IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit e1e71c168813564be0f6ea3d6740a059ca42d177 ]
There is a potential race between fuse_read_interrupt() and
fuse_request_end().
TASK1
in fuse_read_interrupt(): delete req->intr_entry (while holding
fiq->lock)
TASK2
in fuse_request_end(): req->intr_entry is empty -> skip fiq->lock
wake up TASK3
TASK3
request is freed
TASK1
in fuse_read_interrupt(): dereference req->in.h.unique ***BAM***
Fix by always grabbing fiq->lock if the request was ever interrupted
(FR_INTERRUPTED set) thereby serializing with concurrent
fuse_read_interrupt() calls.
FR_INTERRUPTED is set before the request is queued on fiq->interrupts.
Dequeing the request is done with list_del_init() but FR_INTERRUPTED is not
cleared in this case.
Reported-by: lijiazi <lijiazi@xiaomi.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6f93e834fa7c5faa0372e46828b4b2a966ac61d7 upstream.
The mount option max_inline ranges from 0 to the sectorsize (which is
now equal to page size). But we parse the mount options too early and
before the actual sectorsize is read from the superblock. So the upper
limit of max_inline is unaware of the actual sectorsize and is limited
by the temporary sectorsize 4096, even on a system where the default
sectorsize is 64K.
Fix this by reading the superblock sectorsize before the mount option
parse.
Reported-by: Alexander Tsvetkov <alexander.tsvetkov@oracle.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 52d5a0c6bd8a89f460243ed937856354f8f253a3 upstream.
If function ovl_instantiate() returns an error, ovl_cleanup will be called
and try to remove newdentry from wdir, but the newdentry has been moved to
udir at this time. This will causes BUG_ON(victim->d_parent->d_inode !=
dir) in fs/namei.c:may_delete.
Signed-off-by: chenying <chenying.kernel@bytedance.com>
Fixes: 01b39dcc9568 ("ovl: use inode_insert5() to hash a newly created inode")
Link: https://lore.kernel.org/linux-unionfs/e6496a94-a161-dc04-c38a-d2544633acb4@bytedance.com/
Cc: <stable@vger.kernel.org> # v4.18
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d72c74197b70bc3c95152f351a568007bffa3e11 ]
smb_buf is allocated by small_smb_init_no_tc(), and buf type is
CIFS_SMALL_BUFFER, so we should use cifs_small_buf_release() to
release it in failed path.
Signed-off-by: Ding Hui <dinghui@sangfor.com.cn>
Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3736127a3aa805602b7a2ad60ec9cfce68065fbb ]
Function btrfs_lookup_data_extent calls btrfs_search_slot to verify if
the EXTENT_ITEM exists in the extent tree. btrfs_search_slot can return
values bellow zero if an error happened.
Function replay_one_extent currently checks if the search found
something (0 returned) and increments the reference, and if not, it
seems to evaluate as 'not found'.
Fix the condition by checking if the value was bellow zero and return
early.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7de875b231edb807387a81cde288aa9e1015ef9e ]
Locks have two sets of op arrays, fl_lmops for the lock manager (lockd
or nfsd), fl_ops for the filesystem. The server-side lockd code has
been setting its own fl_ops, which leads to confusion (and crashes) in
the reexport case, where the filesystem expects to be the only one
setting fl_ops.
And there's no reason for it that I can see-the lm_get/put_owner ops do
the same job.
Reported-by: Daire Byrne <daire@dneg.com>
Tested-by: Daire Byrne <daire@dneg.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d1340f80f0b8066321b499a376780da00560e857 ]
In the gfs2 withdraw sequence, the dlm protocol is unmounted with a call
to lm_unmount. After a withdraw, users are allowed to unmount the
withdrawn file system. But at that point we may still have glocks left
over that we need to free via unmount's call to gfs2_gl_hash_clear.
These glocks may have never been completed because of whatever problem
caused the withdraw (IO errors or whatever).
Before this patch, function gdlm_put_lock would still try to call into
dlm to unlock these leftover glocks, which resulted in dlm returning
-EINVAL because the lock space was abandoned. These glocks were never
freed because there was no mechanism after that to free them.
This patch adds a check to gdlm_put_lock to see if the locking protocol
was inactive (DFL_UNMOUNT flag) and if so, free the glock and not
make the invalid call into dlm.
I could have combined this "if" with the one that follows, related to
leftover glock LVBs, but I felt the code was more readable with its own
if clause.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 22e5fe2a2a279d9a6fcbdfb4dffe73821bef1c90 ]
userfaultfd assumes that the enabled features are set once and never
changed after UFFDIO_API ioctl succeeded.
However, currently, UFFDIO_API can be called concurrently from two
different threads, succeed on both threads and leave userfaultfd's
features in non-deterministic state. Theoretically, other uffd operations
(ioctl's and page-faults) can be dispatched while adversely affected by
such changes of features.
Moreover, the writes to ctx->state and ctx->features are not ordered,
which can - theoretically, again - let userfaultfd_ioctl() think that
userfaultfd API completed, while the features are still not initialized.
To avoid races, it is arguably best to get rid of ctx->state. Since there
are only 2 states, record the API initialization in ctx->features as the
uppermost bit and remove ctx->state.
Link: https://lkml.kernel.org/r/20210808020724.1022515-3-namit@vmware.com
Fixes: 9cd75c3cd4c3d ("userfaultfd: non-cooperative: add ability to report non-PF events from uffd descriptor")
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c8dc3047c48540183744f959412d44b08c5435e1 ]
We need to unmap pages from userspace process before removing pagecache
in punch_hole() like we did in f2fs_setattr().
Similar change:
commit 5e44f8c374dc ("ext4: hole-punch use truncate_pagecache_range")
Fixes: fbfa2cc58d53 ("f2fs: add file operations")
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit adf9ea89c719c1d23794e363f631e376b3ff8cbc ]
In below path, it will return ENOENT if filesystem is shutdown:
- f2fs_map_blocks
- f2fs_get_dnode_of_data
- f2fs_get_node_page
- __get_node_page
- read_node_page
- is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)
return -ENOENT
- force return value from ENOENT to 0
It should be fine for read case, since it indicates a hole condition,
and caller could use .m_next_pgofs to skip the hole and continue the
lookup.
However it may cause confusing for write case, since leaving a hole
there, and said nothing was wrong doesn't help.
