IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit b8ac29b40183a6038919768b5d189c9bd91ce9b4 upstream.
The rng's random_init() function contributes the real time to the rng at
boot time, so that events can at least start in relation to something
particular in the real world. But this clock might not yet be set that
point in boot, so nothing is contributed. In addition, the relation
between minor clock changes from, say, NTP, and the cycle counter is
potentially useful entropic data.
This commit addresses this by mixing in a time stamp on calls to
settimeofday and adjtimex. No entropy is credited in doing so, so it
doesn't make initialization faster, but it is still useful input to
have.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1366992e16bddd5e2d9a561687f367f9f802e2e4 upstream.
The addition of random_get_entropy_fallback() provides access to
whichever time source has the highest frequency, which is useful for
gathering entropy on platforms without available cycle counters. It's
not necessarily as good as being able to quickly access a cycle counter
that the CPU has, but it's still something, even when it falls back to
being jiffies-based.
In the event that a given arch does not define get_cycles(), falling
back to the get_cycles() default implementation that returns 0 is really
not the best we can do. Instead, at least calling
random_get_entropy_fallback() would be preferable, because that always
needs to return _something_, even falling back to jiffies eventually.
It's not as though random_get_entropy_fallback() is super high precision
or guaranteed to be entropic, but basically anything that's not zero all
the time is better than returning zero all the time.
Finally, since random_get_entropy_fallback() is used during extremely
early boot when randomizing freelists in mm_init(), it can be called
before timekeeping has been initialized. In that case there really is
nothing we can do; jiffies hasn't even started ticking yet. So just give
up and return 0.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 40e97e42961f8c6cc7bd5fe67cc18417e02d78f1 upstream.
While running some testing on code that happened to allow the variable
tick_nohz_full_running to get set but with no "possible" NOHZ cores to
back up that setting, this warning triggered:
if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
WARN_ON(tick_nohz_full_running);
The console was overwhemled with an endless stream of one WARN per tick
per core and there was no way to even see what was going on w/o using a
serial console to capture it and then trace it back to this.
Change it to WARN_ON_ONCE().
Fixes: 08ae95f4fd3b ("nohz_full: Allow the boot CPU to be nohz_full")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211206145950.10927-3-paul.gortmaker@windriver.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4e8c11b6b3f0b6a283e898344f154641eda94266 upstream.
Even after commit e1d7ba873555 ("time: Always make sure wall_to_monotonic
isn't positive") it is still possible to make wall_to_monotonic positive
by running the following code:
int main(void)
{
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
time.tv_nsec = 0;
clock_settime(CLOCK_REALTIME, &time);
return 0;
}
The reason is that the second parameter of timespec64_compare(), ts_delta,
may be unnormalized because the delta is calculated with an open coded
substraction which causes the comparison of tv_sec to yield the wrong
result:
wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 }
ts_delta = { .tv_sec = -9, .tv_nsec = -900000000 }
That makes timespec64_compare() claim that wall_to_monotonic < ts_delta,
but actually the result should be wall_to_monotonic > ts_delta.
After normalization, the result of timespec64_compare() is correct because
the tv_sec comparison is not longer misleading:
wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 }
ts_delta = { .tv_sec = -10, .tv_nsec = 100000000 }
Use timespec64_sub() to ensure that ts_delta is normalized, which fixes the
issue.
Fixes: e1d7ba873555 ("time: Always make sure wall_to_monotonic isn't positive")
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211213135727.1656662-1-liaoyu15@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit c322a963d522e9a4273e18c9d7bd6fd40a25160f which is
commit 406dd42bd1ba0c01babf9cde169bb319e52f6147 upstream.
It is reported to cause regressions. A proposed fix has been posted,
but it is not in a released kernel yet. So just revert this from the
stable release so that the bug is fixed. If it's really needed we can
add it back in in a future release.
Link: https://lore.kernel.org/r/87ilz1pwaq.fsf@wylie.me.uk
Reported-by: "Alan J. Wylie" <alan@wylie.me.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8c3b5e6ec0fee18bc2ce38d1dfe913413205f908 ]
If high resolution timers are disabled the timerfd notification about a
clock was set event is not happening for all cases which use
clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong.
Make clock_was_set_delayed() unconditially available to fix that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 627ef5ae2df8eeccb20d5af0e4cfa4df9e61ed28 ]
If __hrtimer_start_range_ns() is invoked with an already armed hrtimer then
the timer has to be canceled first and then added back. If the timer is the
first expiring timer then on removal the clockevent device is reprogrammed
to the next expiring timer to avoid that the pending expiry fires needlessly.
If the new expiry time ends up to be the first expiry again then the clock
event device has to reprogrammed again.
Avoid this by checking whether the timer is the first to expire and in that
case, keep the timer on the current CPU and delay the reprogramming up to
the point where the timer has been enqueued again.
Reported-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135157.873137732@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 406dd42bd1ba0c01babf9cde169bb319e52f6147 ]
When an itimer deactivates a previously armed expiration, it simply doesn't
do anything. As a result the process wide cputime counter keeps running and
the tick dependency stays set until it reaches the old ghost expiration
value.
