IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 3e35142ef99fe6b4fe5d834ad43ee13cca10a2dc upstream.
Since commit d1bcae833b32f1 ("ELF: Don't generate unused section
symbols") [1], binutils (v2.36+) started dropping section symbols that
it thought were unused. This isn't an issue in general, but with
kexec_file.c, gcc is placing kexec_arch_apply_relocations[_add] into a
separate .text.unlikely section and the section symbol ".text.unlikely"
is being dropped. Due to this, recordmcount is unable to find a non-weak
symbol in .text.unlikely to generate a relocation record against.
Address this by dropping the weak attribute from these functions.
Instead, follow the existing pattern of having architectures #define the
name of the function they want to override in their headers.
[1] https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=d1bcae833b32f1
[akpm@linux-foundation.org: arch/s390/include/asm/kexec.h needs linux/module.h]
Link: https://lkml.kernel.org/r/20220519091237.676736-1-naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3bd4abc07a267e6a8b33d7f8717136e18f921c53 upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is suboptimal. Instead, fallback
to calling random_get_entropy_fallback(), which isn't extremely high
precision or guaranteed to be entropic, but is certainly better than
returning zero all the time.
If CONFIG_X86_TSC=n, then it's possible for the kernel to run on systems
without RDTSC, such as 486 and certain 586, so the fallback code is only
required for that case.
As well, fix up both the new function and the get_cycles() function from
which it was derived to use cpu_feature_enabled() rather than
boot_cpu_has(), and use !IS_ENABLED() instead of #ifndef.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 703f7066f40599c290babdb79dd61319264987e9 upstream.
Since commit
ee3e00e9e7101 ("random: use registers from interrupted code for CPU's w/o a cycle counter")
the irq_flags argument is no longer used.
Remove unused irq_flags.
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: linux-hyperv@vger.kernel.org
Cc: x86@kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5f2ed7f5b99b54389b74e53309677831ac9cb9d7 upstream.
Use the expansion of these macros directly in arch_get_random_*.
These symbols are currently part of the generic archrandom.h
interface, but are currently unused and can be removed.
Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200110145422.49141-2-broonie@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1dc6ff02c8bf77d71b9b5d11cbc9df77cfb28626 upstream
Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO
Stale Data vulnerability.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 027bbb884be006b05d9c577d6401686053aa789e upstream
The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an
accurate indicator on all CPUs of whether the VERW instruction will
overwrite fill buffers. FB_CLEAR enumeration in
IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not
vulnerable to MDS/TAA, indicating that microcode does overwrite fill
buffers.
Guests running in VMM environments may not be aware of all the
capabilities/vulnerabilities of the host CPU. Specifically, a guest may
apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable
to MDS/TAA even when the physical CPU is not. On CPUs that enumerate
FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill
buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS
during VMENTER and resetting on VMEXIT. For guests that enumerate
FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM
will not use FB_CLEAR_DIS.
Irrespective of guest state, host overwrites CPU buffers before VMENTER
to protect itself from an MMIO capable guest, as part of mitigation for
MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a992b8a4682f119ae035a01b40d4d0665c4a2875 upstream
The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale
Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data.
Mitigation for this is added by a microcode update.
As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation
infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS
mitigation.
Mitigation is enabled by default; use srbds=off to opt-out. Mitigation
status can be checked from below file:
/sys/devices/system/cpu/vulnerabilities/srbds
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 22cac9c677c95f3ac5c9244f8ca0afdc7c8afb19 upstream
Currently, Linux disables SRBDS mitigation on CPUs not affected by
MDS and have the TSX feature disabled. On such CPUs, secrets cannot
be extracted from CPU fill buffers using MDS or TAA. Without SRBDS
mitigation, Processor MMIO Stale Data vulnerabilities can be used to
extract RDRAND, RDSEED, and EGETKEY data.
Do not disable SRBDS mitigation by default when CPU is also affected by
Processor MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8d50cdf8b8341770bc6367bce40c0c1bb0e1d5b3 upstream
Add the sysfs reporting file for Processor MMIO Stale Data
vulnerability. It exposes the vulnerability and mitigation state similar
to the existing files for the other hardware vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 99a83db5a605137424e1efe29dc0573d6a5b6316 upstream
When the CPU is affected by Processor MMIO Stale Data vulnerabilities,
Fill Buffer Stale Data Propagator (FBSDP) can propagate stale data out
of Fill buffer to uncore buffer when CPU goes idle. Stale data can then
be exploited with other variants using MMIO operations.
Mitigate it by clearing the Fill buffer before entering idle state.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e5925fb867290ee924fcf2fe3ca887b792714366 upstream
MDS, TAA and Processor MMIO Stale Data mitigations rely on clearing CPU
buffers. Moreover, status of these mitigations affects each other.
