IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 496b9bcd62b0b3a160be61e3265a086f97adcbd3 upstream.
Log the corrupt buffer before we release the buffer.
Fixes: a5155b870d687 ("xfs: always log corruption errors")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6da1b4b1ab36d80a3994fd4811c8381de10af604 upstream.
When overlayfs is running on top of xfs and the user unlinks a file in
the overlay, overlayfs will create a whiteout inode and ask xfs to
"rename" the whiteout file atop the one being unlinked. If the file
being unlinked loses its one nlink, we then have to put the inode on the
unlinked list.
This requires us to grab the AGI buffer of the whiteout inode to take it
off the unlinked list (which is where whiteouts are created) and to grab
the AGI buffer of the file being deleted. If the whiteout was created
in a higher numbered AG than the file being deleted, we'll lock the AGIs
in the wrong order and deadlock.
Therefore, grab all the AGI locks we think we'll need ahead of time, and
in order of increasing AG number per the locking rules.
Reported-by: wenli xie <wlxie7296@gmail.com>
Fixes: 93597ae8dac0 ("xfs: Fix deadlock between AGI and AGF when target_ip exists in xfs_rename()")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 13eaec4b2adf2657b8167b67e27c97cc7314d923 upstream.
Alex Lyakas reported[1] that mounting an xfs filesystem with new sunit
and swidth values could cause xfs_repair to fail loudly. The problem
here is that repair calculates the where mkfs should have allocated the
root inode, based on the superblock geometry. The allocation decisions
depend on sunit, which means that we really can't go updating sunit if
it would lead to a subsequent repair failure on an otherwise correct
filesystem.
Port from xfs_repair some code that computes the location of the root
inode and teach mount to skip the ondisk update if it would cause
problems for repair. Along the way we'll update the documentation,
provide a function for computing the minimum AGFL size instead of
open-coding it, and cut down some indenting in the mount code.
Note that we allow the mount to proceed (and new allocations will
reflect this new geometry) because we've never screened this kind of
thing before. We'll have to wait for a new future incompat feature to
enforce correct behavior, alas.
Note that the geometry reporting always uses the superblock values, not
the incore ones, so that is what xfs_info and xfs_growfs will report.
[1] https://lore.kernel.org/linux-xfs/20191125130744.GA44777@bfoster/T/#m00f9594b511e076e2fcdd489d78bc30216d72a7d
Reported-by: Alex Lyakas <alex@zadara.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4f5b1b3a8fa07dc8ecedfaf539b3deed8931a73e upstream.
If the administrator provided a sunit= mount option, we need to validate
the raw parameter, convert the mount option units (512b blocks) into the
internal unit (fs blocks), and then validate that the (now cooked)
parameter doesn't screw anything up on disk. The incore inode geometry
computation can depend on the new sunit option, but a subsequent patch
will make validating the cooked value depends on the computed inode
geometry, so break the sunit update into two steps.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1cac233cfe71f21e069705a4930c18e48d897be6 upstream.
Refactor xfs_alloc_min_freelist to accept a NULL @pag argument, in which
case it returns the largest possible minimum length. This will be used
in an upcoming patch to compute the length of the AGFL at mkfs time.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 826f7e34130a4ce756138540170cbe935c537a47 upstream.
The xfs_log_item flags were converted to atomic bitops as of commit
22525c17ed ("xfs: log item flags are racy"). The assert check for
AIL presence in xfs_buf_item_relse() still uses the old value based
check. This likely went unnoticed as XFS_LI_IN_AIL evaluates to 0
and causes the assert to unconditionally pass. Fix up the check.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Fixes: 22525c17ed ("xfs: log item flags are racy")
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d0c2204135a0cdbc607c94c481cf1ccb2f659aa7 upstream.
generic/522 (fsx) occasionally fails with a file corruption due to
an insert range operation. The primary characteristic of the
corruption is a misplaced insert range operation that differs from
the requested target offset. The reason for this behavior is a race
between the extent shift sequence of an insert range and a COW
writeback completion that causes a front merge with the first extent
in the shift.