This can be reproduced with the following snippet:
void trigger_process_counter(void)
{
struct itimerval n = {};
n.it_value.tv_sec = 100;
setitimer(ITIMER_VIRTUAL, &n, NULL);
n.it_value.tv_sec = 0;
setitimer(ITIMER_VIRTUAL, &n, NULL);
}
Fix this with resetting the relevant base expiration. This is similar to
disarming a timer.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-4-frederic@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit bb7262b295472eb6858b5c49893954794027cd84 upstream.
syzbot reported KCSAN data races vs. timer_base::timer_running being set to
NULL without holding base::lock in expire_timers().
This looks innocent and most reads are clearly not problematic, but
Frederic identified an issue which is:
int data = 0;
void timer_func(struct timer_list *t)
{
data = 1;
}
CPU 0 CPU 1
------------------------------ --------------------------
base = lock_timer_base(timer, &flags); raw_spin_unlock(&base->lock);
if (base->running_timer != timer) call_timer_fn(timer, fn, baseclk);
ret = detach_if_pending(timer, base, true); base->running_timer = NULL;
raw_spin_unlock_irqrestore(&base->lock, flags); raw_spin_lock(&base->lock);
x = data;
If the timer has previously executed on CPU 1 and then CPU 0 can observe
base->running_timer == NULL and returns, assuming the timer has completed,
but it's not guaranteed on all architectures. The comment for
del_timer_sync() makes that guarantee. Moving the assignment under
base->lock prevents this.
For non-RT kernel it's performance wise completely irrelevant whether the
store happens before or after taking the lock. For an RT kernel moving the
store under the lock requires an extra unlock/lock pair in the case that
there is a waiter for the timer, but that's not the end of the world.
Reported-by: syzbot+aa7c2385d46c5eba0b89@syzkaller.appspotmail.com
Reported-by: syzbot+abea4558531bae1ba9fe@syzkaller.appspotmail.com
Fixes: 030dcdd197d7 ("timers: Prepare support for PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/87lfea7gw8.fsf@nanos.tec.linutronix.de
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit db3a34e17433de2390eb80d436970edcebd0ca3e ]
When the clocksource watchdog marks a clock as unstable, this might be due
to that clock being unstable or it might be due to delays that happen to
occur between the reads of the two clocks. Yes, interrupts are disabled
across those two reads, but there are no shortage of things that can delay
interrupts-disabled regions of code ranging from SMI handlers to vCPU
preemption. It would be good to have some indication as to why the clock
was marked unstable.
Therefore, re-read the watchdog clock on either side of the read from the
clock under test. If the watchdog clock shows an excessive time delta
between its pair of reads, the reads are retried.
The maximum number of retries is specified by a new kernel boot parameter
clocksource.max_cswd_read_retries, which defaults to three, that is, up to
four reads, one initial and up to three retries. If more than one retry
was required, a message is printed on the console (the occasional single
retry is expected behavior, especially in guest OSes). If the maximum
number of retries is exceeded, the clock under test will be marked
unstable. However, the probability of this happening due to various sorts
of delays is quite small. In addition, the reason (clock-read delays) for
the unstable marking will be apparent.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2d036dfa5f10df9782f5278fc591d79d283c1fad upstream.
The return value on success (>= 0) is overwritten by the return value of
put_old_timex32(). That works correct in the fault case, but is wrong for
the success case where put_old_timex32() returns 0.
Just check the return value of put_old_timex32() and return -EFAULT in case
it is not zero.
[ tglx: Massage changelog ]
Fixes: 3a4d44b61625 ("ntp: Move adjtimex related compat syscalls to native counterparts")
Signed-off-by: Chen Jun <chenjun102@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Cochran <richardcochran@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210414030449.90692-1-chenjun102@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5abbe51a526253b9f003e9a0a195638dc882d660 upstream.
Preparation for fixing get_nr_restart_syscall() on X86 for COMPAT.
Add a new helper which sets restart_block->fn and calls a dummy
arch_set_restart_data() helper.
Fixes: 609c19a385c8 ("x86/ptrace: Stop setting TS_COMPAT in ptrace code")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210201174641.GA17871@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 46eb1701c046cc18c032fa68f3c8ccbf24483ee4 ]
hrtimer_force_reprogram() and hrtimer_interrupt() invokes
__hrtimer_get_next_event() to find the earliest expiry time of hrtimer
bases. __hrtimer_get_next_event() does not update
cpu_base::[softirq_]_expires_next to preserve reprogramming logic. That
needs to be done at the callsites.
hrtimer_force_reprogram() updates cpu_base::softirq_expires_next only when
the first expiring timer is a softirq timer and the soft interrupt is not
activated. That's wrong because cpu_base::softirq_expires_next is left
stale when the first expiring timer of all bases is a timer which expires
in hard interrupt context. hrtimer_interrupt() does never update
cpu_base::softirq_expires_next which is wrong too.
That becomes a problem when clock_settime() sets CLOCK_REALTIME forward and
the first soft expiring timer is in the CLOCK_REALTIME_SOFT base. Setting
CLOCK_REALTIME forward moves the clock MONOTONIC based expiry time of that
timer before the stale cpu_base::softirq_expires_next.
cpu_base::softirq_expires_next is cached to make the check for raising the
soft interrupt fast. In the above case the soft interrupt won't be raised
until clock monotonic reaches the stale cpu_base::softirq_expires_next
value. That's incorrect, but what's worse it that if the softirq timer
becomes the first expiring timer of all clock bases after the hard expiry
timer has been handled the reprogramming of the clockevent from
hrtimer_interrupt() will result in an interrupt storm. That happens because
the reprogramming does not use cpu_base::softirq_expires_next, it uses
__hrtimer_get_next_event() which returns the actual expiry time. Once clock
MONOTONIC reaches cpu_base::softirq_expires_next the soft interrupt is
raised and the storm subsides.