During boot, it is important to maintain the order in which these
mitigations are selected. This is especially true for
md_clear_update_mitigation() that needs to be called after MDS, TAA and
Processor MMIO Stale Data mitigation selection is done.
Introduce md_clear_select_mitigation(), and select all these mitigations
from there. This reflects relationships between these mitigations and
ensures proper ordering.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca upstream
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.
These vulnerabilities are broadly categorized as:
Device Register Partial Write (DRPW):
Some endpoint MMIO registers incorrectly handle writes that are
smaller than the register size. Instead of aborting the write or only
copying the correct subset of bytes (for example, 2 bytes for a 2-byte
write), more bytes than specified by the write transaction may be
written to the register. On some processors, this may expose stale
data from the fill buffers of the core that created the write
transaction.
Shared Buffers Data Sampling (SBDS):
After propagators may have moved data around the uncore and copied
stale data into client core fill buffers, processors affected by MFBDS
can leak data from the fill buffer.
Shared Buffers Data Read (SBDR):
It is similar to Shared Buffer Data Sampling (SBDS) except that the
data is directly read into the architectural software-visible state.
An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.
On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.
Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f52ea6c26953fed339aa4eae717ee5c2133c7ff2 upstream
Processor MMIO Stale Data mitigation uses similar mitigation as MDS and
TAA. In preparation for adding its mitigation, add a common function to
update all mitigations that depend on MD_CLEAR.
[ bp: Add a newline in md_clear_update_mitigation() to separate
statements better. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 51802186158c74a0304f51ab963e7c2b3a2b046f upstream
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For more details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
Add the Processor MMIO Stale Data bug enumeration. A microcode update
adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6e1239c13953f3c2a76e70031f74ddca9ae57cd3 upstream.
Add Alder Lake mobile CPU model number to Intel family.
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20210121215004.11618-1-tony.luck@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b2d32af0bff402b4c1fce28311759dd1f6af058a upstream.
Japser Lake is an Atom family processor.
It uses Tremont cores and is targeted at mobile platforms.
Reviewed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a6a5eb269f6f3a2fe392f725a8d9052190c731e2 ]
As x86 uses the <asm-generic/bitops/instrumented-*.h> headers, the
regular forms of all bitops are instrumented with explicit calls to
KASAN and KCSAN checks. As these are explicit calls, these are not
suppressed by the noinstr function attribute.
This can result in calls to those check functions in noinstr code, which
objtool warns about:
vmlinux.o: warning: objtool: enter_from_user_mode+0x24: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: syscall_enter_from_user_mode+0x28: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: syscall_enter_from_user_mode_prepare+0x24: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: irqentry_enter_from_user_mode+0x24: call to __kcsan_check_access() leaves .noinstr.text section
Prevent this by using the arch_*() bitops, which are the underlying
bitops without explciit instrumentation.
[null: Changelog]
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220502111216.290518605@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2a4a62a14be1947fa945c5c11ebf67326381a568 upstream.
syscall_stub_data() expects the data_count parameter to be the number of
longs, not bytes.
==================================================================
BUG: KASAN: stack-out-of-bounds in syscall_stub_data+0x70/0xe0
Read of size 128 at addr 000000006411f6f0 by task swapper/1
CPU: 0 PID: 1 Comm: swapper Not tainted 5.18.0+ #18
Call Trace:
show_stack.cold+0x166/0x2a7
__dump_stack+0x3a/0x43
dump_stack_lvl+0x1f/0x27
print_report.cold+0xdb/0xf81
kasan_report+0x119/0x1f0
kasan_check_range+0x3a3/0x440
memcpy+0x52/0x140
syscall_stub_data+0x70/0xe0
write_ldt_entry+0xac/0x190
init_new_ldt+0x515/0x960
init_new_context+0x2c4/0x4d0
mm_init.constprop.0+0x5ed/0x760
mm_alloc+0x118/0x170
0x60033f48
do_one_initcall+0x1d7/0x860
0x60003e7b
kernel_init+0x6e/0x3d4
new_thread_handler+0x1e7/0x2c0
The buggy address belongs to stack of task swapper/1
and is located at offset 64 in frame:
init_new_ldt+0x0/0x960
This frame has 2 objects:
[32, 40) 'addr'
[64, 80) 'desc'
==================================================================
Fixes: 858259cf7d1c443c83 ("uml: maintain own LDT entries")
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: stable@vger.kernel.org
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c3634d25fbee88e2368a8e0903ae0d0670eb9e71 ]
Don't modify vmcs12 exit fields except EXIT_REASON and EXIT_QUALIFICATION
when performing a nested VM-Exit due to failed VM-Entry. Per the SDM,
only the two aformentioned fields are filled and "All other VM-exit
information fields are unmodified".