The shift preparation function flushes and unmaps from the target
offset of the operation to the end of the file to ensure no
modifications can be made and page cache is invalidated before file
data is shifted. An insert range operation then splits the extent at
the target offset, if necessary, and begins to shift the start
offset of each extent starting from the end of the file to the start
offset. The shift sequence operates at extent level and so depends
on the preparation sequence to guarantee no changes can be made to
the target range during the shift. If the block immediately prior to
the target offset was dirty and shared, however, it can undergo
writeback and move from the COW fork to the data fork at any point
during the shift. If the block is contiguous with the block at the
start offset of the insert range, it can front merge and alter the
start offset of the extent. Once the shift sequence reaches the
target offset, it shifts based on the latest start offset and
silently changes the target offset of the operation and corrupts the
file.
To address this problem, update the shift preparation code to
stabilize the start boundary along with the full range of the
insert. Also update the existing corruption check to fail if any
extent is shifted with a start offset behind the target offset of
the insert range. This prevents insert from racing with COW
writeback completion and fails loudly in the event of an unexpected
extent shift.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 050552cbe06a3a9c3f977dcf11ff998ae1d5c2d5 upstream.
Fix a few places where we xlog_alloc_buffer a buffer, hit an error, and
then bail out without freeing the buffer.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a5155b870d687de1a5f07e774b49b1e8ef0f6f50 upstream.
Make sure we log something to dmesg whenever we return -EFSCORRUPTED up
the call stack.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d243b89a611e83dc97ce7102419360677a664076 upstream.
Some of the xfs error message functions take a pointer to a buffer that
will be dumped to the system log. The logging functions don't change
the contents, so constify all the parameters. This enables the next
patch to ensure that we log bad metadata when we encounter it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 895e196fb6f84402dcd0c1d3c3feb8a58049564e upstream.
Convert EIO to EFSCORRUPTED in the logging code when we can determine
that the log contents are invalid.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 93597ae8dac0149b5c00b787cba6bf7ba213e666 upstream.
When target_ip exists in xfs_rename(), the xfs_dir_replace() call may
need to hold the AGF lock to allocate more blocks, and then invoking
the xfs_droplink() call to hold AGI lock to drop target_ip onto the
unlinked list, so we get the lock order AGF->AGI. This would break the
ordering constraint on AGI and AGF locking - inode allocation locks
the AGI, then can allocate a new extent for new inodes, locking the
AGF after the AGI.
In this patch we check whether the replace operation need more
blocks firstly. If so, acquire the agi lock firstly to preserve
locking order(AGI/AGF). Actually, the locking order problem only
occurs when we are locking the AGI/AGF of the same AG. For multiple
AGs the AGI lock will be released after the transaction committed.
Signed-off-by: kaixuxia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: reword the comment]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2815a16d7ff6230a8e37928829d221bb075aa160 upstream.
In xfs_iomap_write_unwritten, we need to ensure that dquots are attached
to the inode and quota blocks reserved so that we capture in the quota
counters any blocks allocated to handle a bmbt split. This can happen
on the first unwritten extent conversion to a preallocated sparse file
on a fresh mount.
This was found by running generic/311 with quotas enabled. The bug
seems to have been introduced in "[XFS] rework iocore infrastructure,
remove some code and make it more" from ~2002?
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d6abecb82573fed5f7e4b595b5c0bd37707d2848 upstream.
Range check the region counter when we're reassembling regions from log
items during log recovery. In the old days ASSERT would halt the
kernel, but this isn't true any more so we have to make an explicit
error return.
Coverity-id: 1132508
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 110f09cb705af8c53f2a457baf771d2935ed62d4 upstream.
The fsmap handler shouldn't fail silently if the rmap code ever feeds it
a special owner number that isn't known to the fsmap handler.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 88cdb7147b21b2d8b4bd3f3d95ce0bffd73e1ac3 upstream.
We should never see delalloc blocks for a pNFS layout, write or not.
Adjust the assert to check for that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c2414ad6e66ab96b867309454498f7fb29b7e855 upstream.
There are a few places where we return -EIO instead of -EFSCORRUPTED
when we find corrupt metadata. Fix those places.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
From: Dave Chinner <dchinner@redhat.com>
commit 7684e2c4384d5d1f884b01ab8bff2369e4db0bff upstream.
When doing a direct IO that spans the current EOF, and there are
written blocks beyond EOF that extend beyond the current write, the
only metadata update that needs to be done is a file size extension.
However, we don't mark such iomaps as IOMAP_F_DIRTY to indicate that
there is IO completion metadata updates required, and hence we may
fail to correctly sync file size extensions made in IO completion
when O_DSYNC writes are being used and the hardware supports FUA.