Change the logic in hrtimer_force_reprogram() to evaluate the soft and hard
bases seperately, update softirq_expires_next and handle the case when a
soft expiring timer is the first of all bases by comparing the expiry times
and updating the required cpu base fields. Split this functionality into a
separate function to be able to use it in hrtimer_interrupt() as well
without copy paste.
Fixes: 5da70160462e ("hrtimer: Implement support for softirq based hrtimers")
Reported-by: Mikael Beckius <mikael.beckius@windriver.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikael Beckius <mikael.beckius@windriver.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210223160240.27518-1-anna-maria@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ba8ea8e7dd6e1662e34e730eadfc52aa6816f9dd ]
can_stop_idle_tick() checks whether the do_timer() duty has been taken over
by a CPU on boot. That's silly because the boot CPU always takes over with
the initial clockevent device.
But even if no CPU would have installed a clockevent and taken over the
duty then the question whether the tick on the current CPU can be stopped
or not is moot. In that case the current CPU would have no clockevent
either, so there would be nothing to keep ticking.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20201206212002.725238293@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5167c506d62dd9ffab73eba23c79b0a8845c9fe1 upstream.
Suspend to IDLE invokes tick_unfreeze() on resume. tick_unfreeze() on the
first resuming CPU resumes timekeeping, which also has the side effect of
resetting the softlockup watchdog on this CPU.
But on the secondary CPUs the watchdog is not reset in the resume /
unfreeze() path, which can result in false softlockup warnings on those
CPUs depending on the time spent in suspend.
Prevent this by clearing the softlock watchdog in the unfreeze path also
on the secondary resuming CPUs.
[ tglx: Massaged changelog ]
Signed-off-by: Chunyan Zhang <chunyan.zhang@unisoc.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200110083902.27276-1-chunyan.zhang@unisoc.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c51f8f88d705e06bd696d7510aff22b33eb8e638 upstream.
Non-cryptographic PRNGs may have great statistical properties, but
are usually trivially predictable to someone who knows the algorithm,
given a small sample of their output. An LFSR like prandom_u32() is
particularly simple, even if the sample is widely scattered bits.
It turns out the network stack uses prandom_u32() for some things like
random port numbers which it would prefer are *not* trivially predictable.
Predictability led to a practical DNS spoofing attack. Oops.
This patch replaces the LFSR with a homebrew cryptographic PRNG based
on the SipHash round function, which is in turn seeded with 128 bits
of strong random key. (The authors of SipHash have *not* been consulted
about this abuse of their algorithm.) Speed is prioritized over security;
attacks are rare, while performance is always wanted.
Replacing all callers of prandom_u32() is the quick fix.
Whether to reinstate a weaker PRNG for uses which can tolerate it
is an open question.
Commit f227e3ec3b5c ("random32: update the net random state on interrupt
and activity") was an earlier attempt at a solution. This patch replaces
it.
Reported-by: Amit Klein <aksecurity@gmail.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tytso@mit.edu
Cc: Florian Westphal <fw@strlen.de>
Cc: Marc Plumb <lkml.mplumb@gmail.com>
Fixes: f227e3ec3b5c ("random32: update the net random state on interrupt and activity")
Signed-off-by: George Spelvin <lkml@sdf.org>
Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/
[ willy: partial reversal of f227e3ec3b5c; moved SIPROUND definitions
to prandom.h for later use; merged George's prandom_seed() proposal;
inlined siprand_u32(); replaced the net_rand_state[] array with 4
members to fix a build issue; cosmetic cleanups to make checkpatch
happy; fixed RANDOM32_SELFTEST build ]
Signed-off-by: Willy Tarreau <w@1wt.eu>
[wt: backported to 5.4 -- no tracepoint there]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cb47755725da7b90fecbb2aa82ac3b24a7adb89b ]
UBSAN reports:
Undefined behaviour in ./include/linux/time64.h:127:27
signed integer overflow:
17179869187 * 1000000000 cannot be represented in type 'long long int'
Call Trace:
timespec64_to_ns include/linux/time64.h:127 [inline]
set_cpu_itimer+0x65c/0x880 kernel/time/itimer.c:180
do_setitimer+0x8e/0x740 kernel/time/itimer.c:245
__x64_sys_setitimer+0x14c/0x2c0 kernel/time/itimer.c:336
do_syscall_64+0xa1/0x540 arch/x86/entry/common.c:295
Commit bd40a175769d ("y2038: itimer: change implementation to timespec64")
replaced the original conversion which handled time clamping correctly with
timespec64_to_ns() which has no overflow protection.
Fix it in timespec64_to_ns() as this is not necessarily limited to the
usage in itimers.