There is at least one case from dax_iomap_actor() will complain that,
so fix this in prior to supporting dax in f2fs.
xfstest generic/388 reports below warning:
ubuntu godown: xfstests-induced forced shutdown of /mnt/scratch_f2fs:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 485833 at fs/dax.c:1127 dax_iomap_actor+0x339/0x370
Call Trace:
iomap_apply+0x1c4/0x7b0
? dax_iomap_rw+0x1c0/0x1c0
dax_iomap_rw+0xad/0x1c0
? dax_iomap_rw+0x1c0/0x1c0
f2fs_file_write_iter+0x5ab/0x970 [f2fs]
do_iter_readv_writev+0x273/0x2e0
do_iter_write+0xab/0x1f0
vfs_iter_write+0x21/0x40
iter_file_splice_write+0x287/0x540
do_splice+0x37c/0xa60
__x64_sys_splice+0x15f/0x3a0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
ubuntu godown: xfstests-induced forced shutdown of /mnt/scratch_f2fs:
------------[ cut here ]------------
RIP: 0010:dax_iomap_pte_fault.isra.0+0x72e/0x14a0
Call Trace:
dax_iomap_fault+0x44/0x70
f2fs_dax_huge_fault+0x155/0x400 [f2fs]
f2fs_dax_fault+0x18/0x30 [f2fs]
__do_fault+0x4e/0x120
do_fault+0x3cf/0x7a0
__handle_mm_fault+0xa8c/0xf20
? find_held_lock+0x39/0xd0
handle_mm_fault+0x1b6/0x480
do_user_addr_fault+0x320/0xcd0
? rcu_read_lock_sched_held+0x67/0xc0
exc_page_fault+0x77/0x3f0
? asm_exc_page_fault+0x8/0x30
asm_exc_page_fault+0x1e/0x30
Fixes: 83a3bfdb5a8a ("f2fs: indicate shutdown f2fs to allow unmount successfully")
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ad126ebddecbf696e0cf214ff56c7b170fa9f0f7 ]
There is a missing place we forgot to account .skipped_gc_rwsem, fix it.
Fixes: 6f8d4455060d ("f2fs: avoid fi->i_gc_rwsem[WRITE] lock in f2fs_gc")
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 35b72573e977ed6b18b094136a4fa3e0ffb13603 ]
The current hash algorithm used for hashing cookie keys is really bad,
producing almost no dispersion (after a test kernel build, ~30000 files
were split over just 18 out of the 32768 hash buckets).
Borrow the full_name_hash() hash function into fscache to do the hashing
for cookie keys and, in the future, volume keys.
I don't want to use full_name_hash() as-is because I want the hash value to
be consistent across arches and over time as the hash value produced may
get used on disk.
I can also optimise parts of it away as the key will always be a padded
array of aligned 32-bit words.
Fixes: ec0328e46d6e ("fscache: Maintain a catalogue of allocated cookies")
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/162431201844.2908479.8293647220901514696.stgit@warthog.procyon.org.uk/
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d4bf15a7ce172d186d400d606adf4f34a59130d6 ]
I recently found a case where de->name_len is 0 in f2fs_fill_dentries()
easily reproduced, and finally set the fsck flag.
Thread A Thread B
- f2fs_readdir
- f2fs_read_inline_dir
- ctx->pos = d.max
- f2fs_add_dentry
- f2fs_add_inline_entry
- do_convert_inline_dir
- f2fs_add_regular_entry
- f2fs_readdir
- f2fs_fill_dentries
- set_sbi_flag(sbi, SBI_NEED_FSCK)
Process A opens the folder, and has been reading without closing it.
During this period, Process B created a file under the folder (occupying
multiple f2fs_dir_entry, exceeding the d.max of the inline dir). After
creation, process A uses the d.max of inline dir to read it again, and
it will read that de->name_len is 0.
And Chao pointed out that w/o inline conversion, the race condition still
can happen as below:
dir_entry1: A
dir_entry2: B
dir_entry3: C
free slot: _
ctx->pos: ^
Thread A is traversing directory,
ctx-pos moves to below position after readdir() by thread A:
AAAABBBB___
^
Then thread B delete dir_entry2, and create dir_entry3.
Thread A calls readdir() to lookup dirents starting from middle
of new dirent slots as below:
AAAACCCCCC_
^
In these scenarios, the file system is not damaged, and it's hard to
avoid it. But we can bypass tagging FSCK flag if:
a) bit_pos (:= ctx->pos % d->max) is non-zero and
b) before bit_pos moves to first valid dir_entry.
Fixes: ddf06b753a85 ("f2fs: fix to trigger fsck if dirent.name_len is zero")
Signed-off-by: Yangtao Li <frank.li@vivo.com>
[Chao: clean up description]
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c45d6002ff7a322022560e9b19ad867b01fec77f ]
As Eric mentioned, bare printk{,_ratelimited} won't show which
filesystem instance these message is coming from, this patch tries
to show fs instance with sb->s_id field in all places we missed
before.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0d977e0eba234e01a60bdde27314dc21374201b3 upstream.
This crash was observed with a failed assertion on device close:
BTRFS: Transaction aborted (error -28)
WARNING: CPU: 1 PID: 3902 at fs/btrfs/extent-tree.c:2150 btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
Modules linked in: btrfs blake2b_generic libcrc32c crc32c_intel xor zstd_decompress zstd_compress xxhash lzo_compress lzo_decompress raid6_pq loop
CPU: 1 PID: 3902 Comm: kworker/u8:4 Not tainted 5.14.0-rc5-default+ #1532
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
RIP: 0010:btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
RSP: 0018:ffffb7a5452d7d80 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
RBP: ffff97834176a378 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000001 R12: ffff97835195d388
R13: 0000000005b08000 R14: ffff978385484000 R15: 000000000000016c
FS: 0000000000000000(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056190d003fe8 CR3: 000000002a81e005 CR4: 0000000000170ea0
Call Trace:
flush_space+0x197/0x2f0 [btrfs]
btrfs_async_reclaim_metadata_space+0x139/0x300 [btrfs]
process_one_work+0x262/0x5e0
worker_thread+0x4c/0x320
? process_one_work+0x5e0/0x5e0
kthread+0x144/0x170
? set_kthread_struct+0x40/0x40
ret_from_fork+0x1f/0x30
irq event stamp: 19334989
hardirqs last enabled at (19334997): [<ffffffffab0e0c87>] console_unlock+0x2b7/0x400
hardirqs last disabled at (19335006): [<ffffffffab0e0d0d>] console_unlock+0x33d/0x400
softirqs last enabled at (19334900): [<ffffffffaba0030d>] __do_softirq+0x30d/0x574
softirqs last disabled at (19334893): [<ffffffffab0721ec>] irq_exit_rcu+0x12c/0x140
---[ end trace 45939e308e0dd3c7 ]---
BTRFS: error (device vdd) in btrfs_run_delayed_refs:2150: errno=-28 No space left
BTRFS info (device vdd): forced readonly
BTRFS warning (device vdd): failed setting block group ro: -30
BTRFS info (device vdd): suspending dev_replace for unmount
assertion failed: !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state), in fs/btrfs/volumes.c:1150
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3431!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 3982 Comm: umount Tainted: G W 5.14.0-rc5-default+ #1532
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
RSP: 0018:ffffb7a5454c7db8 EFLAGS: 00010246
RAX: 0000000000000068 RBX: ffff978364b91c00 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
RBP: ffff9783523a4c00 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000001 R12: ffff9783523a4d18
R13: 0000000000000000 R14: 0000000000000004 R15: 0000000000000003
FS: 00007f61c8f42800(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056190cffa810 CR3: 0000000030b96002 CR4: 0000000000170ea0
Call Trace:
btrfs_close_one_device.cold+0x11/0x55 [btrfs]
close_fs_devices+0x44/0xb0 [btrfs]
btrfs_close_devices+0x48/0x160 [btrfs]
generic_shutdown_super+0x69/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x2c/0xa0
cleanup_mnt+0x144/0x1b0
task_work_run+0x59/0xa0
exit_to_user_mode_loop+0xe7/0xf0
exit_to_user_mode_prepare+0xaf/0xf0
syscall_exit_to_user_mode+0x19/0x50
do_syscall_64+0x4a/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
This happens when close_ctree is called while a dev_replace hasn't
completed. In close_ctree, we suspend the dev_replace, but keep the
replace target around so that we can resume the dev_replace procedure
when we mount the root again. This is the call trace:
close_ctree():
btrfs_dev_replace_suspend_for_unmount();
btrfs_close_devices():
btrfs_close_fs_devices():
btrfs_close_one_device():
ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
&device->dev_state));
However, since the replace target sticks around, there is a device
with BTRFS_DEV_STATE_REPLACE_TGT set on close, and we fail the
assertion in btrfs_close_one_device.