Hence when setting IOMAP_F_DIRTY, we need to also take into account
whether the iomap spans the current EOF. If it does, then we need to
mark it dirty so that IO completion will call generic_write_sync()
to flush the inode size update to stable storage correctly.
Fixes: 3460cac1ca76 ("iomap: Use FUA for pure data O_DSYNC DIO writes")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: removed the ext4 part; they'll handle it separately]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e445976537ad139162980bee015b7364e5b64fff upstream.
This ASSERT in xfs_rename is a) incorrect, because
(RENAME_WHITEOUT|RENAME_NOREPLACE) is a valid combination, and
b) unnecessary, because actual invalid flag combinations are already
handled at the vfs level in do_renameat2() before we get called.
So, remove it.
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Fixes: 7dcf5c3e4527 ("xfs: add RENAME_WHITEOUT support")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 983d8e60f50806f90534cc5373d0ce867e5aaf79 upstream.
The old ALLOCSP/FREESP ioctls in XFS can be used to preallocate space at
the end of files, just like fallocate and RESVSP. Make the behavior
consistent with the other ioctls.
Reported-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 88a9e03beef22cc5fabea344f54b9a0dfe63de08 upstream.
An assert failure is triggered by syzkaller test due to
ATTR_KILL_PRIV is not cleared before xfs_setattr_size.
As ATTR_KILL_PRIV is not checked/used by xfs_setattr_size,
just remove it from the assert.
Signed-off-by: Yumei Huang <yuhuang@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5fcd57505c002efc5823a7355e21f48dd02d5a51 upstream.
The only use of I_DIRTY_TIME_EXPIRE is to detect in
__writeback_single_inode() that inode got there because flush worker
decided it's time to writeback the dirty inode time stamps (either
because we are syncing or because of age). However we can detect this
directly in __writeback_single_inode() and there's no need for the
strange propagation with I_DIRTY_TIME_EXPIRE flag.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit eb8409071a1d47e3593cfe077107ac46853182ab ]
This reverts commit 6ff646b2ceb0eec916101877f38da0b73e3a5b7f.
Your maintainer committed a major braino in the rmap code by adding the
attr fork, bmbt, and unwritten extent usage bits into rmap record key
comparisons. While XFS uses the usage bits *in the rmap records* for
cross-referencing metadata in xfs_scrub and xfs_repair, it only needs
the owner and offset information to distinguish between reverse mappings
of the same physical extent into the data fork of a file at multiple
offsets. The other bits are not important for key comparisons for index
lookups, and never have been.
Eric Sandeen reports that this causes regressions in generic/299, so
undo this patch before it does more damage.
Reported-by: Eric Sandeen <sandeen@sandeen.net>
Fixes: 6ff646b2ceb0 ("xfs: fix rmap key and record comparison functions")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 595189c25c28a55523354336bf24453242c81c15 ]
In xfs_initialize_perag(), if kmem_zalloc(), xfs_buf_hash_init(), or
radix_tree_preload() failed, the returned value 'error' is not set
accordingly.
Reported-as-fixing: 8b26c5825e02 ("xfs: handle ENOMEM correctly during initialisation of perag structures")
Fixes: 9b2471797942 ("xfs: cache unlinked pointers in an rhashtable")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 498fe261f0d6d5189f8e11d283705dd97b474b54 ]
We always know the correct state of the rmap record flags (attr, bmbt,
unwritten) so check them by direct comparison.
Fixes: d852657ccfc0 ("xfs: cross-reference reverse-mapping btree")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e95b6c3ef1311dd7b20467d932a24b6d0fd88395 ]
The comment and logic in xchk_btree_check_minrecs for dealing with
inode-rooted btrees isn't quite correct. While the direct children of
the inode root are allowed to have fewer records than what would
normally be allowed for a regular ondisk btree block, this is only true
if there is only one child block and the number of records don't fit in
the inode root.
Fixes: 08a3a692ef58 ("xfs: btree scrub should check minrecs")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2bd3fa793aaa7e98b74e3653fdcc72fa753913b5 ]
We also need to drop the iolock when invalidate_inode_pages2 fails, not
only on all other error or successful cases.
