IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream.
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: no intra-function validation]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eb23b5ef9131e6d65011de349a4d25ef1b3d4314 upstream.
IBRS mitigation for spectre_v2 forces write to MSR_IA32_SPEC_CTRL at
every kernel entry/exit. On Enhanced IBRS parts setting
MSR_IA32_SPEC_CTRL[IBRS] only once at boot is sufficient. MSR writes at
every kernel entry/exit incur unnecessary performance loss.
When Enhanced IBRS feature is present, print a warning about this
unnecessary performance loss.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/2a5eaf54583c2bfe0edc4fea64006656256cca17.1657814857.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4ad3278df6fe2b0852b00d5757fc2ccd8e92c26e upstream.
Some Intel processors may use alternate predictors for RETs on
RSB-underflow. This condition may be vulnerable to Branch History
Injection (BHI) and intramode-BTI.
Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines,
eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against
such attacks. However, on RSB-underflow, RET target prediction may
fallback to alternate predictors. As a result, RET's predicted target
may get influenced by branch history.
A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback
behavior when in kernel mode. When set, RETs will not take predictions
from alternate predictors, hence mitigating RETs as well. Support for
this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2).
For spectre v2 mitigation, when a user selects a mitigation that
protects indirect CALLs and JMPs against BHI and intramode-BTI, set
RRSBA_DIS_S also to protect RETs for RSB-underflow case.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: no tools/arch/x86/include/asm/msr-index.h]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f54d45372c6ac9c993451de5e51312485f7d10bc upstream.
Cannon lake is also affected by RETBleed, add it to the list.
Fixes: 6ad0ad2bf8a6 ("x86/bugs: Report Intel retbleed vulnerability")
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 26aae8ccbc1972233afd08fb3f368947c0314265 upstream.
BTC_NO indicates that hardware is not susceptible to Branch Type Confusion.
Zen3 CPUs don't suffer BTC.
Hypervisors are expected to synthesise BTC_NO when it is appropriate
given the migration pool, to prevent kernels using heuristics.
[ bp: Massage. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7a05bc95ed1c5a59e47aaade9fb4083c27de9e62 upstream.
The whole MMIO/RETBLEED enumeration went overboard on steppings. Get
rid of all that and simply use ANY.
If a future stepping of these models would not be affected, it had
better set the relevant ARCH_CAP_$FOO_NO bit in
IA32_ARCH_CAPABILITIES.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9756bba28470722dacb79ffce554336dd1f6a6cd upstream.
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a
bunch of comments to attempt to document the current state of tribal
knowledge about RSB attacks and what exactly is being mitigated.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fc02735b14fff8c6678b521d324ade27b1a3d4cf upstream.
On eIBRS systems, the returns in the vmexit return path from
__vmx_vcpu_run() to vmx_vcpu_run() are exposed to RSB poisoning attacks.
Fix that by moving the post-vmexit spec_ctrl handling to immediately
after the vmexit.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit acac5e98ef8d638a411cfa2ee676c87e1973f126 upstream.
This mask has been made redundant by kvm_spec_ctrl_test_value(). And it
doesn't even work when MSR interception is disabled, as the guest can
just write to SPEC_CTRL directly.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bbb69e8bee1bd882784947095ffb2bfe0f7c9470 upstream.
There's no need to recalculate the host value for every entry/exit.
Just use the cached value in spec_ctrl_current().
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bf5835bcdb9635c97f85120dba9bfa21e111130f upstream.
Having IBRS enabled while the SMT sibling is idle unnecessarily slows
down the running sibling. OTOH, disabling IBRS around idle takes two
MSR writes, which will increase the idle latency.
Therefore, only disable IBRS around deeper idle states. Shallow idle
states are bounded by the tick in duration, since NOHZ is not allowed
for them by virtue of their short target residency.
Only do this for mwait-driven idle, since that keeps interrupts disabled
across idle, which makes disabling IBRS vs IRQ-entry a non-issue.
Note: C6 is a random threshold, most importantly C1 probably shouldn't
disable IBRS, benchmarking needed.
Suggested-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: no CPUIDLE_FLAG_IRQ_ENABLE]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[cascardo: context adjustments]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c779bc1a9002fa474175b80e72b85c9bf628abb0 upstream.
When changing SPEC_CTRL for user control, the WRMSR can be delayed
until return-to-user when KERNEL_IBRS has been enabled.
This avoids an MSR write during context switch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit caa0ff24d5d0e02abce5e65c3d2b7f20a6617be5 upstream.