To fix this, if we come across the replace target device when
closing, we should properly reset it back to allocation state. This
fix also ensures that if a non-target device has a corrupted state and
has the BTRFS_DEV_STATE_REPLACE_TGT bit set, the assertion will still
catch the error.
Reported-by: David Sterba <dsterba@suse.com>
Fixes: b2a616676839 ("btrfs: fix rw device counting in __btrfs_free_extra_devids")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ac98141d140444fe93e26471d3074c603b70e2ca upstream.
We use the async_delalloc_pages mechanism to make sure that we've
completed our async work before trying to continue our delalloc
flushing. The reason for this is we need to see any ordered extents
that were created by our delalloc flushing. However we're waking up
before we do the submit work, which is before we create the ordered
extents. This is a pretty wide race window where we could potentially
think there are no ordered extents and thus exit shrink_delalloc
prematurely. Fix this by waking us up after we've done the work to
create ordered extents.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 59bda8ecee2ffc6a602b7bf2b9e43ca669cdbdcd upstream.
Callers of fuse_writeback_range() assume that the file is ready for
modification by the server in the supplied byte range after the call
returns.
If there's a write that extends the file beyond the end of the supplied
range, then the file needs to be extended to at least the end of the range,
but currently that's not done.
There are at least two cases where this can cause problems:
- copy_file_range() will return short count if the file is not extended
up to end of the source range.
- FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE will not extend the file,
hence the region may not be fully allocated.
Fix by flushing writes from the start of the range up to the end of the
file. This could be optimized if the writes are non-extending, etc, but
it's probably not worth the trouble.
Fixes: a2bc92362941 ("fuse: fix copy_file_range() in the writeback case")
Fixes: 6b1bdb56b17c ("fuse: allow fallocate(FALLOC_FL_ZERO_RANGE)")
Cc: <stable@vger.kernel.org> # v5.2
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 76224355db7570cbe6b6f75c8929a1558828dd55 upstream.
fuse_finish_open() will be called with FUSE_NOWRITE in case of atomic
O_TRUNC. This can deadlock with fuse_wait_on_page_writeback() in
fuse_launder_page() triggered by invalidate_inode_pages2().
Fix by replacing invalidate_inode_pages2() in fuse_finish_open() with a
truncate_pagecache() call. This makes sense regardless of FOPEN_KEEP_CACHE
or fc->writeback cache, so do it unconditionally.
Reported-by: Xie Yongji <xieyongji@bytedance.com>
Reported-and-tested-by: syzbot+bea44a5189836d956894@syzkaller.appspotmail.com
Fixes: e4648309b85a ("fuse: truncate pending writes on O_TRUNC")
Cc: <stable@vger.kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f980d055a0f858d73d9467bb0b570721bbfcdfb8 ]
strlcpy() reads the entire source buffer first. This read may exceed the
destination size limit. This is both inefficient and can lead to linear
read overflows if a source string is not NUL-terminated.
Also, the strnlen() call does not avoid the read overflow in the strlcpy
function when a not NUL-terminated string is passed.
So, replace this block by a call to kstrndup() that avoids this type of
overflow and does the same.
Fixes: 066ce6899484d ("cifs: rename cifs_strlcpy_to_host and make it use new functions")
Signed-off-by: Len Baker <len.baker@gmx.com>
Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 36ca7943ac18aebf8aad4c50829eb2ea5ec847df ]
When the max pages (last_page in the swap header + 1) is smaller than
the total pages (inode size) of the swapfile, iomap_swapfile_activate
overwrites sis->max with total pages.
However, frontswap_map is a swap page state bitmap allocated using the
initial sis->max page count read from the swap header. If swapfile
activation increases sis->max, it's possible for the frontswap code to
walk off the end of the bitmap, thereby corrupting kernel memory.
[djwong: modify the description a bit; the original paragraph reads:
"However, frontswap_map is allocated using max pages. When test and clear
the sis offset, which is larger than max pages, of frontswap_map in
__frontswap_invalidate_page(), neighbors of frontswap_map may be
overwritten, i.e., slab is polluted."
Note also that this bug resulted in a behavioral change: activating a
swap file that was formatted and later extended results in all pages
being activated, not the number of pages recorded in the swap header.]
This fixes the issue by considering the limitation of max pages of swap
info in iomap_swapfile_add_extent().