Fixes: 527851124d10 ("xfs: implement pNFS export operations")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 54e9b09e153842ab5adb8a460b891e11b39e9c3d ]
Fix some serious WTF in the reference count scrubber's rmap fragment
processing. The code comment says that this loop is supposed to move
all fragment records starting at or before bno onto the worklist, but
there's no obvious reason why nr (the number of items added) should
increment starting from 1, and breaking the loop when we've added the
target number seems dubious since we could have more rmap fragments that
should have been added to the worklist.
This seems to manifest in xfs/411 when adding one to the refcount field.
Fixes: dbde19da9637 ("xfs: cross-reference the rmapbt data with the refcountbt")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6ff646b2ceb0eec916101877f38da0b73e3a5b7f ]
Keys for extent interval records in the reverse mapping btree are
supposed to be computed as follows:
(physical block, owner, fork, is_btree, is_unwritten, offset)
This provides users the ability to look up a reverse mapping from a bmbt
record -- start with the physical block; then if there are multiple
records for the same block, move on to the owner; then the inode fork
type; and so on to the file offset.
However, the key comparison functions incorrectly remove the
fork/btree/unwritten information that's encoded in the on-disk offset.
This means that lookup comparisons are only done with:
(physical block, owner, offset)
This means that queries can return incorrect results. On consistent
filesystems this hasn't been an issue because blocks are never shared
between forks or with bmbt blocks; and are never unwritten. However,
this bug means that online repair cannot always detect corruption in the
key information in internal rmapbt nodes.
Found by fuzzing keys[1].attrfork = ones on xfs/371.
Fixes: 4b8ed67794fe ("xfs: add rmap btree operations")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5dda3897fd90783358c4c6115ef86047d8c8f503 ]
When the bmbt scrubber is looking up rmap extents, we need to set the
extent flags from the bmbt record fully. This will matter once we fix
the rmap btree comparison functions to check those flags correctly.
Fixes: d852657ccfc0 ("xfs: cross-reference reverse-mapping btree")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ea8439899c0b15a176664df62aff928010fad276 ]
Pass the same oldext argument (which contains the existing rmapping's
unwritten state) to xfs_rmap_lookup_le_range at the start of
xfs_rmap_convert_shared. At this point in the code, flags is zero,
which means that we perform lookups using the wrong key.
Fixes: 3f165b334e51 ("xfs: convert unwritten status of reverse mappings for shared files")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c1f6b1ac00756a7108e5fcb849a2f8230c0b62a5 ]
The kernel has always allowed directories to have the rtinherit flag
set, even if there is no rt device, so this check is wrong.
Fixes: 80e4e1268802 ("xfs: scrub inodes")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 869ae85dae64b5540e4362d7fe4cd520e10ec05c ]
It is possible to expose non-zeroed post-EOF data in XFS if the new
EOF page is dirty, backed by an unwritten block and the truncate
happens to race with writeback. iomap_truncate_page() will not zero
the post-EOF portion of the page if the underlying block is
unwritten. The subsequent call to truncate_setsize() will, but
doesn't dirty the page. Therefore, if writeback happens to complete
after iomap_truncate_page() (so it still sees the unwritten block)
but before truncate_setsize(), the cached page becomes inconsistent
with the on-disk block. A mapped read after the associated page is
reclaimed or invalidated exposes non-zero post-EOF data.
For example, consider the following sequence when run on a kernel
modified to explicitly flush the new EOF page within the race
window:
$ xfs_io -fc "falloc 0 4k" -c fsync /mnt/file
$ xfs_io -c "pwrite 0 4k" -c "truncate 1k" /mnt/file
...
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: 00 00 00 00 00 00 00 00 ........
$ umount /mnt/; mount <dev> /mnt/
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: cd cd cd cd cd cd cd cd ........
Update xfs_setattr_size() to explicitly flush the new EOF page prior
to the page truncate to ensure iomap has the latest state of the
underlying block.
Fixes: 68a9f5e7007c ("xfs: implement iomap based buffered write path")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2c334e12f957cd8c6bb66b4aa3f79848b7c33cab ]
Make sure that we actually initialize xefi_discard when we're scheduling
a deferred free of an AGFL block. This was (eventually) found by the
UBSAN while I was banging on realtime rmap problems, but it exists in
the upstream codebase. While we're at it, rearrange the structure to
reduce the struct size from 64 to 56 bytes.
Fixes: fcb762f5de2e ("xfs: add bmapi nodiscard flag")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
837a6e7f5cdb ("fs: add generic UNRESVSP and ZERO_RANGE ioctl handlers") changed
ioctls XFS_IOC_UNRESVSP XFS_IOC_UNRESVSP64 and XFS_IOC_ZERO_RANGE to be generic
instead of xfs specific.
