02:00
Sean Christopherson
cc6623055f KVM: nVMX: Truncate bits 63:32 of VMCS field on nested check in !64-bit
commit ee050a577523dfd5fac95e6cc182ebe0293ead59 upstream.

Drop bits 63:32 of the VMCS field encoding when checking for a nested
VM-Exit on VMREAD/VMWRITE in !64-bit mode.  VMREAD and VMWRITE always
use 32-bit operands outside of 64-bit mode.

The actual emulation of VMREAD/VMWRITE does the right thing, this bug is
purely limited to incorrectly causing a nested VM-Exit if a GPR happens
to have bits 63:32 set outside of 64-bit mode.

Fixes: a7cde481b6e8 ("KVM: nVMX: Do not forward VMREAD/VMWRITE VMExits to L1 if required so by vmcs12 vmread/vmwrite bitmaps")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-14 09:44:15 +02:00
Maxim Levitsky
d239c08f09 kvm: x86: replace kvm_spec_ctrl_test_value with runtime test on the host
commit 841c2be09fe4f495fe5224952a419bd8c7e5b455 upstream.

To avoid complex and in some cases incorrect logic in
kvm_spec_ctrl_test_value, just try the guest's given value on the host
processor instead, and if it doesn't #GP, allow the guest to set it.

One such case is when host CPU supports STIBP mitigation
but doesn't support IBRS (as is the case with some Zen2 AMD cpus),
and in this case we were giving guest #GP when it tried to use STIBP

The reason why can can do the host test is that IA32_SPEC_CTRL msr is
passed to the guest, after the guest sets it to a non zero value
for the first time (due to performance reasons),
and as as result of this, it is pointless to emulate #GP condition on
this first access, in a different way than what the host CPU does.

This is based on a patch from Sean Christopherson, who suggested this idea.

Fixes: 6441fa6178f5 ("KVM: x86: avoid incorrect writes to host MSR_IA32_SPEC_CTRL")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200708115731.180097-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-04 10:26:09 +01:00
Paolo Bonzini
f49731dfdb KVM: SEV: fix double locking due to incorrect backport
Fix an incorrect line in the 5.4.y and 4.19.y backports of commit
19a23da53932bc ("Fix unsynchronized access to sev members through
svm_register_enc_region"), first applied to 5.4.98 and 4.19.176.

Fixes: 1e80fdc09d12 ("KVM: SVM: Pin guest memory when SEV is active")
Reported-by: Dov Murik <dovmurik@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org # 5.4.x
Cc: stable@vger.kernel.org # 4.19.x
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-23 15:02:25 +01:00
Peter Gonda
848bcb0a1d Fix unsynchronized access to sev members through svm_register_enc_region
commit 19a23da53932bc8011220bd8c410cb76012de004 upstream.

Grab kvm->lock before pinning memory when registering an encrypted
region; sev_pin_memory() relies on kvm->lock being held to ensure
correctness when checking and updating the number of pinned pages.

Add a lockdep assertion to help prevent future regressions.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Fixes: 1e80fdc09d12 ("KVM: SVM: Pin guest memory when SEV is active")
Signed-off-by: Peter Gonda <pgonda@google.com>

V2
 - Fix up patch description
 - Correct file paths svm.c -> sev.c
 - Add unlock of kvm->lock on sev_pin_memory error

V1
 - https://lore.kernel.org/kvm/20210126185431.1824530-1-pgonda@google.com/

Message-Id: <20210127161524.2832400-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-13 13:52:56 +01:00
Sean Christopherson
b2640b08c4 KVM: x86: Update emulator context mode if SYSENTER xfers to 64-bit mode
commit 943dea8af21bd896e0d6c30ea221203fb3cd3265 upstream.

Set the emulator context to PROT64 if SYSENTER transitions from 32-bit
userspace (compat mode) to a 64-bit kernel, otherwise the RIP update at
the end of x86_emulate_insn() will incorrectly truncate the new RIP.

Note, this bug is mostly limited to running an Intel virtual CPU model on
an AMD physical CPU, as other combinations of virtual and physical CPUs
do not trigger full emulation.  On Intel CPUs, SYSENTER in compatibility
mode is legal, and unconditionally transitions to 64-bit mode.  On AMD
CPUs, SYSENTER is illegal in compatibility mode and #UDs.  If the vCPU is
AMD, KVM injects a #UD on SYSENTER in compat mode.  If the pCPU is Intel,
SYSENTER will execute natively and not trigger #UD->VM-Exit (ignoring
guest TLB shenanigans).