To reproduce the case, compile kernel with slub RED ZONE, then run test:
$ sudo stress-ng -a 1 -x softlockup,resources -t 72h --metrics --times \
--verify -v -Y /root/tmpdir/stress-ng/stress-statistic-12.yaml \
--log-file /root/tmpdir/stress-ng/stress-logfile-12.txt \
--temp-path /root/tmpdir/stress-ng/
We'll get the error log as below:
[ 1151.015141] =============================================================================
[ 1151.016489] BUG kmalloc-16 (Not tainted): Right Redzone overwritten
[ 1151.017486] -----------------------------------------------------------------------------
[ 1151.017486]
[ 1151.018997] Disabling lock debugging due to kernel taint
[ 1151.019873] INFO: 0x0000000084e43932-0x0000000098d17cae @offset=7392. First byte 0x0 instead of 0xcc
[ 1151.021303] INFO: Allocated in __do_sys_swapon+0xcf6/0x1170 age=43417 cpu=9 pid=3816
[ 1151.022538] __slab_alloc+0xe/0x20
[ 1151.023069] __kmalloc_node+0xfd/0x4b0
[ 1151.023704] __do_sys_swapon+0xcf6/0x1170
[ 1151.024346] do_syscall_64+0x33/0x40
[ 1151.024925] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 1151.025749] INFO: Freed in put_cred_rcu+0xa1/0xc0 age=43424 cpu=3 pid=2041
[ 1151.026889] kfree+0x276/0x2b0
[ 1151.027405] put_cred_rcu+0xa1/0xc0
[ 1151.027949] rcu_do_batch+0x17d/0x410
[ 1151.028566] rcu_core+0x14e/0x2b0
[ 1151.029084] __do_softirq+0x101/0x29e
[ 1151.029645] asm_call_irq_on_stack+0x12/0x20
[ 1151.030381] do_softirq_own_stack+0x37/0x40
[ 1151.031037] do_softirq.part.15+0x2b/0x30
[ 1151.031710] __local_bh_enable_ip+0x4b/0x50
[ 1151.032412] copy_fpstate_to_sigframe+0x111/0x360
[ 1151.033197] __setup_rt_frame+0xce/0x480
[ 1151.033809] arch_do_signal+0x1a3/0x250
[ 1151.034463] exit_to_user_mode_prepare+0xcf/0x110
[ 1151.035242] syscall_exit_to_user_mode+0x27/0x190
[ 1151.035970] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 1151.036795] INFO: Slab 0x000000003b9de4dc objects=44 used=9 fp=0x00000000539e349e flags=0xfffffc0010201
[ 1151.038323] INFO: Object 0x000000004855ba01 @offset=7376 fp=0x0000000000000000
[ 1151.038323]
[ 1151.039683] Redzone 000000008d0afd3d: cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc ................
[ 1151.041180] Object 000000004855ba01: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 1151.042714] Redzone 0000000084e43932: 00 00 00 c0 cc cc cc cc ........
[ 1151.044120] Padding 000000000864c042: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZZZZZ
[ 1151.045615] CPU: 5 PID: 3816 Comm: stress-ng Tainted: G B 5.10.50+ #7
[ 1151.046846] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
[ 1151.048633] Call Trace:
[ 1151.049072] dump_stack+0x57/0x6a
[ 1151.049585] check_bytes_and_report+0xed/0x110
[ 1151.050320] check_object+0x1eb/0x290
[ 1151.050924] ? __x64_sys_swapoff+0x39a/0x540
[ 1151.051646] free_debug_processing+0x151/0x350
[ 1151.052333] __slab_free+0x21a/0x3a0
[ 1151.052938] ? _cond_resched+0x2d/0x40
[ 1151.053529] ? __vunmap+0x1de/0x220
[ 1151.054139] ? __x64_sys_swapoff+0x39a/0x540
[ 1151.054796] ? kfree+0x276/0x2b0
[ 1151.055307] kfree+0x276/0x2b0
[ 1151.055832] __x64_sys_swapoff+0x39a/0x540
[ 1151.056466] do_syscall_64+0x33/0x40
[ 1151.057084] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 1151.057866] RIP: 0033:0x150340b0ffb7
[ 1151.058481] Code: Unable to access opcode bytes at RIP 0x150340b0ff8d.
[ 1151.059537] RSP: 002b:00007fff7f4ee238 EFLAGS: 00000246 ORIG_RAX: 00000000000000a8
[ 1151.060768] RAX: ffffffffffffffda RBX: 00007fff7f4ee66c RCX: 0000150340b0ffb7
[ 1151.061904] RDX: 000000000000000a RSI: 0000000000018094 RDI: 00007fff7f4ee860
[ 1151.063033] RBP: 00007fff7f4ef980 R08: 0000000000000000 R09: 0000150340a672bd
[ 1151.064135] R10: 00007fff7f4edca0 R11: 0000000000000246 R12: 0000000000018094
[ 1151.065253] R13: 0000000000000005 R14: 000000000160d930 R15: 00007fff7f4ee66c
[ 1151.066413] FIX kmalloc-16: Restoring 0x0000000084e43932-0x0000000098d17cae=0xcc
[ 1151.066413]
[ 1151.067890] FIX kmalloc-16: Object at 0x000000004855ba01 not freed
Fixes: 67482129cdab ("iomap: add a swapfile activation function")
Fixes: a45c0eccc564 ("iomap: move the swapfile code into a separate file")
Signed-off-by: Gang Deng <gavin.dg@linux.alibaba.com>
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f7104cc1a9159cd0d3e8526cb638ae0301de4b61 ]
This should use the network-namespace-wide client_lock, not the
per-client cl_lock.
You shouldn't see any bugs unless you're actually using the
forced-expiry interface introduced by 89c905beccbb.
Fixes: 89c905beccbb "nfsd: allow forced expiration of NFSv4 clients"
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cd2d644ddba183ec7b451b7c20d5c7cc06fcf0d7 ]
After calling vfs_test_lock() the pointer to a conflicting lock can be
returned, and that lock is not guarunteed to be owned by nlm. In that
case, we cannot cast it to struct nlm_lockowner. Instead return the pid
of that conflicting lock.
Fixes: 646d73e91b42 ("lockd: Show pid of lockd for remote locks")
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 112cedc8e600b668688eb809bf11817adec58ddc ]
If a kernel module gets unloaded then it printed report about a leak before
commit 275678e7a9be ("debugfs: Check module state before warning in
{full/open}_proxy_open()"). An additional check was added in this commit to
avoid this printing. But it was forgotten that the function must return an
error in this case because it was not actually opened.
As result, the systems started to crash or to hang when a module was
unloaded while something was trying to open a file.
Fixes: 275678e7a9be ("debugfs: Check module state before warning in {full/open}_proxy_open()")
Cc: Taehee Yoo <ap420073@gmail.com>
Reported-by: Mário Lopes <ml@simonwunderlich.de>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Link: https://lore.kernel.org/r/20210802162444.7848-1-sven@narfation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 58bc6d1be2f3b0ceecb6027dfa17513ec6aa2abb ]
When parsing the ExtendedAttr data, malicous or corrupt attribute length
could cause kernel hangs and buffer overruns in some special cases.
Link: https://lore.kernel.org/r/20210822093332.25234-1-stian.skjelstad@gmail.com
Signed-off-by: Stian Skjelstad <stian.skjelstad@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2f488f698fda820f8e6fa0407630154eceb145d6 ]
There is an existing lock hierarchy of
&dev->event_lock --> &fasync_struct.fa_lock --> &f->f_owner.lock
from the following call chain:
input_inject_event():
spin_lock_irqsave(&dev->event_lock,...);
input_handle_event():
input_pass_values():
input_to_handler():
evdev_events():
evdev_pass_values():
spin_lock(&client->buffer_lock);
__pass_event():
kill_fasync():
kill_fasync_rcu():
read_lock(&fa->fa_lock);
send_sigio():
read_lock_irqsave(&fown->lock,...);
&dev->event_lock is HARDIRQ-safe, so interrupts have to be disabled
while grabbing &fasync_struct.fa_lock, otherwise we invert the lock
hierarchy. However, since kill_fasync which calls kill_fasync_rcu is
an exported symbol, it may not necessarily be called with interrupts
disabled.