Because of this change, 36f11775da75 ("xfs: properly serialise fallocate against
AIO+DIO") needed adaptation, as 5.4 still uses the xfs specific ioctls.
Without this, xfstests xfs/242 and xfs/290 fail. Both of these tests test
XFS_IOC_ZERO_RANGE.
Fixes: 36f11775da75 ("xfs: properly serialise fallocate against AIO+DIO")
Tested-by: Andy Strohman <astroh@amazon.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8df0fa39bdd86ca81a8d706a6ed9d33cc65ca625 ]
When callers pass XFS_BMAPI_REMAP into xfs_bunmapi, they want the extent
to be unmapped from the given file fork without the extent being freed.
We do this for non-rt files, but we forgot to do this for realtime
files. So far this isn't a big deal since nobody makes a bunmapi call
to a rt file with the REMAP flag set, but don't leave a logic bomb.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f4c32e87de7d66074d5612567c5eac7325024428 ]
The realtime bitmap and summary files are regular files that are hidden
away from the directory tree. Since they're regular files, inode
inactivation will try to purge what it thinks are speculative
preallocations beyond the incore size of the file. Unfortunately,
xfs_growfs_rt forgets to update the incore size when it resizes the
inodes, with the result that inactivating the rt inodes at unmount time
will cause their contents to be truncated.
Fix this by updating the incore size when we change the ondisk size as
part of updating the superblock. Note that we don't do this when we're
allocating blocks to the rt inodes because we actually want those blocks
to get purged if the growfs fails.
This fixes corruption complaints from the online rtsummary checker when
running xfs/233. Since that test requires rmap, one can also trigger
this by growing an rt volume, cycling the mount, and creating rt files.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2a6ca4baed620303d414934aa1b7b0a8e7bab05f ]
There's an overflow bug in the realtime allocator. If the rt volume is
large enough to handle a single allocation request that is larger than
the maximum bmap extent length and the rt bitmap ends exactly on a
bitmap block boundary, it's possible that the near allocator will try to
check the freeness of a range that extends past the end of the bitmap.
This fails with a corruption error and shuts down the fs.
Therefore, constrain maxlen so that the range scan cannot run off the
end of the rt bitmap.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d88850bd5516a77c6f727e8b6cefb64e0cc929c7 ]
Fix some off-by-one errors in xfs_rtalloc_query_range. The highest key
in the realtime bitmap is always one less than the number of rt extents,
which means that the key clamp at the start of the function is wrong.
The 4th argument to xfs_rtfind_forw is the highest rt extent that we
want to probe, which means that passing 1 less than the high key is
wrong. Finally, drop the rem variable that controls the loop because we
can compare the iteration point (rtstart) against the high key directly.
The sordid history of this function is that the original commit (fb3c3)
incorrectly passed (high_rec->ar_startblock - 1) as the 'limit' parameter
to xfs_rtfind_forw. This was wrong because the "high key" is supposed
to be the largest key for which the caller wants result rows, not the
key for the first row that could possibly be outside the range that the
caller wants to see.
A subsequent attempt (8ad56) to strengthen the parameter checking added
incorrect clamping of the parameters to the number of rt blocks in the
system (despite the bitmap functions all taking units of rt extents) to
avoid querying ranges past the end of rt bitmap file but failed to fix
the incorrect _rtfind_forw parameter. The original _rtfind_forw
parameter error then survived the conversion of the startblock and
blockcount fields to rt extents (a0e5c), and the most recent off-by-one
fix (a3a37) thought it was patching a problem when the end of the rt
volume is not in use, but none of these fixes actually solved the
original problem that the author was confused about the "limit" argument
to xfs_rtfind_forw.
Sadly, all four of these patches were written by this author and even
his own usage of this function and rt testing were inadequate to get
this fixed quickly.
Original-problem: fb3c3de2f65c ("xfs: add a couple of queries to iterate free extents in the rtbitmap")
Not-fixed-by: 8ad560d2565e ("xfs: strengthen rtalloc query range checks")
Not-fixed-by: a0e5c435babd ("xfs: fix xfs_rtalloc_rec units")
Fixes: a3a374bf1889 ("xfs: fix off-by-one error in xfs_rtalloc_query_range")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8ffa90e1145c70c7ac47f14b59583b2296d89e72 ]
Refactor xfs_getfsmap to improve its performance: instead of indirectly
calling a function that copies one record to userspace at a time, create
a shadow buffer in the kernel and copy the whole array once at the end.