Fixes: fede8076aab4 ("KVM: x86: handle wrap around 32-bit address space")
Cc: stable@vger.kernel.org
Signed-off-by: Jonny Barker <jonny@jonnybarker.com>
[sean: wrote changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210202165546.2390296-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:25:31 +01:00
Sean Christopherson
6d3201c77b KVM: SVM: Treat SVM as unsupported when running as an SEV guest
commit ccd85d90ce092bdb047a7f6580f3955393833b22 upstream.

Don't let KVM load when running as an SEV guest, regardless of what
CPUID says.  Memory is encrypted with a key that is not accessible to
the host (L0), thus it's impossible for L0 to emulate SVM, e.g. it'll
see garbage when reading the VMCB.

Technically, KVM could decrypt all memory that needs to be accessible to
the L0 and use shadow paging so that L0 does not need to shadow NPT, but
exposing such information to L0 largely defeats the purpose of running as
an SEV guest.  This can always be revisited if someone comes up with a
use case for running VMs inside SEV guests.

Note, VMLOAD, VMRUN, etc... will also #GP on GPAs with C-bit set, i.e. KVM
is doomed even if the SEV guest is debuggable and the hypervisor is willing
to decrypt the VMCB.  This may or may not be fixed on CPUs that have the
SVME_ADDR_CHK fix.

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210202212017.2486595-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:25:31 +01:00
Jay Zhou
ba668a5077 KVM: x86: get smi pending status correctly
commit 1f7becf1b7e21794fc9d460765fe09679bc9b9e0 upstream.

The injection process of smi has two steps:

    Qemu                        KVM
Step1:
    cpu->interrupt_request &= \
        ~CPU_INTERRUPT_SMI;
    kvm_vcpu_ioctl(cpu, KVM_SMI)

                                call kvm_vcpu_ioctl_smi() and
                                kvm_make_request(KVM_REQ_SMI, vcpu);

Step2:
    kvm_vcpu_ioctl(cpu, KVM_RUN, 0)

                                call process_smi() if
                                kvm_check_request(KVM_REQ_SMI, vcpu) is
                                true, mark vcpu->arch.smi_pending = true;

The vcpu->arch.smi_pending will be set true in step2, unfortunately if
vcpu paused between step1 and step2, the kvm_run->immediate_exit will be
set and vcpu has to exit to Qemu immediately during step2 before mark
vcpu->arch.smi_pending true.
During VM migration, Qemu will get the smi pending status from KVM using
KVM_GET_VCPU_EVENTS ioctl at the downtime, then the smi pending status
will be lost.

Signed-off-by: Jay Zhou <jianjay.zhou@huawei.com>
Signed-off-by: Shengen Zhuang <zhuangshengen@huawei.com>
Message-Id: <20210118084720.1585-1-jianjay.zhou@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-03 23:25:57 +01:00
Maxim Levitsky
ff5f6de29f KVM: nVMX: Sync unsync'd vmcs02 state to vmcs12 on migration
commit d51e1d3f6b4236e0352407d8a63f5c5f71ce193d upstream.

Even when we are outside the nested guest, some vmcs02 fields
may not be in sync vs vmcs12.  This is intentional, even across
nested VM-exit, because the sync can be delayed until the nested
hypervisor performs a VMCLEAR or a VMREAD/VMWRITE that affects those
rarely accessed fields.

However, during KVM_GET_NESTED_STATE, the vmcs12 has to be up to date to
be able to restore it.  To fix that, call copy_vmcs02_to_vmcs12_rare()
before the vmcs12 contents are copied to userspace.

Fixes: 7952d769c29ca ("KVM: nVMX: Sync rarely accessed guest fields only when needed")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210114205449.8715-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-03 23:25:57 +01:00
Like Xu
2fc14cafef KVM: x86/pmu: Fix UBSAN shift-out-of-bounds warning in intel_pmu_refresh()
commit e61ab2a320c3dfd6209efe18a575979e07470597 upstream.

