IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit dc4d31684974d140250f3ee612c3f0cab13b3146 upstream.
[BUG]
If we have a btrfs image with dirty log, along with an unsupported RO
compatible flag:
log_root 30474240
...
compat_flags 0x0
compat_ro_flags 0x40000003
( FREE_SPACE_TREE |
FREE_SPACE_TREE_VALID |
unknown flag: 0x40000000 )
Then even if we can only mount it RO, we will still cause metadata
update for log replay:
BTRFS info (device dm-1): flagging fs with big metadata feature
BTRFS info (device dm-1): using free space tree
BTRFS info (device dm-1): has skinny extents
BTRFS info (device dm-1): start tree-log replay
This is definitely against RO compact flag requirement.
[CAUSE]
RO compact flag only forces us to do RO mount, but we will still do log
replay for plain RO mount.
Thus this will result us to do log replay and update metadata.
This can be very problematic for new RO compat flag, for example older
kernel can not understand v2 cache, and if we allow metadata update on
RO mount and invalidate/corrupt v2 cache.
[FIX]
Just reject the mount unless rescue=nologreplay is provided:
BTRFS error (device dm-1): cannot replay dirty log with unsupport optional features (0x40000000), try rescue=nologreplay instead
We don't want to set rescue=nologreply directly, as this would make the
end user to read the old data, and cause confusion.
Since the such case is really rare, we're mostly fine to just reject the
mount with an error message, which also includes the proper workaround.
CC: stable@vger.kernel.org #4.9+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d5321a0fa8bc49f11bea0b470800962c17d92d8f upstream.
The following error message lack the "0x" obviously:
cannot mount because of unsupported optional features (4000)
Add the prefix to make it less confusing. This can happen on older
kernels that try to mount a filesystem with newer features so it makes
sense to backport to older trees.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a91cf0ffbc244792e0b3ecf7d0fddb2f344b461f ]
When a disk has write caching disabled, we skip submission of a bio with
flush and sync requests before writing the superblock, since it's not
needed. However when the integrity checker is enabled, this results in
reports that there are metadata blocks referred by a superblock that
were not properly flushed. So don't skip the bio submission only when
the integrity checker is enabled for the sake of simplicity, since this
is a debug tool and not meant for use in non-debug builds.
fstests/btrfs/220 trigger a check-integrity warning like the following
when CONFIG_BTRFS_FS_CHECK_INTEGRITY=y and the disk with WCE=0.
btrfs: attempt to write superblock which references block M @5242880 (sdb2/5242880/0) which is not flushed out of disk's write cache (block flush_gen=1, dev->flush_gen=0)!
------------[ cut here ]------------
WARNING: CPU: 28 PID: 843680 at fs/btrfs/check-integrity.c:2196 btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
CPU: 28 PID: 843680 Comm: umount Not tainted 5.15.0-0.rc5.39.el8.x86_64 #1
Hardware name: Dell Inc. Precision T7610/0NK70N, BIOS A18 09/11/2019
RIP: 0010:btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
RSP: 0018:ffffb642afb47940 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 00000000ffffffff RSI: ffff8b722fc97d00 RDI: ffff8b722fc97d00
RBP: ffff8b5601c00000 R08: 0000000000000000 R09: c0000000ffff7fff
R10: 0000000000000001 R11: ffffb642afb476f8 R12: ffffffffffffffff
R13: ffffb642afb47974 R14: ffff8b5499254c00 R15: 0000000000000003
FS: 00007f00a06d4080(0000) GS:ffff8b722fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fff5cff5ff0 CR3: 00000001c0c2a006 CR4: 00000000001706e0
Call Trace:
btrfsic_process_written_block+0x2f7/0x850 [btrfs]
__btrfsic_submit_bio.part.19+0x310/0x330 [btrfs]
? bio_associate_blkg_from_css+0xa4/0x2c0
btrfsic_submit_bio+0x18/0x30 [btrfs]
write_dev_supers+0x81/0x2a0 [btrfs]
? find_get_pages_range_tag+0x219/0x280
? pagevec_lookup_range_tag+0x24/0x30
? __filemap_fdatawait_range+0x6d/0xf0
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
? find_first_extent_bit+0x9b/0x160 [btrfs]
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
write_all_supers+0x1b3/0xa70 [btrfs]
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
btrfs_commit_transaction+0x59d/0xac0 [btrfs]
close_ctree+0x11d/0x339 [btrfs]
generic_shutdown_super+0x71/0x110
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0xb8/0x140
task_work_run+0x6d/0xb0
exit_to_user_mode_prepare+0x1f0/0x200
syscall_exit_to_user_mode+0x12/0x30
do_syscall_64+0x46/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f009f711dfb
RSP: 002b:00007fff5cff7928 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 000055b68c6c9970 RCX: 00007f009f711dfb
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055b68c6c9b50
RBP: 0000000000000000 R08: 000055b68c6ca900 R09: 00007f009f795580
R10: 0000000000000000 R11: 0000000000000246 R12: 000055b68c6c9b50
R13: 00007f00a04bf184 R14: 0000000000000000 R15: 00000000ffffffff
---[ end trace 2c4b82abcef9eec4 ]---
S-65536(sdb2/65536/1)
-->
M-1064960(sdb2/1064960/1)
Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Wang Yugui <wangyugui@e16-tech.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5c78a5e7aa835c4f08a7c90fe02d19f95a776f29 upstream.