Fixes: 4704d0befb07 ("KVM: nVMX: Exiting from L2 to L1")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220407002315.78092-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3d47083b9ff46863e8374ad3bb5edb5e464c75f8 ]
IbsOpRip is recorded when IBS interrupt is triggered. But there is
a skid from the time IBS interrupt gets triggered to the time the
interrupt is presented to the core. Meanwhile processor would have
moved ahead and thus IbsOpRip will be inconsistent with rsp and rbp
recorded as part of the interrupt regs. This causes issues while
unwinding stack using the ORC unwinder as it needs consistent rip,
rsp and rbp. Fix this by using rip from interrupt regs instead of
IbsOpRip for stack unwinding.
Fixes: ee9f8fce99640 ("x86/unwind: Add the ORC unwinder")
Reported-by: Dmitry Monakhov <dmtrmonakhov@yandex-team.ru>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220429051441.14251-1-ravi.bangoria@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1ef64b1e89e6d4018da46e08ffc32779a31160c7 ]
Clean up control_va_addr_alignment():
a. Make '=' required instead of optional (as documented).
b. Print a warning if an invalid option value is used.
c. Return 1 from the __setup handler when an invalid option value is
used. This prevents the kernel from polluting init's (limited)
environment space with the entire string.
Fixes: dfb09f9b7ab0 ("x86, amd: Avoid cache aliasing penalties on AMD family 15h")
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Link: https://lore.kernel.org/r/20220315001045.7680-1-rdunlap@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 12441ccdf5e2f5a01a46e344976cbbd3d46845c9 ]
__setup() handlers should return 1 to obsolete_checksetup() in
init/main.c to indicate that the boot option has been handled. A return
of 0 causes the boot option/value to be listed as an Unknown kernel
parameter and added to init's (limited) argument (no '=') or environment
(with '=') strings. So return 1 from these x86 __setup handlers.
Examples:
Unknown kernel command line parameters "apicpmtimer
BOOT_IMAGE=/boot/bzImage-517rc8 vdso=1 ring3mwait=disable", will be
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
apicpmtimer
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc8
vdso=1
ring3mwait=disable
Fixes: 2aae950b21e4 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu")
Fixes: 77b52b4c5c66 ("x86: add "debugpat" boot option")
Fixes: e16fd002afe2 ("x86/cpufeature: Enable RING3MWAIT for Knights Landing")
Fixes: b8ce33590687 ("x86_64: convert to clock events")
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Link: https://lore.kernel.org/r/20220314012725.26661-1-rdunlap@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b0b592cf08367719e1d1ef07c9f136e8c17f7ec3 ]
Since
e2a1256b17b1 ("x86/speculation: Restore speculation related MSRs during S3 resume")
kmemleak reports this issue:
unreferenced object 0xffff888009cedc00 (size 256):
comm "swapper/0", pid 1, jiffies 4294693823 (age 73.764s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 48 00 00 00 00 00 00 00 ........H.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
msr_build_context (include/linux/slab.h:621)
pm_check_save_msr (arch/x86/power/cpu.c:520)
do_one_initcall (init/main.c:1298)
kernel_init_freeable (init/main.c:1370)
kernel_init (init/main.c:1504)
ret_from_fork (arch/x86/entry/entry_64.S:304)
Reproducer:
- boot the VM with a debug kernel config (see
https://github.com/multipath-tcp/mptcp_net-next/issues/268)
- wait ~1 minute
- start a kmemleak scan
The root cause here is alignment within the packed struct saved_context
(from suspend_64.h). Kmemleak only searches for pointers that are
aligned (see how pointers are scanned in kmemleak.c), but pahole shows
that the saved_msrs struct member and all members after it in the
structure are unaligned:
struct saved_context {
struct pt_regs regs; /* 0 168 */
/* --- cacheline 2 boundary (128 bytes) was 40 bytes ago --- */
u16 ds; /* 168 2 */
...
u64 misc_enable; /* 232 8 */
bool misc_enable_saved; /* 240 1 */
/* Note below odd offset values for the remainder of this struct */
struct saved_msrs saved_msrs; /* 241 16 */
/* --- cacheline 4 boundary (256 bytes) was 1 bytes ago --- */
long unsigned int efer; /* 257 8 */
u16 gdt_pad; /* 265 2 */
struct desc_ptr gdt_desc; /* 267 10 */
u16 idt_pad; /* 277 2 */
struct desc_ptr idt; /* 279 10 */
u16 ldt; /* 289 2 */
u16 tss; /* 291 2 */
long unsigned int tr; /* 293 8 */
long unsigned int safety; /* 301 8 */
long unsigned int return_address; /* 309 8 */
/* size: 317, cachelines: 5, members: 25 */
/* last cacheline: 61 bytes */
} __attribute__((__packed__));
Move misc_enable_saved to the end of the struct declaration so that
saved_msrs fits in before the cacheline 4 boundary.