Since we know vPMU will not work properly when (1) the guest bit_width(s)
of the [gp|fixed] counters are greater than the host ones, or (2) guest
requested architectural events exceeds the range supported by the host, so
we can setup a smaller left shift value and refresh the guest cpuid entry,
thus fixing the following UBSAN shift-out-of-bounds warning:

shift exponent 197 is too large for 64-bit type 'long long unsigned int'

Call Trace:
 __dump_stack lib/dump_stack.c:79 [inline]
 dump_stack+0x107/0x163 lib/dump_stack.c:120
 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148
 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:395
 intel_pmu_refresh.cold+0x75/0x99 arch/x86/kvm/vmx/pmu_intel.c:348
 kvm_vcpu_after_set_cpuid+0x65a/0xf80 arch/x86/kvm/cpuid.c:177
 kvm_vcpu_ioctl_set_cpuid2+0x160/0x440 arch/x86/kvm/cpuid.c:308
 kvm_arch_vcpu_ioctl+0x11b6/0x2d70 arch/x86/kvm/x86.c:4709
 kvm_vcpu_ioctl+0x7b9/0xdb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3386
 vfs_ioctl fs/ioctl.c:48 [inline]
 __do_sys_ioctl fs/ioctl.c:753 [inline]
 __se_sys_ioctl fs/ioctl.c:739 [inline]
 __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:739
 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Reported-by: syzbot+ae488dc136a4cc6ba32b@syzkaller.appspotmail.com
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20210118025800.34620-1-like.xu@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-03 23:25:57 +01:00
Like Xu
c547d39feb KVM: x86/pmu: Fix HW_REF_CPU_CYCLES event pseudo-encoding in intel_arch_events[]
commit 98dd2f108e448988d91e296173e773b06fb978b8 upstream.

The HW_REF_CPU_CYCLES event on the fixed counter 2 is pseudo-encoded as
0x0300 in the intel_perfmon_event_map[]. Correct its usage.

Fixes: 62079d8a4312 ("KVM: PMU: add proper support for fixed counter 2")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20201230081916.63417-1-like.xu@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-03 23:25:57 +01:00
Paolo Bonzini
7795afa0d7 KVM: x86: fix shift out of bounds reported by UBSAN
commit 2f80d502d627f30257ba7e3655e71c373b7d1a5a upstream.

Since we know that e >= s, we can reassociate the left shift,
changing the shifted number from 1 to 2 in exchange for
decreasing the right hand side by 1.

Reported-by: syzbot+e87846c48bf72bc85311@syzkaller.appspotmail.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-12 20:16:25 +01:00
Paolo Bonzini
7cb6087b45 KVM: x86: reinstate vendor-agnostic check on SPEC_CTRL cpuid bits
[ Upstream commit 39485ed95d6b83b62fa75c06c2c4d33992e0d971 ]

Until commit e7c587da1252 ("x86/speculation: Use synthetic bits for
IBRS/IBPB/STIBP"), KVM was testing both Intel and AMD CPUID bits before
allowing the guest to write MSR_IA32_SPEC_CTRL and MSR_IA32_PRED_CMD.
Testing only Intel bits on VMX processors, or only AMD bits on SVM
processors, fails if the guests are created with the "opposite" vendor
as the host.

While at it, also tweak the host CPU check to use the vendor-agnostic
feature bit X86_FEATURE_IBPB, since we only care about the availability
of the MSR on the host here and not about specific CPUID bits.

Fixes: e7c587da1252 ("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP")
Cc: stable@vger.kernel.org
Reported-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-01-06 14:48:36 +01:00
Paolo Bonzini
3d4a058945 KVM: SVM: relax conditions for allowing MSR_IA32_SPEC_CTRL accesses
[ Upstream commit df7e8818926eb4712b67421442acf7d568fe2645 ]

Userspace that does not know about the AMD_IBRS bit might still
allow the guest to protect itself with MSR_IA32_SPEC_CTRL using
the Intel SPEC_CTRL bit.  However, svm.c disallows this and will
cause a #GP in the guest when writing to the MSR.  Fix this by
loosening the test and allowing the Intel CPUID bit, and in fact
allow the AMD_STIBP bit as well since it allows writing to
MSR_IA32_SPEC_CTRL too.