Due to TIF_SSBD and TIF_SPEC_IB the actual IA32_SPEC_CTRL value can
differ from x86_spec_ctrl_base. As such, keep a per-CPU value
reflecting the current task's MSR content.
[jpoimboe: rename]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7fbf47c7ce50b38a64576b150e7011ae73d54669 upstream.
Add the "retbleed=<value>" boot parameter to select a mitigation for
RETBleed. Possible values are "off", "auto" and "unret"
(JMP2RET mitigation). The default value is "auto".
Currently, "retbleed=auto" will select the unret mitigation on
AMD and Hygon and no mitigation on Intel (JMP2RET is not effective on
Intel).
[peterz: rebase; add hygon]
[jpoimboe: cleanups]
Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: this effectively remove the UNRET mitigation as an option, so it
has to be complemented by a later pick of the same commit later. This is
done in order to pick retbleed_select_mitigation]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9d7144597b10ff13ff2264c059f7d4a7fbc89ac upstream.
Intel uses the same family/model for several CPUs. Sometimes the
stepping must be checked to tell them apart.
On x86 there can be at most 16 steppings. Add a steppings bitmask to
x86_cpu_id and a X86_MATCH_VENDOR_FAMILY_MODEL_STEPPING_FEATURE macro
and support for matching against family/model/stepping.
[ bp: Massage. ]
Signed-off-by: Mark Gross <mgross@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
[cascardo: have steppings be the last member as there are initializers
that don't use named members]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 20d437447c0089cda46c683db219d3b4e2cde40e upstream.
Finding all places which build x86_cpu_id match tables is tedious and the
logic is hidden in lots of differently named macro wrappers.
Most of these initializer macros use plain C89 initializers which rely on
the ordering of the struct members. So new members could only be added at
the end of the struct, but that's ugly as hell and C99 initializers are
really the right thing to use.
Provide a set of macros which:
- Have a proper naming scheme, starting with X86_MATCH_
- Use C99 initializers
The set of provided macros are all subsets of the base macro
X86_MATCH_VENDOR_FAM_MODEL_FEATURE()
which allows to supply all possible selection criteria:
vendor, family, model, feature
The other macros shorten this to avoid typing all arguments when they are
not needed and would require one of the _ANY constants. They have been
created due to the requirements of the existing usage sites.
Also add a few model constants for Centaur CPUs and QUARK.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20200320131508.826011988@linutronix.de
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit 749ec6b48a9a41f95154cd5aa61053aaeb7c7aff.
This is commit e9d7144597b10ff13ff2264c059f7d4a7fbc89ac upstream. A proper
backport will be done. This will make it easier to check for parts affected
by Retbleed, which require X86_MATCH_VENDOR_FAM_MODEL.
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit f2f41ef0352db9679bfae250d7a44b3113f3a3cc.
This is commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream.
In order to apply IBRS mitigation for Retbleed, PBRSB mitigations must be
reverted and the reapplied, so the backports can look sane.
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7df548840c496b0141fb2404b889c346380c2b22 upstream.
Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which may not be correct. Vulnerability status for these older CPUs is
unknown.
Add known-not-affected CPUs to the whitelist. Report "unknown"
mitigation status for CPUs that are not in blacklist, whitelist and also
don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware
immunity to MMIO Stale Data vulnerabilities.
Mitigation is not deployed when the status is unknown.
[ bp: Massage, fixup. ]
Fixes: 8d50cdf8b834 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data")
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fc2e426b1161761561624ebd43ce8c8d2fa058da upstream.
When meeting ftrace trampolines in ORC unwinding, unwinder uses address
of ftrace_{regs_}call address to find the ORC entry, which gets next frame at
sp+176.
If there is an IRQ hitting at sub $0xa8,%rsp, the next frame should be
sp+8 instead of 176. It makes unwinder skip correct frame and throw
warnings such as "wrong direction" or "can't access registers", etc,
depending on the content of the incorrect frame address.
By adding the base address ftrace_{regs_}caller with the offset
*ip - ops->trampoline*, we can get the correct address to find the ORC entry.
Also change "caller" to "tramp_addr" to make variable name conform to
its content.
[ mingo: Clarified the changelog a bit. ]
Fixes: 6be7fa3c74d1 ("ftrace, orc, x86: Handle ftrace dynamically allocated trampolines")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220819084334.244016-1-chenzhongjin@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 229e73d46994f15314f58b2d39bf952111d89193 ]
Make sure to free the platform device in the unlikely event that
registration fails.
Fixes: 7a67832c7e44 ("libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option")
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220620140723.9810-1-johan@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8bcedb4ce04750e1ccc9a6b6433387f6a9166a56 ]
When kernel is booted with idle=nomwait do not use MWAIT as the
default idle state.