The comment above the saved_context declaration says to fix wakeup_64.S
file and __save/__restore_processor_state() if the struct is modified:
it looks like all the accesses in wakeup_64.S are done through offsets
which are computed at build-time. Update that comment accordingly.
At the end, the false positive kmemleak report is due to a limitation
from kmemleak but it is always good to avoid unaligned members for
optimisation purposes.
Please note that it looks like this issue is not new, e.g.
https://lore.kernel.org/all/9f1bb619-c4ee-21c4-a251-870bd4db04fa@lwfinger.net/https://lore.kernel.org/all/94e48fcd-1dbd-ebd2-4c91-f39941735909@molgen.mpg.de/
[ bp: Massage + cleanup commit message. ]
Fixes: 7a9c2dd08ead ("x86/pm: Introduce quirk framework to save/restore extra MSR registers around suspend/resume")
Suggested-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220426202138.498310-1-matthieu.baerts@tessares.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b86eb74098a92afd789da02699b4b0dd3f73b889 ]
The asm constraint does not reflect the fact that the asm statement can
modify the value of the local variable loops. Which it does.
Specifying the wrong constraint may lead to undefined behavior, it may
clobber random stuff (e.g. local variable, important temporary value in
regs, etc.). This is especially dangerous when the compiler decides to
inline the function and since it doesn't know that the value gets
modified, it might decide to use it from a register directly without
reloading it.
Change the constraint to "+a" to denote that the first argument is an
input and an output argument.
[ bp: Fix typo, massage commit message. ]
Fixes: e01b70ef3eb3 ("x86: fix bug in arch/i386/lib/delay.c file, delay_loop function")
Signed-off-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220329104705.65256-2-ammarfaizi2@gnuweeb.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e2efb6359e620521d1e13f69b2257de8ceaa9475 ]
While running inside virtual machine, the kernel can bypass cache
flushing. Changing sleep state in a virtual machine doesn't affect the
host system sleep state and cannot lead to data loss.
Before entering sleep states, the ACPI code flushes caches to prevent
data loss using the WBINVD instruction. This mechanism is required on
bare metal.
But, any use WBINVD inside of a guest is worthless. Changing sleep
state in a virtual machine doesn't affect the host system sleep state
and cannot lead to data loss, so most hypervisors simply ignore it.
Despite this, the ACPI code calls WBINVD unconditionally anyway.
It's useless, but also normally harmless.
In TDX guests, though, WBINVD stops being harmless; it triggers a
virtualization exception (#VE). If the ACPI cache-flushing WBINVD
were left in place, TDX guests would need handling to recover from
the exception.
Avoid using WBINVD whenever running under a hypervisor. This both
removes the useless WBINVDs and saves TDX from implementing WBINVD
handling.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-30-kirill.shutemov@linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6a2d90ba027adba528509ffa27097cffd3879257 upstream.
The current implementation of PTRACE_KILL is buggy and has been for
many years as it assumes it's target has stopped in ptrace_stop. At a
quick skim it looks like this assumption has existed since ptrace
support was added in linux v1.0.
While PTRACE_KILL has been deprecated we can not remove it as
a quick search with google code search reveals many existing
programs calling it.
When the ptracee is not stopped at ptrace_stop some fields would be
set that are ignored except in ptrace_stop. Making the userspace
visible behavior of PTRACE_KILL a noop in those case.
As the usual rules are not obeyed it is not clear what the
consequences are of calling PTRACE_KILL on a running process.
Presumably userspace does not do this as it achieves nothing.
Replace the implementation of PTRACE_KILL with a simple
send_sig_info(SIGKILL) followed by a return 0. This changes the
observable user space behavior only in that PTRACE_KILL on a process
not stopped in ptrace_stop will also kill it. As that has always
been the intent of the code this seems like a reasonable change.
Cc: stable@vger.kernel.org
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-7-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 86dca369075b3e310c3c0adb0f81e513c562b5e4 upstream.
According to the latest event list, the event encoding 0x55
INST_DECODED.DECODERS and 0x56 UOPS_DECODED.DEC0 are only available on
the first 4 counters. Add them into the event constraints table.