On the author's computer, this reduces the runtime on his /home by ~20%.
This also eliminates a deadlock when running GETFSMAP against the
realtime device. The current code locks the rtbitmap to create
fsmappings and copies them into userspace, having not released the
rtbitmap lock. If the userspace buffer is an mmap of a sparse file that
itself resides on the realtime device, the write page fault will recurse
into the fs for allocation, which will deadlock on the rtbitmap lock.
Fixes: 4c934c7dd60c ("xfs: report realtime space information via the rtbitmap")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit acd1ac3aa22fd58803a12d26b1ab7f70232f8d8d ]
If userspace asked fsmap to count the number of entries, we cannot
return more than UINT_MAX entries because fmh_entries is u32.
Therefore, stop counting if we hit this limit or else we will waste time
to return truncated results.
Fixes: e89c041338ed ("xfs: implement the GETFSMAP ioctl")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
A bug existed in the XFS reflink code between v5.1 and v5.5 in which
the mapping for a COW IO was not trimmed to the mapping of the COW
extent that was found. This resulted in a too-short copy, and
corruption of other files which shared the original extent.
(This happened only when extent size hints were set, which bypasses
delalloc and led to this code path.)
This was (inadvertently) fixed upstream with
36adcbace24e "xfs: fill out the srcmap in iomap_begin"
and related patches which moved lots of this functionality to
the iomap subsystem.
Hence, this is a -stable only patch, targeted to fix this
corruption vector without other major code changes.
Fixes: 78f0cc9d55cb ("xfs: don't use delalloc extents for COW on files with extsize hints")
Cc: <stable@vger.kernel.org> # 5.4.x
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 27fb5a72f50aa770dd38b0478c07acacef97e3e7 ]
I noticed that fsfreeze can take a very long time to freeze an XFS if
there happens to be a GETFSMAP caller running in the background. I also
happened to notice the following in dmesg:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 43492 at fs/xfs/xfs_super.c:853 xfs_quiesce_attr+0x83/0x90 [xfs]
Modules linked in: xfs libcrc32c ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 ip_set_hash_ip ip_set_hash_net xt_tcpudp xt_set ip_set_hash_mac ip_set nfnetlink ip6table_filter ip6_tables bfq iptable_filter sch_fq_codel ip_tables x_tables nfsv4 af_packet [last unloaded: xfs]
CPU: 2 PID: 43492 Comm: xfs_io Not tainted 5.6.0-rc4-djw #rc4
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:xfs_quiesce_attr+0x83/0x90 [xfs]
Code: 7c 07 00 00 85 c0 75 22 48 89 df 5b e9 96 c1 00 00 48 c7 c6 b0 2d 38 a0 48 89 df e8 57 64 ff ff 8b 83 7c 07 00 00 85 c0 74 de <0f> 0b 48 89 df 5b e9 72 c1 00 00 66 90 0f 1f 44 00 00 41 55 41 54
RSP: 0018:ffffc900030f3e28 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff88802ac54000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff81e4a6f0 RDI: 00000000ffffffff
RBP: ffff88807859f070 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000010 R12: 0000000000000000
R13: ffff88807859f388 R14: ffff88807859f4b8 R15: ffff88807859f5e8
FS: 00007fad1c6c0fc0(0000) GS:ffff88807e000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0c7d237000 CR3: 0000000077f01003 CR4: 00000000001606a0
Call Trace:
xfs_fs_freeze+0x25/0x40 [xfs]
freeze_super+0xc8/0x180
do_vfs_ioctl+0x70b/0x750
? __fget_files+0x135/0x210
ksys_ioctl+0x3a/0xb0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x50/0x1a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
These two things appear to be related. The assertion trips when another
thread initiates a fsmap request (which uses an empty transaction) after
the freezer waited for m_active_trans to hit zero but before the the
freezer executes the WARN_ON just prior to calling xfs_log_quiesce.
The lengthy delays in freezing happen because the freezer calls
xfs_wait_buftarg to clean out the buffer lru list. Meanwhile, the
GETFSMAP caller is continuing to grab and release buffers, which means
that it can take a very long time for the buffer lru list to empty out.