As kill_fasync_rcu may be called with interrupts disabled (for
example, in the call chain above), we replace calls to
read_lock/read_unlock on &fasync_struct.fa_lock in kill_fasync_rcu
with read_lock_irqsave/read_unlock_irqrestore.
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 28ce50f8d96ec9035f60c9348294ea26b94db944 ]
Currently iocharset=utf8 mount option is broken. To use UTF-8 as iocharset,
it is required to use utf8 mount option.
Fix iocharset=utf8 mount option to use be equivalent to the utf8 mount
option.
If UTF-8 as iocharset is used then s_nls_iocharset is set to NULL. So
simplify code around, remove s_utf8 field as to distinguish between UTF-8
and non-UTF-8 it is needed just to check if s_nls_iocharset is set to NULL
or not.
Link: https://lore.kernel.org/r/20210808162453.1653-5-pali@kernel.org
Signed-off-by: Pali Rohár <pali@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b645333443712d2613e4e863f81090d5dc509657 ]
Currently iocharset=utf8 mount option is broken. To use UTF-8 as iocharset,
it is required to use utf8 mount option.
Fix iocharset=utf8 mount option to use be equivalent to the utf8 mount
option.
If UTF-8 as iocharset is used then s_nls_map is set to NULL. So simplify
code around, remove UDF_FLAG_NLS_MAP and UDF_FLAG_UTF8 flags as to
distinguish between UTF-8 and non-UTF-8 it is needed just to check if
s_nls_map set to NULL or not.
Link: https://lore.kernel.org/r/20210808162453.1653-4-pali@kernel.org
Signed-off-by: Pali Rohár <pali@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 781d2a9a2fc7d0be53a072794dc03ef6de770f3d ]
We were checking validity of LVID entries only when getting
implementation use information from LVID in udf_sb_lvidiu(). However if
the LVID is suitably corrupted, it can cause problems also to code such
as udf_count_free() which doesn't use udf_sb_lvidiu(). So check validity
of LVID already when loading it from the disk and just disable LVID
altogether when it is not valid.
Reported-by: syzbot+7fbfe5fed73ebb675748@syzkaller.appspotmail.com
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4e9655763b82a91e4c341835bb504a2b1590f984 upstream.
This reverts commit f2165627319ffd33a6217275e5690b1ab5c45763.
[BUG]
It's no longer possible to create compressed inline extent after commit
f2165627319f ("btrfs: compression: don't try to compress if we don't
have enough pages").
[CAUSE]
For compression code, there are several possible reasons we have a range
that needs to be compressed while it's no more than one page.
- Compressed inline write
The data is always smaller than one sector and the test lacks the
condition to properly recognize a non-inline extent.
- Compressed subpage write
For the incoming subpage compressed write support, we require page
alignment of the delalloc range.
And for 64K page size, we can compress just one page into smaller
sectors.
For those reasons, the requirement for the data to be more than one page
is not correct, and is already causing regression for compressed inline
data writeback. The idea of skipping one page to avoid wasting CPU time
could be revisited in the future.
[FIX]
Fix it by reverting the offending commit.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/afa2742.c084f5d6.17b6b08dffc@tnonline.net
Fixes: f2165627319f ("btrfs: compression: don't try to compress if we don't have enough pages")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 064c734986011390b4d111f1a99372b7f26c3850 upstream.
The stat() family of syscalls report the wrong size for encrypted
symlinks, which has caused breakage in several userspace programs.
Fix this by calling fscrypt_symlink_getattr() after ubifs_getattr() for
encrypted symlinks. This function computes the correct size by reading
and decrypting the symlink target (if it's not already cached).
For more details, see the commit which added fscrypt_symlink_getattr().
Fixes: ca7f85be8d6c ("ubifs: Add support for encrypted symlinks")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210702065350.209646-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 461b43a8f92e68e96c4424b31e15f2b35f1bbfa9 upstream.
The stat() family of syscalls report the wrong size for encrypted
symlinks, which has caused breakage in several userspace programs.
Fix this by calling fscrypt_symlink_getattr() after f2fs_getattr() for
encrypted symlinks. This function computes the correct size by reading
and decrypting the symlink target (if it's not already cached).
For more details, see the commit which added fscrypt_symlink_getattr().
Fixes: cbaf042a3cc6 ("f2fs crypto: add symlink encryption")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210702065350.209646-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8c4bca10ceafc43b1ca0a9fab5fa27e13cbce99e upstream.
The stat() family of syscalls report the wrong size for encrypted
symlinks, which has caused breakage in several userspace programs.
Fix this by calling fscrypt_symlink_getattr() after ext4_getattr() for
encrypted symlinks. This function computes the correct size by reading
and decrypting the symlink target (if it's not already cached).
For more details, see the commit which added fscrypt_symlink_getattr().
Fixes: f348c252320b ("ext4 crypto: add symlink encryption")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210702065350.209646-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d18760560593e5af921f51a8c9b64b6109d634c2 upstream.
Add a helper function fscrypt_symlink_getattr() which will be called
from the various filesystems' ->getattr() methods to read and decrypt
the target of encrypted symlinks in order to report the correct st_size.
Detailed explanation:
As required by POSIX and as documented in various man pages, st_size for
a symlink is supposed to be the length of the symlink target.
Unfortunately, st_size has always been wrong for encrypted symlinks
because st_size is populated from i_size from disk, which intentionally
contains the length of the encrypted symlink target. That's slightly
greater than the length of the decrypted symlink target (which is the
symlink target that userspace usually sees), and usually won't match the
length of the no-key encoded symlink target either.
This hadn't been fixed yet because reporting the correct st_size would
require reading the symlink target from disk and decrypting or encoding
it, which historically has been considered too heavyweight to do in
->getattr(). Also historically, the wrong st_size had only broken a
test (LTP lstat03) and there were no known complaints from real users.
(This is probably because the st_size of symlinks isn't used too often,
and when it is, typically it's for a hint for what buffer size to pass
to readlink() -- which a slightly-too-large size still works for.)
However, a couple things have changed now. First, there have recently
been complaints about the current behavior from real users:
- Breakage in rpmbuild:
https://github.com/rpm-software-management/rpm/issues/1682https://github.com/google/fscrypt/issues/305
- Breakage in toybox cpio:
https://www.mail-archive.com/toybox@lists.landley.net/msg07193.html
- Breakage in libgit2: https://issuetracker.google.com/issues/189629152
(on Android public issue tracker, requires login)
Second, we now cache decrypted symlink targets in ->i_link. Therefore,
taking the performance hit of reading and decrypting the symlink target
in ->getattr() wouldn't be as big a deal as it used to be, since usually
it will just save having to do the same thing later.