[ tglx: Added comment and adjusted the fixes tag ]
Fixes: 361a3bf00582 ("time64: Add time64.h header and define struct timespec64")
Signed-off-by: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1598952616-6416-1-git-send-email-prime.zeng@hisilicon.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4cbbc3a0eeed675449b1a4d080008927121f3da3 ]
While unlikely the divisor in scale64_check_overflow() could be >= 32bit in
scale64_check_overflow(). do_div() truncates the divisor to 32bit at least
on 32bit platforms.
Use div64_u64() instead to avoid the truncation to 32-bit.
[ tglx: Massaged changelog ]
Signed-off-by: Wen Yang <wenyang@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200120100523.45656-1-wenyang@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f227e3ec3b5cad859ad15666874405e8c1bbc1d4 upstream.
This modifies the first 32 bits out of the 128 bits of a random CPU's
net_rand_state on interrupt or CPU activity to complicate remote
observations that could lead to guessing the network RNG's internal
state.
Note that depending on some network devices' interrupt rate moderation
or binding, this re-seeding might happen on every packet or even almost
never.
In addition, with NOHZ some CPUs might not even get timer interrupts,
leaving their local state rarely updated, while they are running
networked processes making use of the random state. For this reason, we
also perform this update in update_process_times() in order to at least
update the state when there is user or system activity, since it's the
only case we care about.
Reported-by: Amit Klein <aksecurity@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e2a71bdea81690b6ef11f4368261ec6f5b6891aa upstream.
When an expiration delta falls into the last level of the wheel, that delta
has be compared against the maximum possible delay and reduced to fit in if
necessary.
However instead of comparing the delta against the maximum, the code
compares the actual expiry against the maximum. Then instead of fixing the
delta to fit in, it sets the maximum delta as the expiry value.
This can result in various undesired outcomes, the worst possible one
being a timer expiring 15 days ahead to fire immediately.
Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200717140551.29076-2-frederic@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 30c66fc30ee7a98c4f3adf5fb7e213b61884474f upstream.
When a timer is enqueued with a negative delta (ie: expiry is below
base->clk), it gets added to the wheel as expiring now (base->clk).
Yet the value that gets stored in base->next_expiry, while calling
trigger_dyntick_cpu(), is the initial timer->expires value. The
resulting state becomes:
base->next_expiry < base->clk
On the next timer enqueue, forward_timer_base() may accidentally
rewind base->clk. As a possible outcome, timers may expire way too
early, the worst case being that the highest wheel levels get spuriously
processed again.
To prevent from that, make sure that base->next_expiry doesn't get below
base->clk.
Fixes: a683f390b93f ("timers: Forward the wheel clock whenever possible")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200703010657.2302-1-frederic@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2c8bd58812ee3dbf0d78b566822f7eacd34bdd7b ]
To minimize latency, PREEMPT_RT kernels expires hrtimers in preemptible
softirq context by default. This can be overriden by marking the timer's
expiry with HRTIMER_MODE_HARD.
sched_clock_timer is missing this annotation: if its callback is preempted
and the duration of the preemption exceeds the wrap around time of the
underlying clocksource, sched clock will get out of sync.
Mark the sched_clock_timer for expiry in hard interrupt context.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200309181529.26558-1-a.darwish@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 9f24c540f7f8eb3a981528da9a9a636a5bdf5987 upstream.
The low resolution parts of the VDSO, i.e.:
clock_gettime(CLOCK_*_COARSE), clock_getres(), time()
can be used even if there is no VDSO capable clocksource.
But if an architecture opts out of the VDSO data update then this
information becomes stale. This affects ARM when there is no architected
timer available. The lack of update causes userspace to use stale data
forever.
Make the update of the low resolution parts unconditional and only skip
the update of the high resolution parts if the architecture requests it.
Fixes: 44f57d788e7d ("timekeeping: Provide a generic update_vsyscall() implementation")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200114185946.765577901@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9a6b55ac4a44060bcb782baf002859b2a2c63267 upstream.
The function name suggests that this is a boolean checking whether the
architecture asks for an update of the VDSO data, but it works the other
way round. To spare further confusion invert the logic.
Fixes: 44f57d788e7d ("timekeeping: Provide a generic update_vsyscall() implementation")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200114185946.656652824@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c79108bd19a8490315847e0c95ac6526fcd8e770 ]
The alarmtimer_suspend() function will fail if an RTC device is on a bus
such as SPI or i2c and that RTC device registers and probes after
alarmtimer_init() registers and probes the 'alarmtimer' platform device.
This is because system wide suspend suspends devices in the reverse order
of their probe. When alarmtimer_suspend() attempts to program the RTC for a
wakeup it will try to program an RTC device on a bus that has already been
suspended.
Move the alarmtimer device registration to happen when the RTC which is
used for wakeup is registered. Register the 'alarmtimer' platform device as
a child of the RTC device too, so that it can be guaranteed that the RTC
device won't be suspended when alarmtimer_suspend() is called.
Reported-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20200124055849.154411-2-swboyd@chromium.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit febac332a819f0e764aa4da62757ba21d18c182b upstream.
Kernel crashes inside QEMU/KVM are observed:
kernel BUG at kernel/time/timer.c:1154!
BUG_ON(timer_pending(timer) || !timer->function) in add_timer_on().