If the user boots the kernel with idle=nomwait, it is a clear
direction to not use mwait as the default idle state.
However, the current code does not take this into consideration
while selecting the default idle state on x86.
Fix it by checking for the idle=nomwait boot option in
prefer_mwait_c1_over_halt().
Also update the documentation around idle=nomwait appropriately.
[ dhansen: tweak commit message ]
Signed-off-by: Wyes Karny <wyes.karny@amd.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lkml.kernel.org/r/fdc2dc2d0a1bc21c2f53d989ea2d2ee3ccbc0dbe.1654538381.git-series.wyes.karny@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream.
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RETPOLINE triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RETPOLINE need no further mitigation - i.e.,
eIBRS systems which enable retpoline explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RETPOLINE
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB Filling at
vmexit.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
[ Pawan: Update commit message to replace RSB_VMEXIT with RETPOLINE ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 38fa5479b41376dc9d7f57e71c83514285a25ca0 ]
The .brk section has the same properties as .bss: it is an alloc-only
section and should be cleared before being used.
Not doing so is especially a problem for Xen PV guests, as the
hypervisor will validate page tables (check for writable page tables
and hypervisor private bits) before accepting them to be used.
Make sure .brk is initially zero by letting clear_bss() clear the brk
area, too.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220630071441.28576-3-jgross@suse.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 703f7066f40599c290babdb79dd61319264987e9 upstream.
Since commit
ee3e00e9e7101 ("random: use registers from interrupted code for CPU's w/o a cycle counter")
the irq_flags argument is no longer used.
Remove unused irq_flags.
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: linux-hyperv@vger.kernel.org
Cc: x86@kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1dc6ff02c8bf77d71b9b5d11cbc9df77cfb28626 upstream
Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO
Stale Data vulnerability.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a992b8a4682f119ae035a01b40d4d0665c4a2875 upstream
The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale
Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data.
Mitigation for this is added by a microcode update.
As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation
infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS
mitigation.
Mitigation is enabled by default; use srbds=off to opt-out. Mitigation
status can be checked from below file:
/sys/devices/system/cpu/vulnerabilities/srbds
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 22cac9c677c95f3ac5c9244f8ca0afdc7c8afb19 upstream
Currently, Linux disables SRBDS mitigation on CPUs not affected by
MDS and have the TSX feature disabled. On such CPUs, secrets cannot
be extracted from CPU fill buffers using MDS or TAA. Without SRBDS
mitigation, Processor MMIO Stale Data vulnerabilities can be used to
extract RDRAND, RDSEED, and EGETKEY data.
Do not disable SRBDS mitigation by default when CPU is also affected by
Processor MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8d50cdf8b8341770bc6367bce40c0c1bb0e1d5b3 upstream
Add the sysfs reporting file for Processor MMIO Stale Data
vulnerability. It exposes the vulnerability and mitigation state similar
to the existing files for the other hardware vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 99a83db5a605137424e1efe29dc0573d6a5b6316 upstream
When the CPU is affected by Processor MMIO Stale Data vulnerabilities,
Fill Buffer Stale Data Propagator (FBSDP) can propagate stale data out
of Fill buffer to uncore buffer when CPU goes idle. Stale data can then
be exploited with other variants using MMIO operations.
Mitigate it by clearing the Fill buffer before entering idle state.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e5925fb867290ee924fcf2fe3ca887b792714366 upstream
MDS, TAA and Processor MMIO Stale Data mitigations rely on clearing CPU
buffers. Moreover, status of these mitigations affects each other.
During boot, it is important to maintain the order in which these
mitigations are selected. This is especially true for
md_clear_update_mitigation() that needs to be called after MDS, TAA and
Processor MMIO Stale Data mitigation selection is done.
Introduce md_clear_select_mitigation(), and select all these mitigations
from there. This reflects relationships between these mitigations and
ensures proper ordering.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca upstream
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.
These vulnerabilities are broadly categorized as:
Device Register Partial Write (DRPW):
Some endpoint MMIO registers incorrectly handle writes that are
smaller than the register size. Instead of aborting the write or only
copying the correct subset of bytes (for example, 2 bytes for a 2-byte
write), more bytes than specified by the write transaction may be
written to the register. On some processors, this may expose stale
data from the fill buffers of the core that created the write
transaction.
Shared Buffers Data Sampling (SBDS):
After propagators may have moved data around the uncore and copied
stale data into client core fill buffers, processors affected by MFBDS
can leak data from the fill buffer.