Fixes: 6017608936c1 ("perf/x86/intel: Add Icelake support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220525133952.1660658-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7e0815b3e09986d2fe651199363e135b9358132a upstream.
When a XEN_HVM guest uses the XEN PIRQ/Eventchannel mechanism, then
PCI/MSI[-X] masking is solely controlled by the hypervisor, but contrary to
XEN_PV guests this does not disable PCI/MSI[-X] masking in the PCI/MSI
layer.
This can lead to a situation where the PCI/MSI layer masks an MSI[-X]
interrupt and the hypervisor grants the write despite the fact that it
already requested the interrupt. As a consequence interrupt delivery on the
affected device is not happening ever.
Set pci_msi_ignore_mask to prevent that like it's done for XEN_PV guests
already.
Fixes: 809f9267bbab ("xen: map MSIs into pirqs")
Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Reported-by: Dusty Mabe <dustymabe@redhat.com>
Reported-by: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Noah Meyerhans <noahm@debian.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87tuaduxj5.ffs@tglx
[nmeyerha@amazon.com: backported to 5.4]
Signed-off-by: Noah Meyerhans <nmeyerha@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d6f34f4c6b4a962eb7a86c923fea206f866a40be upstream.
Commit 2f62f36e62daec ("x86/xen: Make the boot CPU idle task reliable")
introduced a regression for booting 32 bit Xen PV guests: the address
of the initial stack needs to be a virtual one.
Fixes: 2f62f36e62daec ("x86/xen: Make the boot CPU idle task reliable")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20200409070001.16675-1-jgross@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b28cb0cd2c5e80a8c0feb408a0e4b0dbb6d132c5 upstream.
When zapping obsolete pages, update the running count of zapped pages
regardless of whether or not the list has become unstable due to zapping
a shadow page with its own child shadow pages. If the VM is backed by
mostly 4kb pages, KVM can zap an absurd number of SPTEs without bumping
the batch count and thus without yielding. In the worst case scenario,
this can cause a soft lokcup.
watchdog: BUG: soft lockup - CPU#12 stuck for 22s! [dirty_log_perf_:13020]
RIP: 0010:workingset_activation+0x19/0x130
mark_page_accessed+0x266/0x2e0
kvm_set_pfn_accessed+0x31/0x40
mmu_spte_clear_track_bits+0x136/0x1c0
drop_spte+0x1a/0xc0
mmu_page_zap_pte+0xef/0x120
__kvm_mmu_prepare_zap_page+0x205/0x5e0
kvm_mmu_zap_all_fast+0xd7/0x190
kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10
kvm_page_track_flush_slot+0x5c/0x80
kvm_arch_flush_shadow_memslot+0xe/0x10
kvm_set_memslot+0x1a8/0x5d0
__kvm_set_memory_region+0x337/0x590
kvm_vm_ioctl+0xb08/0x1040
Fixes: fbb158cb88b6 ("KVM: x86/mmu: Revert "Revert "KVM: MMU: zap pages in batch""")
Reported-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220511145122.3133334-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4327d168515fd8b5b92fa1efdf1d219fb6514460 ]
The chacha_Nblock_xor_avx512vl() functions all have their own,
identical, .LdoneN label, however in one particular spot {2,4} jump to
the 8 version instead of their own. Resulting in:
arch/x86/crypto/chacha-x86_64.o: warning: objtool: chacha_2block_xor_avx512vl() falls through to next function chacha_8block_xor_avx512vl()
arch/x86/crypto/chacha-x86_64.o: warning: objtool: chacha_4block_xor_avx512vl() falls through to next function chacha_8block_xor_avx512vl()
Make each function consistently use its own done label.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f4f03f299a56ce4d73c5431e0327b3b6cb55ebb9 ]
The syscall_handler_t type for x86_64 was defined as 'long (*)(void)',
but always cast to 'long (*)(long, long, long, long, long, long)' before
use. This now triggers a warning (see below).
Define syscall_handler_t as the latter instead, and remove the cast.
This simplifies the code, and fixes the warning.