Reported-by: Zhiyi Guo <zhguo@redhat.com>
Analyzed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Analyzed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-01-06 14:48:36 +01:00
Paolo Bonzini
d77c1ab54c KVM: x86: avoid incorrect writes to host MSR_IA32_SPEC_CTRL
[ Upstream commit 6441fa6178f5456d1d4b512c08798888f99db185 ]

If the guest is configured to have SPEC_CTRL but the host does not
(which is a nonsensical configuration but these are not explicitly
forbidden) then a host-initiated MSR write can write vmx->spec_ctrl
(respectively svm->spec_ctrl) and trigger a #GP when KVM tries to
restore the host value of the MSR.  Add a more comprehensive check
for valid bits of SPEC_CTRL, covering host CPUID flags and,
since we are at it and it is more correct that way, guest CPUID
flags too.

For AMD, remove the unnecessary is_guest_mode check around setting
the MSR interception bitmap, so that the code looks the same as
for Intel.

Cc: Jim Mattson <jmattson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-01-06 14:48:36 +01:00
Maciej S. Szmigiero
aa17a20d64 KVM: mmu: Fix SPTE encoding of MMIO generation upper half
commit 34c0f6f2695a2db81e09a3ab7bdb2853f45d4d3d upstream.

Commit cae7ed3c2cb0 ("KVM: x86: Refactor the MMIO SPTE generation handling")
cleaned up the computation of MMIO generation SPTE masks, however it
introduced a bug how the upper part was encoded:
SPTE bits 52-61 were supposed to contain bits 10-19 of the current
generation number, however a missing shift encoded bits 1-10 there instead
(mostly duplicating the lower part of the encoded generation number that
then consisted of bits 1-9).

In the meantime, the upper part was shrunk by one bit and moved by
subsequent commits to become an upper half of the encoded generation number
(bits 9-17 of bits 0-17 encoded in a SPTE).

In addition to the above, commit 56871d444bc4 ("KVM: x86: fix overlap between SPTE_MMIO_MASK and generation")
has changed the SPTE bit range assigned to encode the generation number and
the total number of bits encoded but did not update them in the comment
attached to their defines, nor in the KVM MMU doc.
Let's do it here, too, since it is too trivial thing to warrant a separate
commit.

Fixes: cae7ed3c2cb0 ("KVM: x86: Refactor the MMIO SPTE generation handling")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <156700708db2a5296c5ed7a8b9ac71f1e9765c85.1607129096.git.maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
[Reorganize macros so that everything is computed from the bit ranges. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-21 13:27:06 +01:00
Paolo Bonzini
4a301b05cf KVM: x86: Fix split-irqchip vs interrupt injection window request
commit 71cc849b7093bb83af966c0e60cb11b7f35cd746 upstream.

kvm_cpu_accept_dm_intr and kvm_vcpu_ready_for_interrupt_injection are
a hodge-podge of conditions, hacked together to get something that
more or less works.  But what is actually needed is much simpler;
in both cases the fundamental question is, do we have a place to stash
an interrupt if userspace does KVM_INTERRUPT?

In userspace irqchip mode, that is !vcpu->arch.interrupt.injected.
Currently kvm_event_needs_reinjection(vcpu) covers it, but it is
unnecessarily restrictive.

In split irqchip mode it's a bit more complicated, we need to check
kvm_apic_accept_pic_intr(vcpu) (the IRQ window exit is basically an INTACK
cycle and thus requires ExtINTs not to be masked) as well as
!pending_userspace_extint(vcpu).  However, there is no need to
check kvm_event_needs_reinjection(vcpu), since split irqchip keeps
pending ExtINT state separate from event injection state, and checking
kvm_cpu_has_interrupt(vcpu) is wrong too since ExtINT has higher
priority than APIC interrupts.  In fact the latter fixes a bug:
when userspace requests an IRQ window vmexit, an interrupt in the
local APIC can cause kvm_cpu_has_interrupt() to be true and thus
kvm_vcpu_ready_for_interrupt_injection() to return false.  When this
happens, vcpu_run does not exit to userspace but the interrupt window
vmexits keep occurring.  The VM loops without any hope of making progress.