Also note that eCryptfs ended up having to read and decrypt symlink
targets in ->getattr() as well, to fix this same issue; see
commit 3a60a1686f0d ("eCryptfs: Decrypt symlink target for stat size").
So, let's just bite the bullet, and read and decrypt the symlink target
in ->getattr() in order to report the correct st_size. Add a function
fscrypt_symlink_getattr() which the filesystems will call to do this.
(Alternatively, we could store the decrypted size of symlinks on-disk.
But there isn't a great place to do so, and encryption is meant to hide
the original size to some extent; that property would be lost.)
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210702065350.209646-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a54c4613dac1500b40e4ab55199f7c51f028e848 upstream.
The location of the system.data extended attribute can change whenever
xattr_sem is not taken. So we need to recalculate the i_inline_off
field since it mgiht have changed between ext4_write_begin() and
ext4_write_end().
This means that caching i_inline_off is probably not helpful, so in
the long run we should probably get rid of it and shrink the in-memory
ext4 inode slightly, but let's fix the race the simple way for now.
Cc: stable@kernel.org
Fixes: f19d5870cbf72 ("ext4: add normal write support for inline data")
Reported-by: syzbot+13146364637c7363a7de@syzkaller.appspotmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e4571b8c5e9ffa1e85c0c671995bd4dcc5c75091 upstream.
[BUG]
It's easy to trigger NULL pointer dereference, just by removing a
non-existing device id:
# mkfs.btrfs -f -m single -d single /dev/test/scratch1 \
/dev/test/scratch2
# mount /dev/test/scratch1 /mnt/btrfs
# btrfs device remove 3 /mnt/btrfs
Then we have the following kernel NULL pointer dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 9 PID: 649 Comm: btrfs Not tainted 5.14.0-rc3-custom+ #35
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:btrfs_rm_device+0x4de/0x6b0 [btrfs]
btrfs_ioctl+0x18bb/0x3190 [btrfs]
? lock_is_held_type+0xa5/0x120
? find_held_lock.constprop.0+0x2b/0x80
? do_user_addr_fault+0x201/0x6a0
? lock_release+0xd2/0x2d0
? __x64_sys_ioctl+0x83/0xb0
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
[CAUSE]
Commit a27a94c2b0c7 ("btrfs: Make btrfs_find_device_by_devspec return
btrfs_device directly") moves the "missing" device path check into
btrfs_rm_device().
But btrfs_rm_device() itself can have case where it only receives
@devid, with NULL as @device_path.
In that case, calling strcmp() on NULL will trigger the NULL pointer
dereference.
Before that commit, we handle the "missing" case inside
btrfs_find_device_by_devspec(), which will not check @device_path at all
if @devid is provided, thus no way to trigger the bug.
[FIX]
Before calling strcmp(), also make sure @device_path is not NULL.
Fixes: a27a94c2b0c7 ("btrfs: Make btrfs_find_device_by_devspec return btrfs_device directly")
CC: stable@vger.kernel.org # 5.4+
Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bc0939fcfab0d7efb2ed12896b1af3d819954a14 upstream.
We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.
1) We are at transaction N;
2) Inode I was previously fsynced in the current transaction so it has:
inode->logged_trans set to N;
3) The inode's root currently has:
root->log_transid set to 1
root->last_log_commit set to 0
Which means only one log transaction was committed to far, log
transaction 0. When a log tree is created we set ->log_transid and
->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());
4) One more range of pages is dirtied in inode I;
5) Some task A starts an fsync against some other inode J (same root), and
so it joins log transaction 1.
Before task A calls btrfs_sync_log()...
6) Task B starts an fsync against inode I, which currently has the full
sync flag set, so it starts delalloc and waits for the ordered extent
to complete before calling btrfs_inode_in_log() at btrfs_sync_file();
7) During ordered extent completion we have btrfs_update_inode() called
against inode I, which in turn calls btrfs_set_inode_last_trans(),
which does the following:
spin_lock(&inode->lock);
inode->last_trans = trans->transaction->transid;
inode->last_sub_trans = inode->root->log_transid;
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
So ->last_trans is set to N and ->last_sub_trans set to 1.
But before setting ->last_log_commit...
8) Task A is at btrfs_sync_log():
- it increments root->log_transid to 2
- starts writeback for all log tree extent buffers
- waits for the writeback to complete
- writes the super blocks
- updates root->last_log_commit to 1
It's a lot of slow steps between updating root->log_transid and
root->last_log_commit;
9) The task doing the ordered extent completion, currently at
btrfs_set_inode_last_trans(), then finally runs:
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
Which results in inode->last_log_commit being set to 1.
The ordered extent completes;
10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
true because we have all the following conditions met:
inode->logged_trans == N which matches fs_info->generation &&
inode->last_subtrans (1) <= inode->last_log_commit (1) &&
inode->last_subtrans (1) <= root->last_log_commit (1) &&
list inode->extent_tree.modified_extents is empty
And as a consequence we return without logging the inode, so the
existing logged version of the inode does not point to the extent
that was written after the previous fsync.
It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.
However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
{
(...)
BTRFS_I(inode)->last_trans = fs_info->generation;
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
(...)
So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.
So fix this in two different ways:
1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
value of ->last_sub_trans minus 1;
2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
like we do for buffered and direct writes at btrfs_file_write_iter(),
which is all we need to make sure multiple writes and fsyncs to an
inode in the same transaction never result in an fsync missing that
the inode changed and needs to be logged. Turn this into a helper
function and use it both at btrfs_page_mkwrite() and at
btrfs_file_write_iter() - this also fixes the problem that at
btrfs_page_mkwrite() we were setting those fields without the
protection of the inode's spinlock.
This is an extremely unlikely race to happen in practice.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 9066e5cfb73cdbcdbb49e87999482ab615e9fc76 ]
Recently we found an issue on our production environment that when memcg
oom is triggered the oom killer doesn't chose the process with largest
resident memory but chose the first scanned process. Note that all
processes in this memcg have the same oom_score_adj, so the oom killer
should chose the process with largest resident memory.
Bellow is part of the oom info, which is enough to analyze this issue.
[7516987.983223] memory: usage 16777216kB, limit 16777216kB, failcnt 52843037
[7516987.983224] memory+swap: usage 16777216kB, limit 9007199254740988kB, failcnt 0
[7516987.983225] kmem: usage 301464kB, limit 9007199254740988kB, failcnt 0
[...]