Warning:
In file included from ../arch/um/include/asm/processor-generic.h:13
from ../arch/x86/um/asm/processor.h:41
from ../include/linux/rcupdate.h:30
from ../include/linux/rculist.h:11
from ../include/linux/pid.h:5
from ../include/linux/sched.h:14
from ../include/linux/ptrace.h:6
from ../arch/um/kernel/skas/syscall.c:7:
../arch/um/kernel/skas/syscall.c: In function ‘handle_syscall’:
../arch/x86/um/shared/sysdep/syscalls_64.h:18:11: warning: cast between incompatible function types from ‘long int (*)(void)’ to ‘long int (*)(long int, long int, long int, long int, long int, long int)’ [
-Wcast-function-type]
18 | (((long (*)(long, long, long, long, long, long)) \
| ^
../arch/x86/um/asm/ptrace.h:36:62: note: in definition of macro ‘PT_REGS_SET_SYSCALL_RETURN’
36 | #define PT_REGS_SET_SYSCALL_RETURN(r, res) (PT_REGS_AX(r) = (res))
| ^~~
../arch/um/kernel/skas/syscall.c:46:33: note: in expansion of macro ‘EXECUTE_SYSCALL’
46 | EXECUTE_SYSCALL(syscall, regs));
| ^~~~~~~~~~~~~~~
Signed-off-by: David Gow <davidgow@google.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c3881eb58d56116c79ac4ee4f40fd15ead124c4b upstream.
The unwinder reports the secondary CPU idle tasks' stack on XEN PV as
unreliable, which affects at least live patching.
cpu_initialize_context() sets up the context of the CPU through
VCPUOP_initialise hypercall. After it is woken up, the idle task starts
in cpu_bringup_and_idle() function and its stack starts at the offset
right below pt_regs. The unwinder correctly detects the end of stack
there but it is confused by NULL return address in the last frame.
Introduce a wrapper in assembly, which just calls
cpu_bringup_and_idle(). The return address is thus pushed on the stack
and the wrapper contains the annotation hint for the unwinder regarding
the stack state.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Markus Boehme <markubo@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2f62f36e62daec43aa7b9633ef7f18e042a80bed upstream.
The unwinder reports the boot CPU idle task's stack on XEN PV as
unreliable, which affects at least live patching. There are two reasons
for this. First, the task does not follow the x86 convention that its
stack starts at the offset right below saved pt_regs. It allows the
unwinder to easily detect the end of the stack and verify it. Second,
startup_xen() function does not store the return address before jumping
to xen_start_kernel() which confuses the unwinder.
Amend both issues by moving the starting point of initial stack in
startup_xen() and storing the return address before the jump, which is
exactly what call instruction does.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Markus Boehme <markubo@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5eb849322d7f7ae9d5c587c7bc3b4f7c6872cd2f upstream.
Zen renumbered some of the performance counters that correspond to the
well known events in perf_hw_id. This code in KVM was never updated for
that, so guest that attempt to use counters on Zen that correspond to the
pre-Zen perf_hw_id values will silently receive the wrong values.
This has been observed in the wild with rr[0] when running in Zen 3
guests. rr uses the retired conditional branch counter 00d1 which is
incorrectly recognized by KVM as PERF_COUNT_HW_STALLED_CYCLES_BACKEND.
[0] https://rr-project.org/
Signed-off-by: Kyle Huey <me@kylehuey.com>
Message-Id: <20220503050136.86298-1-khuey@kylehuey.com>
Cc: stable@vger.kernel.org
[Check guest family, not host. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Backport to 5.15: adjusted context]
Signed-off-by: Kyle Huey <me@kylehuey.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 004e8dce9c5595697951f7cd0e9f66b35c92265e upstream.
Prohibit probing on instruction which has XEN_EMULATE_PREFIX
or KVM's emulate prefix. Since that prefix is a marker for Xen
and KVM, if we modify the marker by kprobe's int3, that doesn't
work as expected.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: x86@kernel.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: xen-devel@lists.xenproject.org
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/156777566048.25081.6296162369492175325.stgit@devnote2
Signed-off-by: Maximilian Heyne <mheyne@amazon.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4d65adfcd1196818659d3bd9b42dccab291e1751 upstream.
Decode Xen and KVM's emulate-prefix signature by x86 insn decoder.
It is called "prefix" but actually not x86 instruction prefix, so
this adds insn.emulate_prefix_size field instead of reusing
insn.prefixes.
If x86 decoder finds a special sequence of instructions of
XEN_EMULATE_PREFIX and 'ud2a; .ascii "kvm"', it just counts the
length, set insn.emulate_prefix_size and fold it with the next
instruction. In other words, the signature and the next instruction
is treated as a single instruction.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: x86@kernel.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: xen-devel@lists.xenproject.org
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: https://lkml.kernel.org/r/156777564986.25081.4964537658500952557.stgit@devnote2
[mheyne: resolved contextual conflict in tools/objtools/sync-check.sh]
Signed-off-by: Maximilian Heyne <mheyne@amazon.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c174f305cbee6bdba5018aae02b84369e7ab995 upstream.
The find_arch_event() returns a "unsigned int" value,
which is used by the pmc_reprogram_counter() to
program a PERF_TYPE_HARDWARE type perf_event.