Once we try to fix these with something like

     return kvm_arch_interrupt_allowed(vcpu) &&
-        !kvm_cpu_has_interrupt(vcpu) &&
-        !kvm_event_needs_reinjection(vcpu) &&
-        kvm_cpu_accept_dm_intr(vcpu);
+        (!lapic_in_kernel(vcpu)
+         ? !vcpu->arch.interrupt.injected
+         : (kvm_apic_accept_pic_intr(vcpu)
+            && !pending_userspace_extint(v)));

we realize two things.  First, thanks to the previous patch the complex
conditional can reuse !kvm_cpu_has_extint(vcpu).  Second, the interrupt
window request in vcpu_enter_guest()

        bool req_int_win =
                dm_request_for_irq_injection(vcpu) &&
                kvm_cpu_accept_dm_intr(vcpu);

should be kept in sync with kvm_vcpu_ready_for_interrupt_injection():
it is unnecessary to ask the processor for an interrupt window
if we would not be able to return to userspace.  Therefore,
kvm_cpu_accept_dm_intr(vcpu) is basically !kvm_cpu_has_extint(vcpu)
ANDed with the existing check for masked ExtINT.  It all makes sense:

- we can accept an interrupt from userspace if there is a place
  to stash it (and, for irqchip split, ExtINTs are not masked).
  Interrupts from userspace _can_ be accepted even if right now
  EFLAGS.IF=0.

- in order to tell userspace we will inject its interrupt ("IRQ
  window open" i.e. kvm_vcpu_ready_for_interrupt_injection), both
  KVM and the vCPU need to be ready to accept the interrupt.

... and this is what the patch implements.

Reported-by: David Woodhouse <dwmw@amazon.co.uk>
Analyzed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikos Tsironis <ntsironis@arrikto.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-02 08:49:46 +01:00
Paolo Bonzini
b7d2e45cf6 KVM: x86: handle !lapic_in_kernel case in kvm_cpu_*_extint
commit 72c3bcdcda494cbd600712a32e67702cdee60c07 upstream.

Centralize handling of interrupts from the userspace APIC
in kvm_cpu_has_extint and kvm_cpu_get_extint, since
userspace APIC interrupts are handled more or less the
same as ExtINTs are with split irqchip.  This removes
duplicated code from kvm_cpu_has_injectable_intr and
kvm_cpu_has_interrupt, and makes the code more similar
between kvm_cpu_has_{extint,interrupt} on one side
and kvm_cpu_get_{extint,interrupt} on the other.

Cc: stable@vger.kernel.org
Reviewed-by: Filippo Sironi <sironi@amazon.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-02 08:49:46 +01:00
David Edmondson
087c857e01 KVM: x86: clflushopt should be treated as a no-op by emulation
commit 51b958e5aeb1e18c00332e0b37c5d4e95a3eff84 upstream.

The instruction emulator ignores clflush instructions, yet fails to
support clflushopt. Treat both similarly.

Fixes: 13e457e0eebf ("KVM: x86: Emulator does not decode clflush well")
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20201103120400.240882-1-david.edmondson@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-22 10:14:12 +01:00
Maxim Levitsky
4250160436 KVM: x86: don't expose MSR_IA32_UMWAIT_CONTROL unconditionally
[ Upstream commit f4cfcd2d5aea4e96c5d483c476f3057b6b7baf6a ]

This msr is only available when the host supports WAITPKG feature.

This breaks a nested guest, if the L1 hypervisor is set to ignore
unknown msrs, because the only other safety check that the
kernel does is that it attempts to read the msr and
rejects it if it gets an exception.

Cc: stable@vger.kernel.org
Fixes: 6e3ba4abce ("KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200523161455.3940-3-mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
(cherry picked from commit f4cfcd2d5aea4e96c5d483c476f3057b6b7baf6a
use boot_cpu_has for checking the feature)
Signed-off-by: Jack Wang <jinpu.wang@cloud.ionos.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-18 19:20:21 +01:00
Robert Hoo
48df327e4b KVM: x86: emulating RDPID failure shall return #UD rather than #GP
[ Upstream commit a9e2e0ae686094571378c72d8146b5a1a92d0652 ]

Per Intel's SDM, RDPID takes a #UD if it is unsupported, which is more or
less what KVM is emulating when MSR_TSC_AUX is not available.  In fact,
there are no scenarios in which RDPID is supposed to #GP.

Fixes: fb6d4d340e ("KVM: x86: emulate RDPID")
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Message-Id: <1598581422-76264-1-git-send-email-robert.hu@linux.intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29 09:57:57 +01:00
Suravee Suthikulpanit
4a62024168 KVM: SVM: Initialize prev_ga_tag before use
commit f6426ab9c957e97418ac5b0466538792767b1738 upstream.

The function amd_ir_set_vcpu_affinity makes use of the parameter struct
amd_iommu_pi_data.prev_ga_tag to determine if it should delete struct
amd_iommu_pi_data from a list when not running in AVIC mode.