We fix both of these races by calling sb_start_write to obtain freeze
protection while using empty transactions for GETFSMAP and for metadata
scrubbing. The other two users occur during mount, during which time we
cannot fs freeze.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2e107cf869eecc770e3f630060bb4e5f547d0fd8 ]
In xchk_dir_actor, we attempt to validate the directory hash structures
by performing a directory entry lookup by (hashed) name. If the lookup
returns ENOENT, that means that the hash information is corrupt. The
_process_error functions don't catch this, so we have to add that
explicitly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1cb5deb5bc095c070c09a4540c45f9c9ba24be43 ]
If we decide that a directory free block is corrupt, we must take care
not to leak a buffer pointer to the caller. After xfs_trans_brelse
returns, the buffer can be freed or reused, which means that we have to
set *bpp back to NULL.
Callers are supposed to notice the nonzero return value and not use the
buffer pointer, but we should code more defensively, even if all current
callers handle this situation correctly.
Fixes: de14c5f541e7 ("xfs: verify free block header fields")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b1de6fc7520fe12949c070af0e8c0e4044cd3420 ]
Omar Sandoval reported that a 4G fallocate on the realtime device causes
filesystem shutdowns due to a log reservation overflow that happens when
we log the rtbitmap updates. Factor rtbitmap/rtsummary updates into the
the tr_write and tr_itruncate log reservation calculation.
"The following reproducer results in a transaction log overrun warning
for me:
mkfs.xfs -f -r rtdev=/dev/vdc -d rtinherit=1 -m reflink=0 /dev/vdb
mount -o rtdev=/dev/vdc /dev/vdb /mnt
fallocate -l 4G /mnt/foo
Reported-by: Omar Sandoval <osandov@osandov.com>
Tested-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0c4da70c83d41a8461fdf50a3f7b292ecb04e378 ]
Realtime files in XFS allocate extents in rextsize units. However, the
written/unwritten state of those extents is still tracked in blocksize
units. Therefore, a realtime file can be split up into written and
unwritten extents that are not necessarily aligned to the realtime
extent size. __xfs_bunmapi() has some logic to handle these various
corner cases. Consider how it handles the following case:
1. The last extent is unwritten.
2. The last extent is smaller than the realtime extent size.
3. startblock of the last extent is not aligned to the realtime extent
size, but startblock + blockcount is.
In this case, __xfs_bunmapi() calls xfs_bmap_add_extent_unwritten_real()
to set the second-to-last extent to unwritten. This should merge the
last and second-to-last extents, so __xfs_bunmapi() moves on to the
second-to-last extent.
However, if the size of the last and second-to-last extents combined is
greater than MAXEXTLEN, xfs_bmap_add_extent_unwritten_real() does not
merge the two extents. When that happens, __xfs_bunmapi() skips past the
last extent without unmapping it, thus leaking the space.
Fix it by only unwriting the minimum amount needed to align the last
extent to the realtime extent size, which is guaranteed to merge with
the last extent.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2a2b5932db67586bacc560cc065d62faece5b996 ]
The leaf format xattr addition helper xfs_attr3_leaf_add_work()
adjusts the block freemap in a couple places. The first update drops
the size of the freemap that the caller had already selected to
place the xattr name/value data. Before the function returns, it
also checks whether the entries array has encroached on a freemap
range by virtue of the new entry addition. This is necessary because
the entries array grows from the start of the block (but end of the
block header) towards the end of the block while the name/value data
grows from the end of the block in the opposite direction. If the
associated freemap is already empty, however, size is zero and the
subtraction underflows the field and causes corruption.
This is reproduced rarely by generic/070. The observed behavior is
that a smaller sized freemap is aligned to the end of the entries
list, several subsequent xattr additions land in larger freemaps and
the entries list expands into the smaller freemap until it is fully
consumed and then underflows. Note that it is not otherwise a
corruption for the entries array to consume an empty freemap because
the nameval list (i.e. the firstused pointer in the xattr header)
starts beyond the end of the corrupted freemap.
Update the freemap size modification to account for the fact that
the freemap entry can be empty and thus stale.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 249bd9087a5264d2b8a974081870e2e27671b4dc ]
AIO+DIO can extend the file size on IO completion, and it holds
no inode locks while the IO is in flight. Therefore, a race
condition exists in file size updates if we do something like this:
aio-thread fallocate-thread
lock inode
submit IO beyond inode->i_size
unlock inode
.....
lock inode
break layouts
if (off + len > inode->i_size)
new_size = off + len
.....
inode_dio_wait()
<blocks>
.....
completes
inode->i_size updated
inode_dio_done()
....