The returned value is actually the kernel defined generic
perf_hw_id, let's rename it to pmc_perf_hw_id() with simpler
incoming parameters for better self-explanation.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Backport to 5.4: kvm_x86_ops is a pointer here]
Signed-off-by: Kyle Huey <me@kylehuey.com>]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1714a4eb6fb0cb79f182873cd011a8ed60ac65e8 ]
As commit 0c5f81dad46 ("KVM: LAPIC: Inject timer interrupt via posted
interrupt") mentioned that the host admin should well tune the guest
setup, so that vCPUs are placed on isolated pCPUs, and with several pCPUs
surplus for *busy* housekeeping. In this setup, it is preferrable to
disable mwait/hlt/pause vmexits to keep the vCPUs in non-root mode.
However, if only some guests isolated and others not, they would not
have any benefit from posted timer interrupts, and at the same time lose
VMX preemption timer fast paths because kvm_can_post_timer_interrupt()
returns true and therefore forces kvm_can_use_hv_timer() to false.
By guaranteeing that posted-interrupt timer is only used if MWAIT or
HLT are done without vmexit, KVM can make a better choice and use the
VMX preemption timer and the corresponding fast paths.
Reported-by: Aili Yao <yaoaili@kingsoft.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: Aili Yao <yaoaili@kingsoft.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1643112538-36743-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0361bdfddca20c8855ea3bdbbbc9c999912b10ff ]
MSR_KVM_POLL_CONTROL is cleared on reset, thus reverting guests to
host-side polling after suspend/resume. Non-bootstrap CPUs are
restored correctly by the haltpoll driver because they are hot-unplugged
during suspend and hot-plugged during resume; however, the BSP
is not hotpluggable and remains in host-sde polling mode after
the guest resume. The makes the guest pay for the cost of vmexits
every time the guest enters idle.
Fix it by recording BSP's haltpoll state and resuming it during guest
resume.
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1650267752-46796-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5a1bde46f98b893cda6122b00e94c0c40a6ead3c ]
On some x86 processors, CPUID leaf 0xA provides information
on Architectural Performance Monitoring features. It
advertises a PMU version which Qemu uses to determine the
availability of additional MSRs to manage the PMCs.
Upon receiving a KVM_GET_SUPPORTED_CPUID ioctl request for
the same, the kernel constructs return values based on the
x86_pmu_capability irrespective of the vendor.
This leaf and the additional MSRs are not supported on AMD
and Hygon processors. If AMD PerfMonV2 is detected, the PMU
version is set to 2 and guest startup breaks because of an
attempt to access a non-existent MSR. Return zeros to avoid
this.
Fixes: a6c06ed1a60a ("KVM: Expose the architectural performance monitoring CPUID leaf")
Reported-by: Vasant Hegde <vasant.hegde@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Message-Id: <3fef83d9c2b2f7516e8ff50d60851f29a4bcb716.1651058600.git.sandipan.das@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f9e14dbbd454581061c736bf70bf5cbb15ac927c upstream.
When resuming from system sleep state, restore_processor_state()
restores the boot CPU MSRs. These MSRs could be emulated by microcode.
If microcode is not loaded yet, writing to emulated MSRs leads to
unchecked MSR access error:
...
PM: Calling lapic_suspend+0x0/0x210
unchecked MSR access error: WRMSR to 0x10f (tried to write 0x0...0) at rIP: ... (native_write_msr)
Call Trace:
<TASK>
? restore_processor_state
x86_acpi_suspend_lowlevel
acpi_suspend_enter
suspend_devices_and_enter
pm_suspend.cold
state_store
kobj_attr_store
sysfs_kf_write
kernfs_fop_write_iter
new_sync_write
vfs_write
ksys_write
__x64_sys_write
do_syscall_64
entry_SYSCALL_64_after_hwframe
RIP: 0033:0x7fda13c260a7
To ensure microcode emulated MSRs are available for restoration, load
the microcode on the boot CPU before restoring these MSRs.
[ Pawan: write commit message and productize it. ]
Fixes: e2a1256b17b1 ("x86/speculation: Restore speculation related MSRs during S3 resume")
Reported-by: Kyle D. Pelton <kyle.d.pelton@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Tested-by: Kyle D. Pelton <kyle.d.pelton@intel.com>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215841
Link: https://lore.kernel.org/r/4350dfbf785cd482d3fafa72b2b49c83102df3ce.1650386317.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a6823e4e360fe975bd3da4ab156df7c74c8b07f3 ]
The first "if" condition in __memcpy_flushcache is supposed to align the
"dest" variable to 8 bytes and copy data up to this alignment. However,
this condition may misbehave if "size" is greater than 4GiB.