At the same time another cpu got:
general protection fault: 0000 [#1] SMP PTI of poinson pointer 0xdead000000000200 in:
__hlist_del at include/linux/list.h:681
(inlined by) detach_timer at kernel/time/timer.c:818
(inlined by) expire_timers at kernel/time/timer.c:1355
(inlined by) __run_timers at kernel/time/timer.c:1686
(inlined by) run_timer_softirq at kernel/time/timer.c:1699
Unfortunately kernel logs are badly scrambled, stacktraces are lost.
Printing the timer->function before the BUG_ON() pointed to
clocksource_watchdog().
The execution of clocksource_watchdog() can race with a sequence of
clocksource_stop_watchdog() .. clocksource_start_watchdog():
expire_timers()
detach_timer(timer, true);
timer->entry.pprev = NULL;
raw_spin_unlock_irq(&base->lock);
call_timer_fn
clocksource_watchdog()
clocksource_watchdog_kthread() or
clocksource_unbind()
spin_lock_irqsave(&watchdog_lock, flags);
clocksource_stop_watchdog();
del_timer(&watchdog_timer);
watchdog_running = 0;
spin_unlock_irqrestore(&watchdog_lock, flags);
spin_lock_irqsave(&watchdog_lock, flags);
clocksource_start_watchdog();
add_timer_on(&watchdog_timer, ...);
watchdog_running = 1;
spin_unlock_irqrestore(&watchdog_lock, flags);
spin_lock(&watchdog_lock);
add_timer_on(&watchdog_timer, ...);
BUG_ON(timer_pending(timer) || !timer->function);
timer_pending() -> true
BUG()
I.e. inside clocksource_watchdog() watchdog_timer could be already armed.
Check timer_pending() before calling add_timer_on(). This is sufficient as
all operations are synchronized by watchdog_lock.
Fixes: 75c5158f70c0 ("timekeeping: Update clocksource with stop_machine")
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/158048693917.4378.13823603769948933793.stgit@buzz
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6b6d188aae79a630957aefd88ff5c42af6553ee3 upstream.
The alarmtimer_rtc_add_device() function creates a wakeup source and then
tries to grab a module reference. If that fails the function returns early
with an error code, but fails to remove the wakeup source.
Cleanup this exit path so there is no dangling wakeup source, which is
named 'alarmtime' left allocated which will conflict with another RTC
device that may be registered later.
Fixes: 51218298a25e ("alarmtimer: Ensure RTC module is not unloaded")
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200109155910.907-2-swboyd@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a33121e5487b424339636b25c35d3a180eaa5f5e ]
In a case when a ptp chardev (like /dev/ptp0) is open but an underlying
device is removed, closing this file leads to a race. This reproduces
easily in a kvm virtual machine:
ts# cat openptp0.c
int main() { ... fp = fopen("/dev/ptp0", "r"); ... sleep(10); }
ts# uname -r
5.5.0-rc3-46cf053e
ts# cat /proc/cmdline
... slub_debug=FZP
ts# modprobe ptp_kvm
ts# ./openptp0 &
[1] 670
opened /dev/ptp0, sleeping 10s...
ts# rmmod ptp_kvm
ts# ls /dev/ptp*
ls: cannot access '/dev/ptp*': No such file or directory
ts# ...woken up
[ 48.010809] general protection fault: 0000 [#1] SMP
[ 48.012502] CPU: 6 PID: 658 Comm: openptp0 Not tainted 5.5.0-rc3-46cf053e #25
[ 48.014624] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
[ 48.016270] RIP: 0010:module_put.part.0+0x7/0x80
[ 48.017939] RSP: 0018:ffffb3850073be00 EFLAGS: 00010202
[ 48.018339] RAX: 000000006b6b6b6b RBX: 6b6b6b6b6b6b6b6b RCX: ffff89a476c00ad0
[ 48.018936] RDX: fffff65a08d3ea08 RSI: 0000000000000247 RDI: 6b6b6b6b6b6b6b6b
[ 48.019470] ... ^^^ a slub poison
[ 48.023854] Call Trace:
[ 48.024050] __fput+0x21f/0x240
[ 48.024288] task_work_run+0x79/0x90
[ 48.024555] do_exit+0x2af/0xab0
[ 48.024799] ? vfs_write+0x16a/0x190
[ 48.025082] do_group_exit+0x35/0x90
[ 48.025387] __x64_sys_exit_group+0xf/0x10
[ 48.025737] do_syscall_64+0x3d/0x130
[ 48.026056] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 48.026479] RIP: 0033:0x7f53b12082f6
[ 48.026792] ...
[ 48.030945] Modules linked in: ptp i6300esb watchdog [last unloaded: ptp_kvm]
[ 48.045001] Fixing recursive fault but reboot is needed!
This happens in:
static void __fput(struct file *file)
{ ...
if (file->f_op->release)
file->f_op->release(inode, file); <<< cdev is kfree'd here
if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL &&
!(mode & FMODE_PATH))) {
cdev_put(inode->i_cdev); <<< cdev fields are accessed here
Namely:
__fput()
posix_clock_release()
kref_put(&clk->kref, delete_clock) <<< the last reference
delete_clock()
delete_ptp_clock()
kfree(ptp) <<< cdev is embedded in ptp
cdev_put
module_put(p->owner) <<< *p is kfree'd, bang!
Here cdev is embedded in posix_clock which is embedded in ptp_clock.
The race happens because ptp_clock's lifetime is controlled by two
refcounts: kref and cdev.kobj in posix_clock. This is wrong.