However, prev_ga_tag is initialized only when AVIC is enabled. The non-zero
uninitialized value can cause unintended code path, which ends up making
use of the struct vcpu_svm.ir_list and ir_list_lock without being
initialized (since they are intended only for the AVIC case).

This triggers NULL pointer dereference bug in the function vm_ir_list_del
with the following call trace:

    svm_update_pi_irte+0x3c2/0x550 [kvm_amd]
    ? proc_create_single_data+0x41/0x50
    kvm_arch_irq_bypass_add_producer+0x40/0x60 [kvm]
    __connect+0x5f/0xb0 [irqbypass]
    irq_bypass_register_producer+0xf8/0x120 [irqbypass]
    vfio_msi_set_vector_signal+0x1de/0x2d0 [vfio_pci]
    vfio_msi_set_block+0x77/0xe0 [vfio_pci]
    vfio_pci_set_msi_trigger+0x25c/0x2f0 [vfio_pci]
    vfio_pci_set_irqs_ioctl+0x88/0xb0 [vfio_pci]
    vfio_pci_ioctl+0x2ea/0xed0 [vfio_pci]
    ? alloc_file_pseudo+0xa5/0x100
    vfio_device_fops_unl_ioctl+0x26/0x30 [vfio]
    ? vfio_device_fops_unl_ioctl+0x26/0x30 [vfio]
    __x64_sys_ioctl+0x96/0xd0
    do_syscall_64+0x37/0x80
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Therefore, initialize prev_ga_tag to zero before use. This should be safe
because ga_tag value 0 is invalid (see function avic_vm_init).

Fixes: dfa20099e26e ("KVM: SVM: Refactor AVIC vcpu initialization into avic_init_vcpu()")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20201003232707.4662-1-suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-29 09:57:28 +01:00
Sean Christopherson
39ba2b6c3d KVM: x86/mmu: Commit zap of remaining invalid pages when recovering lpages
commit e89505698c9f70125651060547da4ff5046124fc upstream.

Call kvm_mmu_commit_zap_page() after exiting the "prepare zap" loop in
kvm_recover_nx_lpages() to finish zapping pages in the unlikely event
that the loop exited due to lpage_disallowed_mmu_pages being empty.
Because the recovery thread drops mmu_lock() when rescheduling, it's
possible that lpage_disallowed_mmu_pages could be emptied by a different
thread without to_zap reaching zero despite to_zap being derived from
the number of disallowed lpages.

Fixes: 1aa9b9572b105 ("kvm: x86: mmu: Recovery of shattered NX large pages")
Cc: Junaid Shahid <junaids@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-29 09:57:28 +01:00
Sean Christopherson
413aeed195 KVM: nVMX: Reload vmcs01 if getting vmcs12's pages fails
commit b89d5ad00e789967a5e2c5335f75c48755bebd88 upstream.

Reload vmcs01 when bailing from nested_vmx_enter_non_root_mode() as KVM
expects vmcs01 to be loaded when is_guest_mode() is false.

Fixes: 671ddc700fd08 ("KVM: nVMX: Don't leak L1 MMIO regions to L2")
Cc: stable@vger.kernel.org
Cc: Dan Cross <dcross@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Peter Shier <pshier@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923184452.980-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-29 09:57:28 +01:00
Sean Christopherson
f9ac203634 KVM: nVMX: Reset the segment cache when stuffing guest segs
commit fc387d8daf3960c5e1bc18fa353768056f4fd394 upstream.

Explicitly reset the segment cache after stuffing guest segment regs in
prepare_vmcs02_rare().  Although the cache is reset when switching to
vmcs02, there is nothing that prevents KVM from re-populating the cache
prior to writing vmcs02 with vmcs12's values.  E.g. if the vCPU is
preempted after switching to vmcs02 but before prepare_vmcs02_rare(),
kvm_arch_vcpu_put() will dereference GUEST_SS_AR_BYTES via .get_cpl()
and cache the stale vmcs02 value.  While the current code base only
caches stale data in the preemption case, it's theoretically possible
future code could read a segment register during the nested flow itself,
i.e. this isn't technically illegal behavior in kvm_arch_vcpu_put(),
although it did introduce the bug.