Shared Buffers Data Read (SBDR):
It is similar to Shared Buffer Data Sampling (SBDS) except that the
data is directly read into the architectural software-visible state.
An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.
On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.
Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f52ea6c26953fed339aa4eae717ee5c2133c7ff2 upstream
Processor MMIO Stale Data mitigation uses similar mitigation as MDS and
TAA. In preparation for adding its mitigation, add a common function to
update all mitigations that depend on MD_CLEAR.
[ bp: Add a newline in md_clear_update_mitigation() to separate
statements better. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 51802186158c74a0304f51ab963e7c2b3a2b046f upstream
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For more details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
Add the Processor MMIO Stale Data bug enumeration. A microcode update
adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1ef64b1e89e6d4018da46e08ffc32779a31160c7 ]
Clean up control_va_addr_alignment():
a. Make '=' required instead of optional (as documented).
b. Print a warning if an invalid option value is used.
c. Return 1 from the __setup handler when an invalid option value is
used. This prevents the kernel from polluting init's (limited)
environment space with the entire string.
Fixes: dfb09f9b7ab0 ("x86, amd: Avoid cache aliasing penalties on AMD family 15h")
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Link: https://lore.kernel.org/r/20220315001045.7680-1-rdunlap@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 12441ccdf5e2f5a01a46e344976cbbd3d46845c9 ]
__setup() handlers should return 1 to obsolete_checksetup() in
init/main.c to indicate that the boot option has been handled. A return
of 0 causes the boot option/value to be listed as an Unknown kernel
parameter and added to init's (limited) argument (no '=') or environment
(with '=') strings. So return 1 from these x86 __setup handlers.
Examples:
Unknown kernel command line parameters "apicpmtimer
BOOT_IMAGE=/boot/bzImage-517rc8 vdso=1 ring3mwait=disable", will be
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
apicpmtimer
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc8
vdso=1
ring3mwait=disable
Fixes: 2aae950b21e4 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu")
Fixes: 77b52b4c5c66 ("x86: add "debugpat" boot option")
Fixes: e16fd002afe2 ("x86/cpufeature: Enable RING3MWAIT for Knights Landing")
Fixes: b8ce33590687 ("x86_64: convert to clock events")
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Link: https://lore.kernel.org/r/20220314012725.26661-1-rdunlap@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6a2d90ba027adba528509ffa27097cffd3879257 upstream.
The current implementation of PTRACE_KILL is buggy and has been for
many years as it assumes it's target has stopped in ptrace_stop. At a
quick skim it looks like this assumption has existed since ptrace
support was added in linux v1.0.
While PTRACE_KILL has been deprecated we can not remove it as
a quick search with google code search reveals many existing
programs calling it.
When the ptracee is not stopped at ptrace_stop some fields would be
set that are ignored except in ptrace_stop. Making the userspace
visible behavior of PTRACE_KILL a noop in those case.
As the usual rules are not obeyed it is not clear what the
consequences are of calling PTRACE_KILL on a running process.
Presumably userspace does not do this as it achieves nothing.
Replace the implementation of PTRACE_KILL with a simple
send_sig_info(SIGKILL) followed by a return 0. This changes the
observable user space behavior only in that PTRACE_KILL on a process
not stopped in ptrace_stop will also kill it. As that has always
been the intent of the code this seems like a reasonable change.
Cc: stable@vger.kernel.org
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-7-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 004e8dce9c5595697951f7cd0e9f66b35c92265e upstream.
Prohibit probing on instruction which has XEN_EMULATE_PREFIX
or KVM's emulate prefix. Since that prefix is a marker for Xen
and KVM, if we modify the marker by kprobe's int3, that doesn't
work as expected.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: x86@kernel.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: xen-devel@lists.xenproject.org
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/156777566048.25081.6296162369492175325.stgit@devnote2
Signed-off-by: Maximilian Heyne <mheyne@amazon.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0361bdfddca20c8855ea3bdbbbc9c999912b10ff ]
MSR_KVM_POLL_CONTROL is cleared on reset, thus reverting guests to
host-side polling after suspend/resume. Non-bootstrap CPUs are
restored correctly by the haltpoll driver because they are hot-unplugged
during suspend and hot-plugged during resume; however, the BSP
is not hotpluggable and remains in host-sde polling mode after
the guest resume. The makes the guest pay for the cost of vmexits
every time the guest enters idle.
Fix it by recording BSP's haltpoll state and resuming it during guest
resume.
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1650267752-46796-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f9e14dbbd454581061c736bf70bf5cbb15ac927c upstream.
When resuming from system sleep state, restore_processor_state()
restores the boot CPU MSRs. These MSRs could be emulated by microcode.