Make ptp_clock's sysfs device a parent of cdev with cdev_device_add()
created especially for such cases. This way the parent device with its
ptp_clock is not released until all references to the cdev are released.
This adds a requirement that an initialized but not exposed struct
device should be provided to posix_clock_register() by a caller instead
of a simple dev_t.
This approach was adopted from the commit 72139dfa2464 ("watchdog: Fix
the race between the release of watchdog_core_data and cdev"). See
details of the implementation in the commit 233ed09d7fda ("chardev: add
helper function to register char devs with a struct device").
Link: https://lore.kernel.org/linux-fsdevel/20191125125342.6189-1-vdronov@redhat.com/T/#u
Analyzed-by: Stephen Johnston <sjohnsto@redhat.com>
Analyzed-by: Vern Lovejoy <vlovejoy@redhat.com>
Signed-off-by: Vladis Dronov <vdronov@redhat.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7b8474466ed97be458c825f34a85f2c2b84c3f95 upstream.
On compat interfaces, the high order bits of nanoseconds should be zeroed
out. This is because the application code or the libc do not guarantee
zeroing of these. If used without zeroing, kernel might be at risk of using
timespec values incorrectly.
Originally it was handled correctly, but lost during is_compat_syscall()
cleanup. Revert the condition back to check CONFIG_64BIT.
Fixes: 98f76206b335 ("compat: Cleanup in_compat_syscall() callers")
Reported-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20191121000303.126523-1-dima@arista.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A cast to 'time_t' was accidentally left in place during the
conversion of __do_adjtimex() to 64-bit timestamps, so the
resulting value is incorrectly truncated.
Remove the cast so the 64-bit time gets propagated correctly.
Fixes: ead25417f82e ("timex: use __kernel_timex internally")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20191108203435.112759-2-arnd@arndb.de
The update of the VDSO data is depending on __arch_use_vsyscall() returning
True. This is a leftover from the attempt to map the features of various
architectures 1:1 into generic code.
The usage of __arch_use_vsyscall() in the actual vsyscall implementations
got dropped and replaced by the requirement for the architecture code to
return U64_MAX if the global clocksource is not usable in the VDSO.
But the __arch_use_vsyscall() check in the update code stayed which causes
the VDSO data to be stale or invalid when an architecture actually
implements that function and returns False when the current clocksource is
not usable in the VDSO.
As a consequence the VDSO implementations of clock_getres(), time(),
clock_gettime(CLOCK_.*_COARSE) operate on invalid data and return bogus
information.
Remove the __arch_use_vsyscall() check from the VDSO update function and
update the VDSO data unconditionally.
[ tglx: Massaged changelog and removed the now useless implementations in
asm-generic/ARM64/MIPS ]
Fixes: 44f57d788e7deecb50 ("timekeeping: Provide a generic update_vsyscall() implementation")
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1571887709-11447-1-git-send-email-chenhc@lemote.com
Recent changes modified the function arguments of
thread_group_sample_cputime() and task_cputimers_expired(), but forgot to
update the comments. Fix it up.
[ tglx: Changed the argument name of task_cputimers_expired() as the pointer
points to an array of samples. ]
Fixes: b7be4ef1365d ("posix-cpu-timers: Switch thread group sampling to array")
Fixes: 001f7971433a ("posix-cpu-timers: Make expiry checks array based")
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1571643852-21848-1-git-send-email-wang.yi59@zte.com.cn
Include the timekeeping.h header to get the declaration of the
sched_clock_{suspend,resume} functions. Fixes the following sparse
warnings:
kernel/time/sched_clock.c:275:5: warning: symbol 'sched_clock_suspend' was not declared. Should it be static?
kernel/time/sched_clock.c:286:6: warning: symbol 'sched_clock_resume' was not declared. Should it be static?
Signed-off-by: Ben Dooks (Codethink) <ben.dooks@codethink.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191022131226.11465-1-ben.dooks@codethink.co.uk
Followup to commit dd2261ed45aa ("hrtimer: Protect lockless access
to timer->base")
lock_hrtimer_base() fetches timer->base without lock exclusion.
Compiler is allowed to read timer->base twice (even if considered dumb)
which could end up trying to lock migration_base and return
&migration_base.
base = timer->base;
if (likely(base != &migration_base)) {
/* compiler reads timer->base again, and now (base == &migration_base)
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
if (likely(base == timer->base))
return base; /* == &migration_base ! */
Similarly the write sides must use WRITE_ONCE() to avoid store tearing.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191008173204.180879-1-edumazet@google.com
When a cpu requests broadcasting, before starting the tick broadcast
hrtimer, bc_set_next() checks if the timer callback (bc_handler) is active
using hrtimer_try_to_cancel(). But hrtimer_try_to_cancel() does not provide
the required synchronization when the callback is active on other core.
The callback could have already executed tick_handle_oneshot_broadcast()
and could have also returned. But still there is a small time window where
the hrtimer_try_to_cancel() returns -1. In that case bc_set_next() returns
without doing anything, but the next_event of the tick broadcast clock
device is already set to a timeout value.
In the race condition diagram below, CPU #1 is running the timer callback
and CPU #2 is entering idle state and so calls bc_set_next().