The statement min_t(unsigned, size, ALIGN(dest, 8) - dest); casts both
arguments to unsigned int and selects the smaller one. However, the
cast truncates high bits in "size" and it results in misbehavior.
For example:
suppose that size == 0x100000001, dest == 0x200000002
min_t(unsigned, size, ALIGN(dest, 8) - dest) == min_t(0x1, 0xe) == 0x1;
...
dest += 0x1;
so we copy just one byte "and" dest remains unaligned.
This patch fixes the bug by replacing unsigned with size_t.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 932aba1e169090357a77af18850a10c256b50819 ]
struct stat (defined in arch/x86/include/uapi/asm/stat.h) has 32-bit
st_dev and st_rdev; struct compat_stat (defined in
arch/x86/include/asm/compat.h) has 16-bit st_dev and st_rdev followed by
a 16-bit padding.
This patch fixes struct compat_stat to match struct stat.
[ Historical note: the old x86 'struct stat' did have that 16-bit field
that the compat layer had kept around, but it was changes back in 2003
by "struct stat - support larger dev_t":
https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/?id=e95b2065677fe32512a597a79db94b77b90c968d
and back in those days, the x86_64 port was still new, and separate
from the i386 code, and had already picked up the old version with a
16-bit st_dev field ]
Note that we can't change compat_dev_t because it is used by
compat_loop_info.
Also, if the st_dev and st_rdev values are 32-bit, we don't have to use
old_valid_dev to test if the value fits into them. This fixes
-EOVERFLOW on filesystems that are on NVMe because NVMe uses the major
number 259.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e2a1256b17b16f9b9adf1b6fea56819e7b68e463 upstream.
After resuming from suspend-to-RAM, the MSRs that control CPU's
speculative execution behavior are not being restored on the boot CPU.
These MSRs are used to mitigate speculative execution vulnerabilities.
Not restoring them correctly may leave the CPU vulnerable. Secondary
CPU's MSRs are correctly being restored at S3 resume by
identify_secondary_cpu().
During S3 resume, restore these MSRs for boot CPU when restoring its
processor state.
Fixes: 772439717dbf ("x86/bugs/intel: Set proper CPU features and setup RDS")
Reported-by: Neelima Krishnan <neelima.krishnan@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 73924ec4d560257004d5b5116b22a3647661e364 upstream.
The mechanism to save/restore MSRs during S3 suspend/resume checks for
the MSR validity during suspend, and only restores the MSR if its a
valid MSR. This is not optimal, as an invalid MSR will unnecessarily
throw an exception for every suspend cycle. The more invalid MSRs,
higher the impact will be.
Check and save the MSR validity at setup. This ensures that only valid
MSRs that are guaranteed to not throw an exception will be attempted
during suspend.
Fixes: 7a9c2dd08ead ("x86/pm: Introduce quirk framework to save/restore extra MSR registers around suspend/resume")
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit eed05744322da07dd7e419432dcedf3c2e017179 ]
The sched_clock() can be used very early since commit 857baa87b642
("sched/clock: Enable sched clock early"). In addition, with commit
38669ba205d1 ("x86/xen/time: Output xen sched_clock time from 0"), kdump
kernel in Xen HVM guest may panic at very early stage when accessing
&__this_cpu_read(xen_vcpu)->time as in below:
setup_arch()
-> init_hypervisor_platform()
-> x86_init.hyper.init_platform = xen_hvm_guest_init()
-> xen_hvm_init_time_ops()
-> xen_clocksource_read()
-> src = &__this_cpu_read(xen_vcpu)->time;
This is because Xen HVM supports at most MAX_VIRT_CPUS=32 'vcpu_info'
embedded inside 'shared_info' during early stage until xen_vcpu_setup() is
used to allocate/relocate 'vcpu_info' for boot cpu at arbitrary address.
However, when Xen HVM guest panic on vcpu >= 32, since
xen_vcpu_info_reset(0) would set per_cpu(xen_vcpu, cpu) = NULL when
vcpu >= 32, xen_clocksource_read() on vcpu >= 32 would panic.
This patch calls xen_hvm_init_time_ops() again later in
xen_hvm_smp_prepare_boot_cpu() after the 'vcpu_info' for boot vcpu is
registered when the boot vcpu is >= 32.
This issue can be reproduced on purpose via below command at the guest
side when kdump/kexec is enabled:
"taskset -c 33 echo c > /proc/sysrq-trigger"
The bugfix for PVM is not implemented due to the lack of testing
environment.
[boris: xen_hvm_init_time_ops() returns on errors instead of jumping to end]
Cc: Joe Jin <joe.jin@oracle.com>
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20220302164032.14569-3-dongli.zhang@oracle.com
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>