[7516987.983293] [ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name
[7516987.983510] [ 5740] 0 5740 257 1 32768 0 -998 pause
[7516987.983574] [58804] 0 58804 4594 771 81920 0 -998 entry_point.bas
[7516987.983577] [58908] 0 58908 7089 689 98304 0 -998 cron
[7516987.983580] [58910] 0 58910 16235 5576 163840 0 -998 supervisord
[7516987.983590] [59620] 0 59620 18074 1395 188416 0 -998 sshd
[7516987.983594] [59622] 0 59622 18680 6679 188416 0 -998 python
[7516987.983598] [59624] 0 59624 1859266 5161 548864 0 -998 odin-agent
[7516987.983600] [59625] 0 59625 707223 9248 983040 0 -998 filebeat
[7516987.983604] [59627] 0 59627 416433 64239 774144 0 -998 odin-log-agent
[7516987.983607] [59631] 0 59631 180671 15012 385024 0 -998 python3
[7516987.983612] [61396] 0 61396 791287 3189 352256 0 -998 client
[7516987.983615] [61641] 0 61641 1844642 29089 946176 0 -998 client
[7516987.983765] [ 9236] 0 9236 2642 467 53248 0 -998 php_scanner
[7516987.983911] [42898] 0 42898 15543 838 167936 0 -998 su
[7516987.983915] [42900] 1000 42900 3673 867 77824 0 -998 exec_script_vr2
[7516987.983918] [42925] 1000 42925 36475 19033 335872 0 -998 python
[7516987.983921] [57146] 1000 57146 3673 848 73728 0 -998 exec_script_J2p
[7516987.983925] [57195] 1000 57195 186359 22958 491520 0 -998 python2
[7516987.983928] [58376] 1000 58376 275764 14402 290816 0 -998 rosmaster
[7516987.983931] [58395] 1000 58395 155166 4449 245760 0 -998 rosout
[7516987.983935] [58406] 1000 58406 18285584 3967322 37101568 0 -998 data_sim
[7516987.984221] oom-kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=3aa16c9482ae3a6f6b78bda68a55d32c87c99b985e0f11331cddf05af6c4d753,mems_allowed=0-1,oom_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184,task_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184/1f246a3eeea8f70bf91141eeaf1805346a666e225f823906485ea0b6c37dfc3d,task=pause,pid=5740,uid=0
[7516987.984254] Memory cgroup out of memory: Killed process 5740 (pause) total-vm:1028kB, anon-rss:4kB, file-rss:0kB, shmem-rss:0kB
[7516988.092344] oom_reaper: reaped process 5740 (pause), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
We can find that the first scanned process 5740 (pause) was killed, but
its rss is only one page. That is because, when we calculate the oom
badness in oom_badness(), we always ignore the negtive point and convert
all of these negtive points to 1. Now as oom_score_adj of all the
processes in this targeted memcg have the same value -998, the points of
these processes are all negtive value. As a result, the first scanned
process will be killed.
The oom_socre_adj (-998) in this memcg is set by kubelet, because it is a
a Guaranteed pod, which has higher priority to prevent from being killed
by system oom.
To fix this issue, we should make the calculation of oom point more
accurate. We can achieve it by convert the chosen_point from 'unsigned
long' to 'long'.
[cai@lca.pw: reported a issue in the previous version]
[mhocko@suse.com: fixed the issue reported by Cai]
[mhocko@suse.com: add the comment in proc_oom_score()]
[laoar.shao@gmail.com: v3]
Link: http://lkml.kernel.org/r/1594396651-9931-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/1594309987-9919-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 580c610429b3994e8db24418927747cf28443cde ]
One error path can result in release_dentry_name_snapshot() being called
before "name" was initialized by take_dentry_name_snapshot().
Fix by moving the release_dentry_name_snapshot() to immediately after the
only use.
Reported-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fdd92b64d15bc4aec973caa25899afd782402e68 ]
We've had CONFIG_MANDATORY_FILE_LOCKING since 2015 and a lot of distros
have disabled it. Warn the stragglers that still use "-o mand" that
we'll be dropping support for that mount option.
Cc: stable@vger.kernel.org
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1a980b8cbf0059a5308eea61522f232fd03002e2 ]
Now overlayfs falls back to use default file splice read
and write, which is not compatiple with overlayfs, returning
EFAULT. xfstests generic/591 can reproduce part of this.
Tested this patch with xfstests auto group tests.
Signed-off-by: Murphy Zhou <jencce.kernel@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 175efa81feb8405676e0136d97b10380179c92e0 upstream.
ext4 supports max number of logical blocks in a file to be 0xffffffff.
(This is since ext4_extent's ee_block is __le32).
This means that EXT4_MAX_LOGICAL_BLOCK should be 0xfffffffe (starting
from 0 logical offset). This patch fixes this.
The issue was seen when ext4 moved to iomap_fiemap API and when
overlayfs was mounted on top of ext4. Since overlayfs was missing
filemap_check_ranges(), so it could pass a arbitrary huge length which
lead to overflow of map.m_len logic.
This patch fixes that.
Fixes: d3b6f23f7167 ("ext4: move ext4_fiemap to use iomap framework")
Reported-by: syzbot+77fa5bdb65cc39711820@syzkaller.appspotmail.com
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20200505154324.3226743-2-hch@lst.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: George Kennedy <george.kennedy@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8434ffe71c874b9c4e184b88d25de98c2bf5fe3f upstream.
There is a race in ceph_put_snap_realm. The change to the nref and the
spinlock acquisition are not done atomically, so you could decrement
nref, and before you take the spinlock, the nref is incremented again.
At that point, you end up putting it on the empty list when it
shouldn't be there. Eventually __cleanup_empty_realms runs and frees
it when it's still in-use.
Fix this by protecting the 1->0 transition with atomic_dec_and_lock,
and just drop the spinlock if we can get the rwsem.
Because these objects can also undergo a 0->1 refcount transition, we
must protect that change as well with the spinlock. Increment locklessly
unless the value is at 0, in which case we take the spinlock, increment
and then take it off the empty list if it did the 0->1 transition.
With these changes, I'm removing the dout() messages from these
functions, as well as in __put_snap_realm. They've always been racy, and
it's better to not print values that may be misleading.
Cc: stable@vger.kernel.org
URL: https://tracker.ceph.com/issues/46419
Reported-by: Mark Nelson <mnelson@redhat.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Luis Henriques <lhenriques@suse.de>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit df2c0cb7f8e8c83e495260ad86df8c5da947f2a7 upstream.
They both say that the snap_rwsem must be held for write, but I don't
see any real reason for it, and it's not currently always called that
way.
The lookup is just walking the rbtree, so holding it for read should be
fine there. The "get" is bumping the refcount and (possibly) removing
it from the empty list. I see no need to hold the snap_rwsem for write
for that.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bf2ba432213fade50dd39f2e348085b758c0726e upstream.
Function ceph_check_delayed_caps() is called from the mdsc->delayed_work
workqueue and it can be kept looping for quite some time if caps keep
being added back to the mdsc->cap_delay_list. This may result in the
watchdog tainting the kernel with the softlockup flag.
This patch breaks this loop if the caps have been recently (i.e. during
the loop execution). Any new caps added to the list will be handled in
the next run.
Also, allow schedule_delayed() callers to explicitly set the delay value
instead of defaulting to 5s, so we can ensure that it runs soon
afterward if it looks like there is more work.