If microcode is not loaded yet, writing to emulated MSRs leads to
unchecked MSR access error:
...
PM: Calling lapic_suspend+0x0/0x210
unchecked MSR access error: WRMSR to 0x10f (tried to write 0x0...0) at rIP: ... (native_write_msr)
Call Trace:
<TASK>
? restore_processor_state
x86_acpi_suspend_lowlevel
acpi_suspend_enter
suspend_devices_and_enter
pm_suspend.cold
state_store
kobj_attr_store
sysfs_kf_write
kernfs_fop_write_iter
new_sync_write
vfs_write
ksys_write
__x64_sys_write
do_syscall_64
entry_SYSCALL_64_after_hwframe
RIP: 0033:0x7fda13c260a7
To ensure microcode emulated MSRs are available for restoration, load
the microcode on the boot CPU before restoring these MSRs.
[ Pawan: write commit message and productize it. ]
Fixes: e2a1256b17b1 ("x86/speculation: Restore speculation related MSRs during S3 resume")
Reported-by: Kyle D. Pelton <kyle.d.pelton@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Tested-by: Kyle D. Pelton <kyle.d.pelton@intel.com>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215841
Link: https://lore.kernel.org/r/4350dfbf785cd482d3fafa72b2b49c83102df3ce.1650386317.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c15e0ae42c8e5a61e9aca8aac920517cf7b3e94e upstream.
If apic_id is less than min, and (max - apic_id) is greater than
KVM_IPI_CLUSTER_SIZE, then the third check condition is satisfied but
the new apic_id does not fit the bitmask. In this case __send_ipi_mask
should send the IPI.
This is mostly theoretical, but it can happen if the apic_ids on three
iterations of the loop are for example 1, KVM_IPI_CLUSTER_SIZE, 0.
Fixes: aaffcfd1e82 ("KVM: X86: Implement PV IPIs in linux guest")
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Message-Id: <1646814944-51801-1-git-send-email-lirongqing@baidu.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e702196bf85778f2c5527ca47f33ef2e2fca8297 upstream.
On this board the ACPI RSDP structure points to both a RSDT and an XSDT,
but the XSDT points to a truncated FADT. This causes all sorts of trouble
and usually a complete failure to boot after the following error occurs:
ACPI Error: Unsupported address space: 0x20 (*/hwregs-*)
ACPI Error: AE_SUPPORT, Unable to initialize fixed events (*/evevent-*)
ACPI: Unable to start ACPI Interpreter
This leaves the ACPI implementation in such a broken state that subsequent
kernel subsystem initialisations go wrong, resulting in among others
mismapped PCI memory, SATA and USB enumeration failures, and freezes.
As this is an older embedded platform that will likely never see any BIOS
updates to address this issue and its default shipping OS only complies to
ACPI 1.0, work around this by forcing `acpi=rsdt`. This patch, applied on
top of Linux 5.10.102, was confirmed on real hardware to fix the issue.
Signed-off-by: Mark Cilissen <mark@yotsuba.nl>
Cc: All applicable <stable@vger.kernel.org>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5866e9205b47a983a77ebc8654949f696342f2ab upstream.
In some hardware implementations, coherency between the encrypted and
unencrypted mappings of the same physical page is enforced. In such a system,
it is not required for software to flush the page from all CPU caches in the
system prior to changing the value of the C-bit for a page. This hardware-
enforced cache coherency is indicated by EAX[10] in CPUID leaf 0x8000001f.
[ bp: Use one of the free slots in word 3. ]
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200917212038.5090-2-krish.sadhukhan@oracle.com
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0de05d056afdb00eca8c7bbb0c79a3438daf700c upstream.
The commit
44a3918c8245 ("x86/speculation: Include unprivileged eBPF status in Spectre v2 mitigation reporting")
added a warning for the "eIBRS + unprivileged eBPF" combination, which
has been shown to be vulnerable against Spectre v2 BHB-based attacks.
However, there's no warning about the "eIBRS + LFENCE retpoline +
unprivileged eBPF" combo. The LFENCE adds more protection by shortening
the speculation window after a mispredicted branch. That makes an attack
significantly more difficult, even with unprivileged eBPF. So at least
for now the logic doesn't warn about that combination.
But if you then add SMT into the mix, the SMT attack angle weakens the
effectiveness of the LFENCE considerably.
So extend the "eIBRS + unprivileged eBPF" warning to also include the
"eIBRS + LFENCE + unprivileged eBPF + SMT" case.
[ bp: Massage commit message. ]
Suggested-by: Alyssa Milburn <alyssa.milburn@linux.intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>