This manifests as an unexpected nested VM-Enter failure when running
with unrestricted guest disabled if the above preemption case coincides
with L1 switching L2's CPL, e.g. when switching from a L2 vCPU at CPL3
to to a L2 vCPU at CPL0.  stack_segment_valid() will see the new SS_SEL
but the old SS_AR_BYTES and incorrectly mark the guest state as invalid
due to SS.dpl != SS.rpl.

Don't bother updating the cache even though prepare_vmcs02_rare() writes
every segment.  With unrestricted guest, guest segments are almost never
read, let alone L2 guest segments.  On the other hand, populating the
cache requires a large number of memory writes, i.e. it's unlikely to be
a net win.  Updating the cache would be a win when unrestricted guest is
not supported, as guest_state_valid() will immediately cache all segment
registers.  But, nested virtualization without unrestricted guest is
dirt slow, saving some VMREADs won't change that, and every CPU
manufactured in the last decade supports unrestricted guest.  In other
words, the extra (minor) complexity isn't worth the trouble.

Note, kvm_arch_vcpu_put() may see stale data when querying guest CPL
depending on when preemption occurs.  This is "ok" in that the usage is
imperfect by nature, i.e. it's used heuristically to improve performance
but doesn't affect functionality.  kvm_arch_vcpu_put() could be "fixed"
by also disabling preemption while loading segments, but that's
pointless and misleading as reading state from kvm_sched_{in,out}() is
guaranteed to see stale data in one form or another.  E.g. even if all
the usage of regs_avail is fixed to call kvm_register_mark_available()
after the associated state is set, the individual state might still be
stale with respect to the overall vCPU state.  I.e. making functional
decisions in an asynchronous hook is doomed from the get go.  Thankfully
KVM doesn't do that.

Fixes: de63ad4cf4973 ("KVM: X86: implement the logic for spinlock optimization")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923184452.980-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-29 09:57:28 +01:00
Tom Lendacky
5d4431c9de KVM: SVM: Add a dedicated INVD intercept routine
[ Upstream commit 4bb05f30483fd21ea5413eaf1182768f251cf625 ]

The INVD instruction intercept performs emulation. Emulation can't be done
on an SEV guest because the guest memory is encrypted.

Provide a dedicated intercept routine for the INVD intercept. And since
the instruction is emulated as a NOP, just skip it instead.

Fixes: 1654efcbc431 ("KVM: SVM: Add KVM_SEV_INIT command")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <a0b9a19ffa7fef86a3cc700c7ea01cb2731e04e5.1600972918.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:18:21 +02:00
Sean Christopherson
16788dc19f KVM: x86: Reset MMU context if guest toggles CR4.SMAP or CR4.PKE
[ Upstream commit 8d214c481611b29458a57913bd786f0ac06f0605 ]

Reset the MMU context during kvm_set_cr4() if SMAP or PKE is toggled.
Recent commits to (correctly) not reload PDPTRs when SMAP/PKE are
toggled inadvertantly skipped the MMU context reset due to the mask
of bits that triggers PDPTR loads also being used to trigger MMU context
resets.

Fixes: 427890aff855 ("kvm: x86: Toggling CR4.SMAP does not load PDPTEs in PAE mode")
Fixes: cb957adb4ea4 ("kvm: x86: Toggling CR4.PKE does not load PDPTEs in PAE mode")
Cc: Jim Mattson <jmattson@google.com>
Cc: Peter Shier <pshier@google.com>
Cc: Oliver Upton <oupton@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923215352.17756-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:18:21 +02:00
Paolo Bonzini
97cf50cc4e KVM: x86: handle wrap around 32-bit address space
[ Upstream commit fede8076aab4c2280c673492f8f7a2e87712e8b4 ]

KVM is not handling the case where EIP wraps around the 32-bit address
space (that is, outside long mode).  This is needed both in vmx.c
and in emulate.c.  SVM with NRIPS is okay, but it can still print
an error to dmesg due to integer overflow.

Reported-by: Nick Peterson <everdox@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:18:00 +02:00
Steve Rutherford
4f4e297895 KVM: Remove CREATE_IRQCHIP/SET_PIT2 race
[ Upstream commit 7289fdb5dcdbc5155b5531529c44105868a762f2 ]

Fixes a NULL pointer dereference, caused by the PIT firing an interrupt
before the interrupt table has been initialized.

SET_PIT2 can race with the creation of the IRQchip. In particular,
if SET_PIT2 is called with a low PIT timer period (after the creation of
the IOAPIC, but before the instantiation of the irq routes), the PIT can
fire an interrupt at an uninitialized table.