Cc: stable@vger.kernel.org
URL: https://tracker.ceph.com/issues/46284
Signed-off-by: Luis Henriques <lhenriques@suse.de>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4d14c5cde5c268a2bc26addecf09489cb953ef64 upstream
Calling btrfs_qgroup_reserve_meta_prealloc from
btrfs_delayed_inode_reserve_metadata can result in flushing delalloc
while holding a transaction and delayed node locks. This is deadlock
prone. In the past multiple commits:
* ae5e070eaca9 ("btrfs: qgroup: don't try to wait flushing if we're
already holding a transaction")
* 6f23277a49e6 ("btrfs: qgroup: don't commit transaction when we already
hold the handle")
Tried to solve various aspects of this but this was always a
whack-a-mole game. Unfortunately those 2 fixes don't solve a deadlock
scenario involving btrfs_delayed_node::mutex. Namely, one thread
can call btrfs_dirty_inode as a result of reading a file and modifying
its atime:
PID: 6963 TASK: ffff8c7f3f94c000 CPU: 2 COMMAND: "test"
#0 __schedule at ffffffffa529e07d
#1 schedule at ffffffffa529e4ff
#2 schedule_timeout at ffffffffa52a1bdd
#3 wait_for_completion at ffffffffa529eeea <-- sleeps with delayed node mutex held
#4 start_delalloc_inodes at ffffffffc0380db5
#5 btrfs_start_delalloc_snapshot at ffffffffc0393836
#6 try_flush_qgroup at ffffffffc03f04b2
#7 __btrfs_qgroup_reserve_meta at ffffffffc03f5bb6 <-- tries to reserve space and starts delalloc inodes.
#8 btrfs_delayed_update_inode at ffffffffc03e31aa <-- acquires delayed node mutex
#9 btrfs_update_inode at ffffffffc0385ba8
#10 btrfs_dirty_inode at ffffffffc038627b <-- TRANSACTIION OPENED
#11 touch_atime at ffffffffa4cf0000
#12 generic_file_read_iter at ffffffffa4c1f123
#13 new_sync_read at ffffffffa4ccdc8a
#14 vfs_read at ffffffffa4cd0849
#15 ksys_read at ffffffffa4cd0bd1
#16 do_syscall_64 at ffffffffa4a052eb
#17 entry_SYSCALL_64_after_hwframe at ffffffffa540008c
This will cause an asynchronous work to flush the delalloc inodes to
happen which can try to acquire the same delayed_node mutex:
PID: 455 TASK: ffff8c8085fa4000 CPU: 5 COMMAND: "kworker/u16:30"
#0 __schedule at ffffffffa529e07d
#1 schedule at ffffffffa529e4ff
#2 schedule_preempt_disabled at ffffffffa529e80a
#3 __mutex_lock at ffffffffa529fdcb <-- goes to sleep, never wakes up.
#4 btrfs_delayed_update_inode at ffffffffc03e3143 <-- tries to acquire the mutex
#5 btrfs_update_inode at ffffffffc0385ba8 <-- this is the same inode that pid 6963 is holding
#6 cow_file_range_inline.constprop.78 at ffffffffc0386be7
#7 cow_file_range at ffffffffc03879c1
#8 btrfs_run_delalloc_range at ffffffffc038894c
#9 writepage_delalloc at ffffffffc03a3c8f
#10 __extent_writepage at ffffffffc03a4c01
#11 extent_write_cache_pages at ffffffffc03a500b
#12 extent_writepages at ffffffffc03a6de2
#13 do_writepages at ffffffffa4c277eb
#14 __filemap_fdatawrite_range at ffffffffa4c1e5bb
#15 btrfs_run_delalloc_work at ffffffffc0380987 <-- starts running delayed nodes
#16 normal_work_helper at ffffffffc03b706c
#17 process_one_work at ffffffffa4aba4e4
#18 worker_thread at ffffffffa4aba6fd
#19 kthread at ffffffffa4ac0a3d
#20 ret_from_fork at ffffffffa54001ff
To fully address those cases the complete fix is to never issue any
flushing while holding the transaction or the delayed node lock. This
patch achieves it by calling qgroup_reserve_meta directly which will
either succeed without flushing or will fail and return -EDQUOT. In the
latter case that return value is going to be propagated to
btrfs_dirty_inode which will fallback to start a new transaction. That's
fine as the majority of time we expect the inode will have
BTRFS_DELAYED_NODE_INODE_DIRTY flag set which will result in directly
copying the in-memory state.
Fixes: c53e9653605d ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6f23277a49e68f8a9355385c846939ad0b1261e7 upstream
[BUG]
When running the following script, btrfs will trigger an ASSERT():
#/bin/bash
mkfs.btrfs -f $dev
mount $dev $mnt
xfs_io -f -c "pwrite 0 1G" $mnt/file
sync
btrfs quota enable $mnt
btrfs quota rescan -w $mnt
# Manually set the limit below current usage
btrfs qgroup limit 512M $mnt $mnt
# Crash happens
touch $mnt/file
The dmesg looks like this:
assertion failed: refcount_read(&trans->use_count) == 1, in fs/btrfs/transaction.c:2022
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3230!
invalid opcode: 0000 [#1] SMP PTI
RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
btrfs_commit_transaction.cold+0x11/0x5d [btrfs]
try_flush_qgroup+0x67/0x100 [btrfs]
__btrfs_qgroup_reserve_meta+0x3a/0x60 [btrfs]
btrfs_delayed_update_inode+0xaa/0x350 [btrfs]
btrfs_update_inode+0x9d/0x110 [btrfs]
btrfs_dirty_inode+0x5d/0xd0 [btrfs]
touch_atime+0xb5/0x100
iterate_dir+0xf1/0x1b0
__x64_sys_getdents64+0x78/0x110
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fb5afe588db
[CAUSE]
In try_flush_qgroup(), we assume we don't hold a transaction handle at
all. This is true for data reservation and mostly true for metadata.
Since data space reservation always happens before we start a
transaction, and for most metadata operation we reserve space in
start_transaction().
But there is an exception, btrfs_delayed_inode_reserve_metadata().
It holds a transaction handle, while still trying to reserve extra
metadata space.
When we hit EDQUOT inside btrfs_delayed_inode_reserve_metadata(), we
will join current transaction and commit, while we still have
transaction handle from qgroup code.
[FIX]
Let's check current->journal before we join the transaction.
If current->journal is unset or BTRFS_SEND_TRANS_STUB, it means
we are not holding a transaction, thus are able to join and then commit
transaction.
If current->journal is a valid transaction handle, we avoid committing
transaction and just end it
This is less effective than committing current transaction, as it won't
free metadata reserved space, but we may still free some data space
before new data writes.
Bugzilla: https://bugzilla.suse.com/show_bug.cgi?id=1178634
Fixes: c53e9653605d ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>