<wakes>
<does stuff no long beyond EOF>
if (new_size)
xfs_vn_setattr(inode, new_size)
Yup, that attempt to extend the file size in the fallocate code
turns into a truncate - it removes the whatever the aio write
allocated and put to disk, and reduced the inode size back down to
where the fallocate operation ends.
Fundamentally, xfs_file_fallocate() not compatible with racing
AIO+DIO completions, so we need to move the inode_dio_wait() call
up to where the lock the inode and break the layouts.
Secondly, storing the inode size and then using it unchecked without
holding the ILOCK is not safe; we can only do such a thing if we've
locked out and drained all IO and other modification operations,
which we don't do initially in xfs_file_fallocate.
It should be noted that some of the fallocate operations are
compound operations - they are made up of multiple manipulations
that may zero data, and so we may need to flush and invalidate the
file multiple times during an operation. However, we only need to
lock out IO and other space manipulation operations once, as that
lockout is maintained until the entire fallocate operation has been
completed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3f8a4f1d876d3e3e49e50b0396eaffcc4ba71b08 ]
[commit message is verbose for discussion purposes - will trim it
down later. Some questions about implementation details at the end.]
Zorro Lang recently ran a new test to stress single inode extent
counts now that they are no longer limited by memory allocation.
The test was simply:
# xfs_io -f -c "falloc 0 40t" /mnt/scratch/big-file
# ~/src/xfstests-dev/punch-alternating /mnt/scratch/big-file
This test uncovered a problem where the hole punching operation
appeared to finish with no error, but apparently only created 268M
extents instead of the 10 billion it was supposed to.
Further, trying to punch out extents that should have been present
resulted in success, but no change in the extent count. It looked
like a silent failure.
While running the test and observing the behaviour in real time,
I observed the extent coutn growing at ~2M extents/minute, and saw
this after about an hour:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next ; \
> sleep 60 ; \
> xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 127657993
fsxattr.nextents = 129683339
#
And a few minutes later this:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 4177861124
#
Ah, what? Where did that 4 billion extra extents suddenly come from?
Stop the workload, unmount, mount:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 166044375
#
And it's back at the expected number. i.e. the extent count is
correct on disk, but it's screwed up in memory. I loaded up the
extent list, and immediately:
# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 4192576215
#
It's bad again. So, where does that number come from?
xfs_fill_fsxattr():
if (ip->i_df.if_flags & XFS_IFEXTENTS)
fa->fsx_nextents = xfs_iext_count(&ip->i_df);
else
fa->fsx_nextents = ip->i_d.di_nextents;
And that's the behaviour I just saw in a nutshell. The on disk count
is correct, but once the tree is loaded into memory, it goes whacky.
Clearly there's something wrong with xfs_iext_count():
inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
{
return ifp->if_bytes / sizeof(struct xfs_iext_rec);
}
Simple enough, but 134M extents is 2**27, and that's right about
where things went wrong. A struct xfs_iext_rec is 16 bytes in size,
which means 2**27 * 2**4 = 2**31 and we're right on target for an
integer overflow. And, sure enough:
struct xfs_ifork {
int if_bytes; /* bytes in if_u1 */
....
Once we get 2**27 extents in a file, we overflow if_bytes and the
in-core extent count goes wrong. And when we reach 2**28 extents,
if_bytes wraps back to zero and things really start to go wrong
there. This is where the silent failure comes from - only the first
2**28 extents can be looked up directly due to the overflow, all the
extents above this index wrap back to somewhere in the first 2**28
extents. Hence with a regular pattern, trying to punch a hole in the
range that didn't have holes mapped to a hole in the first 2**28
extents and so "succeeded" without changing anything. Hence "silent
failure"...
Fix this by converting if_bytes to a int64_t and converting all the
index variables and size calculations to use int64_t types to avoid
overflows in future. Signed integers are still used to enable easy
detection of extent count underflows. This enables scalability of
extent counts to the limits of the on-disk format - MAXEXTNUM
(2**31) extents.
Current testing is at over 500M extents and still going:
fsxattr.nextents = 517310478
Reported-by: Zorro Lang <zlang@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>