In the worst case, the next_event will contain an expiry time, but the
hrtimer will not be started which happens when the racing callback returns
HRTIMER_NORESTART. The hrtimer might never recover if all further requests
from the CPUs to subscribe to tick broadcast have timeout greater than the
next_event of tick broadcast clock device. This leads to cascading of
failures and finally noticed as rcu stall warnings
Here is a depiction of the race condition
CPU #1 (Running timer callback) CPU #2 (Enter idle
and subscribe to
tick broadcast)
--------------------- ---------------------
__run_hrtimer() tick_broadcast_enter()
bc_handler() __tick_broadcast_oneshot_control()
tick_handle_oneshot_broadcast()
raw_spin_lock(&tick_broadcast_lock);
dev->next_event = KTIME_MAX; //wait for tick_broadcast_lock
//next_event for tick broadcast clock
set to KTIME_MAX since no other cores
subscribed to tick broadcasting
raw_spin_unlock(&tick_broadcast_lock);
if (dev->next_event == KTIME_MAX)
return HRTIMER_NORESTART
// callback function exits without
restarting the hrtimer //tick_broadcast_lock acquired
raw_spin_lock(&tick_broadcast_lock);
tick_broadcast_set_event()
clockevents_program_event()
dev->next_event = expires;
bc_set_next()
hrtimer_try_to_cancel()
//returns -1 since the timer
callback is active. Exits without
restarting the timer
cpu_base->running = NULL;
The comment that hrtimer cannot be armed from within the callback is
wrong. It is fine to start the hrtimer from within the callback. Also it is
safe to start the hrtimer from the enter/exit idle code while the broadcast
handler is active. The enter/exit idle code and the broadcast handler are
synchronized using tick_broadcast_lock. So there is no need for the
existing try to cancel logic. All this can be removed which will eliminate
the race condition as well.
Fixes: 5d1638acb9f6 ("tick: Introduce hrtimer based broadcast")
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190926135101.12102-2-balasubramani_vivekanandan@mentor.com
Pull timer fix from Ingo Molnar:
"Fix a timer expiry bug that would cause spurious delay of timers"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timer: Read jiffies once when forwarding base clk
The timer delayed for more than 3 seconds warning was triggered during
testing.
Workqueue: events_unbound sched_tick_remote
RIP: 0010:sched_tick_remote+0xee/0x100
...
Call Trace:
process_one_work+0x18c/0x3a0
worker_thread+0x30/0x380
kthread+0x113/0x130
ret_from_fork+0x22/0x40
The reason is that the code in collect_expired_timers() uses jiffies
unprotected:
if (next_event > jiffies)
base->clk = jiffies;
As the compiler is allowed to reload the value base->clk can advance
between the check and the store and in the worst case advance farther than
next event. That causes the timer expiry to be delayed until the wheel
pointer wraps around.
Convert the code to use READ_ONCE()
Fixes: 236968383cf5 ("timers: Optimize collect_expired_timers() for NOHZ")
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Liang ZhiCheng <liangzhicheng@baidu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1568894687-14499-1-git-send-email-lirongqing@baidu.com
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching
governor for virtualized guests wanting to do guest-side polling
in the idle loop (Marcelo Tosatti, Joao Martins, Wanpeng Li,
Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling
typos in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard
Crestez, MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl2ArZ4SHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxgfYQAK80hs43vWQDmp7XKrN4pQe8+qYULAGO
fBfrFl+NG9y/cnuqnt3NtA8MoyNsMMkMLkpkEDMfSbYqqH5ehEzX5+uGJWiWx8+Y
oH5KU8MH7Tj/utYaalGzDt0AHfHZDIGC0NCUNQJVtE/4mOANFabwsCwscp4MrD5Q
WjFN8U4BrsmWgJdZ/U9QIWcDZ0I+1etCF+rZG2yxSv31FMq2Zk/Qm4YyobqCvQFl
TR9rxl08wqUmIYIz5cDjt/3AKH7NLLDqOTstbCL7cmufM5XPFc1yox69xc89UrIa
4AMgmDp7SMwFG/gdUPof0WQNmx7qxmiRAPleAOYBOZW/8jPNZk2y+RhM5NeF72m7
AFqYiuxqatkSb4IsT8fLzH9IUZOdYr8uSmoMQECw+MHdApaKFjFV8Lb/qx5+AwkD
y7pwys8dZSamAjAf62eUzJDWcEwkNrujIisGrIXrVHb7ISbweskMOmdAYn9p4KgP
dfRzpJBJ45IaMIdbaVXNpg3rP7Apfs7X1X+/ZhG6f+zHH3zYwr8Y81WPqX8WaZJ4
qoVCyxiVWzMYjY2/1lzjaAdqWojPWHQ3or3eBaK52DouyG3jY6hCDTLwU7iuqcCX
jzAtrnqrNIKufvaObEmqcmYlIIOFT7QaJCtGUSRFQLfSon8fsVSR7LLeXoAMUJKT
JWQenuNaJngK
=TBDQ
-----END PGP SIGNATURE-----
Merge tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These include a rework of the main suspend-to-idle code flow (related
to the handling of spurious wakeups), a switch over of several users
of cpufreq notifiers to QoS-based limits, a new devfreq driver for
Tegra20, a new cpuidle driver and governor for virtualized guests, an
extension of the wakeup sources framework to expose wakeup sources as
device objects in sysfs, and more.