Signed-off-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Jon Cargille <jcargill@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200416191152.259434-1-jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:55 +02:00
He Zhe
048892dfab KVM: LAPIC: Mark hrtimer for period or oneshot mode to expire in hard interrupt context
[ Upstream commit edec6e015a02003c2af0ce82c54ea016b5a9e3f0 ]

apic->lapic_timer.timer was initialized with HRTIMER_MODE_ABS_HARD but
started later with HRTIMER_MODE_ABS, which may cause the following warning
in PREEMPT_RT kernel.

WARNING: CPU: 1 PID: 2957 at kernel/time/hrtimer.c:1129 hrtimer_start_range_ns+0x348/0x3f0
CPU: 1 PID: 2957 Comm: qemu-system-x86 Not tainted 5.4.23-rt11 #1
Hardware name: Supermicro SYS-E300-9A-8C/A2SDi-8C-HLN4F, BIOS 1.1a 09/18/2018
RIP: 0010:hrtimer_start_range_ns+0x348/0x3f0
Code: 4d b8 0f 94 c1 0f b6 c9 e8 35 f1 ff ff 4c 8b 45
      b0 e9 3b fd ff ff e8 d7 3f fa ff 48 98 4c 03 34
      c5 a0 26 bf 93 e9 a1 fd ff ff <0f> 0b e9 fd fc ff
      ff 65 8b 05 fa b7 90 6d 89 c0 48 0f a3 05 60 91
RSP: 0018:ffffbc60026ffaf8 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff9d81657d4110 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000006cc7987bcf RDI: ffff9d81657d4110
RBP: ffffbc60026ffb58 R08: 0000000000000001 R09: 0000000000000010
R10: 0000000000000000 R11: 0000000000000000 R12: 0000006cc7987bcf
R13: 0000000000000000 R14: 0000006cc7987bcf R15: ffffbc60026d6a00
FS: 00007f401daed700(0000) GS:ffff9d81ffa40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000ffffffff CR3: 0000000fa7574000 CR4: 00000000003426e0
Call Trace:
? kvm_release_pfn_clean+0x22/0x60 [kvm]
start_sw_timer+0x85/0x230 [kvm]
? vmx_vmexit+0x1b/0x30 [kvm_intel]
kvm_lapic_switch_to_sw_timer+0x72/0x80 [kvm]
vmx_pre_block+0x1cb/0x260 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_vmexit+0x1b/0x30 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_vmexit+0x1b/0x30 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_vmexit+0x1b/0x30 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_vmexit+0x1b/0x30 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_vmexit+0x1b/0x30 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_vmexit+0x1b/0x30 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_vmexit+0x1b/0x30 [kvm_intel]
? vmx_vmexit+0xf/0x30 [kvm_intel]
? vmx_sync_pir_to_irr+0x9e/0x100 [kvm_intel]
? kvm_apic_has_interrupt+0x46/0x80 [kvm]
kvm_arch_vcpu_ioctl_run+0x85b/0x1fa0 [kvm]
? _raw_spin_unlock_irqrestore+0x18/0x50
? _copy_to_user+0x2c/0x30
kvm_vcpu_ioctl+0x235/0x660 [kvm]
? rt_spin_unlock+0x2c/0x50
do_vfs_ioctl+0x3e4/0x650
? __fget+0x7a/0xa0
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x4d/0x120
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f4027cc54a7
Code: 00 00 90 48 8b 05 e9 59 0c 00 64 c7 00 26 00 00
      00 48 c7 c0 ff ff ff ff c3 66 2e 0f 1f 84 00 00
      00 00 00 b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff
      73 01 c3 48 8b 0d b9 59 0c 00 f7 d8 64 89 01 48
RSP: 002b:00007f401dae9858 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00005558bd029690 RCX: 00007f4027cc54a7
RDX: 0000000000000000 RSI: 000000000000ae80 RDI: 000000000000000d
RBP: 00007f4028b72000 R08: 00005558bc829ad0 R09: 00000000ffffffff
R10: 00005558bcf90ca0 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 00005558bce1c840
--[ end trace 0000000000000002 ]--

Signed-off-by: He Zhe <zhe.he@windriver.com>
Message-Id: <1584687967-332859-1-git-send-email-zhe.he@windriver.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:45 +02:00