Specifics:
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching governor
for virtualized guests wanting to do guest-side polling in the idle
loop (Marcelo Tosatti, Joao Martins, Wanpeng Li, Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel
Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling typos
in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard Crestez,
MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski)"
* tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (126 commits)
cpuidle-haltpoll: Enable kvm guest polling when dedicated physical CPUs are available
cpuidle-haltpoll: do not set an owner to allow modunload
cpuidle-haltpoll: return -ENODEV on modinit failure
cpuidle-haltpoll: set haltpoll as preferred governor
cpuidle: allow governor switch on cpuidle_register_driver()
PM: runtime: Documentation: add runtime_status ABI document
pm-graph: make setVal unbuffered again for python2 and python3
powercap: idle_inject: Use higher resolution for idle injection
cpuidle: play_idle: Increase the resolution to usec
cpuidle-haltpoll: vcpu hotplug support
cpufreq: Add qcs404 to cpufreq-dt-platdev blacklist
cpufreq: qcom: Add support for qcs404 on nvmem driver
cpufreq: qcom: Refactor the driver to make it easier to extend
cpufreq: qcom: Re-organise kryo cpufreq to use it for other nvmem based qcom socs
dt-bindings: opp: Add qcom-opp bindings with properties needed for CPR
dt-bindings: opp: qcom-nvmem: Support pstates provided by a power domain
Documentation: cpufreq: Update policy notifier documentation
cpufreq: Remove CPUFREQ_ADJUST and CPUFREQ_NOTIFY policy notifier events
PM / Domains: Verify PM domain type in dev_pm_genpd_set_performance_state()
PM / Domains: Simplify genpd_lookup_dev()
...
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
The recent consolidation of the three permission checks introduced a subtle
regression. For timer_create() with a process wide timer it returns the
current task if the lookup through the PID which is encoded into the
clockid results in returning current.
That's broken because it does not validate whether the current task is the
group leader.
That was caused by the two different variants of permission checks:
- posix_cpu_timer_get() allowed access to the process wide clock when the
looked up task is current. That's not an issue because the process wide
clock is in the shared sighand.
- posix_cpu_timer_create() made sure that the looked up task is the group
leader.
Restore the previous state.
Note, that these permission checks are more than questionable, but that's
subject to follow up changes.
Fixes: 6ae40e3fdcd3 ("posix-cpu-timers: Provide task validation functions")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1909052314110.1902@nanos.tec.linutronix.de
ENOTSUPP is not supposed to be returned to userspace. This was found on an
OpenPower machine, where the RTC does not support set_alarm.
On that system, a clock_nanosleep(CLOCK_REALTIME_ALARM, ...) results in
"524 Unknown error 524"
Replace it with EOPNOTSUPP which results in the expected "95 Operation not
supported" error.
Fixes: 1c6b39ad3f01 (alarmtimers: Return -ENOTSUPP if no RTC device is present)
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190903171802.28314-1-cascardo@canonical.com
The recent change to avoid taking the expiry lock when a timer is currently
migrated missed to add a bracket at the end of the if statement leading to
compile errors. Since that commit the variable `migration_base' is always
used but it is only available on SMP configuration thus leading to another
compile error. The changelog says "The timer base and base->cpu_base
cannot be NULL in the code path", so it is safe to limit this check to SMP
configurations only.
Add the missing bracket to the if statement and hide `migration_base'
behind CONFIG_SMP bars.
[ tglx: Mark the functions inline ... ]
Fixes: 68b2c8c1e4210 ("hrtimer: Don't take expiry_lock when timer is currently migrated")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190904145527.eah7z56ntwobqm6j@linutronix.de
The state tracking changes broke the expiry active check by not writing to
it and instead sitting timers_active, which is already set.
That's not a big issue as the actual expiry is protected by sighand lock,
so concurrent handling is not possible. That means that the second task
which invokes that function executes the expiry code for nothing.
Write to the proper flag.
Also add a check whether the flag is set into check_process_timers(). That
check had been missing in the code before the rework already. The check for
another task handling the expiry of process wide timers was only done in
the fastpath check. If the fastpath check returns true because a per task
timer expired, then the checking of process wide timers was done in
parallel which is as explained above just a waste of cycles.
Fixes: 244d49e30653 ("posix-cpu-timers: Move state tracking to struct posix_cputimers")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
sched_timer must be initialized with the _HARD mode suffix to ensure expiry
in hard interrupt context on RT.
The previous conversion to HARD expiry mode missed on one instance in
tick_nohz_switch_to_nohz(). Fix it up.
Fixes: 902a9f9c50905 ("tick: Mark tick related hrtimers to expiry in hard interrupt context")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190823113845.12125-3-bigeasy@linutronix.de
Using a linear O(N) search for timer insertion affects execution time and
D-cache footprint badly with a larger number of timers.
Switch the storage to a timerqueue which is already used for hrtimers and
alarmtimers. It does not affect the size of struct k_itimer as it.alarm is
still larger.
The extra list head for the expiry list will go away later once the expiry
is moved into task work context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908272129220.1939@nanos.tec.linutronix.de
Both thread and process expiry functions have the same functionality for
sending signals for soft and hard RLIMITs duplicated in 4 different
ways.
Split it out into a common function and cleanup the callsites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.653276779@linutronix.de