In open_ctree() in btrfs_check_rw_degradable() [1], we check each block
group individually if at least the minimum number of devices is available
for that profile. If all the devices are available, then we don't have to
check degradable.
[1]
open_ctree()
::
3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
Also before calling btrfs_check_rw_degradable() in open_ctee() at the
line number shown below [2] we call btrfs_read_chunk_tree() and down to
add_missing_dev() to record number of missing devices.
[2]
open_ctree()
::
3454 ret = btrfs_read_chunk_tree(fs_info);
btrfs_read_chunk_tree()
read_one_chunk() / read_one_dev()
add_missing_dev()
So, check if there is any missing device before btrfs_check_rw_degradable()
in open_ctree().
Also, with this the mount command could save ~16ms.[3] in the most
common case, that is no device is missing.
[3]
1) * 16934.96 us | btrfs_check_rw_degradable [btrfs]();
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6f93e834fa7c5faa0372e46828b4b2a966ac61d7 upstream.
The mount option max_inline ranges from 0 to the sectorsize (which is
now equal to page size). But we parse the mount options too early and
before the actual sectorsize is read from the superblock. So the upper
limit of max_inline is unaware of the actual sectorsize and is limited
by the temporary sectorsize 4096, even on a system where the default
sectorsize is 64K.
Fix this by reading the superblock sectorsize before the mount option
parse.
Reported-by: Alexander Tsvetkov <alexander.tsvetkov@oracle.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit adca4d945c8dca28a85df45c5b117e6dac2e77f1 upstream
commit a514d63882c3 ("btrfs: qgroup: Commit transaction in advance to
reduce early EDQUOT") tries to reduce the early EDQUOT problems by
checking the qgroup free against threshold and tries to wake up commit
kthread to free some space.
The problem of that mechanism is, it can only free qgroup per-trans
metadata space, can't do anything to data, nor prealloc qgroup space.
Now since we have the ability to flush qgroup space, and implemented
retry-after-EDQUOT behavior, such mechanism can be completely replaced.
So this patch will cleanup such mechanism in favor of
retry-after-EDQUOT.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3296bf562443a8ca35aaad959a76a49e9b412760 upstream
The state was introduced in commit 4a9d8bdee368 ("Btrfs: make the state
of the transaction more readable"), then in commit 302167c50b32
("btrfs: don't end the transaction for delayed refs in throttle") the
state is completely removed.
So we can just clean up the state since it's only compared but never
set.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c53e9653605dbf708f5be02902de51831be4b009 upstream
[PROBLEM]
There are known problem related to how btrfs handles qgroup reserved
space. One of the most obvious case is the the test case btrfs/153,
which do fallocate, then write into the preallocated range.
# btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad)
# --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800
# +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800
# @@ -1,2 +1,5 @@
# QA output created by 153
# +pwrite: Disk quota exceeded
# +/mnt/scratch/testfile2: Disk quota exceeded
# +/mnt/scratch/testfile2: Disk quota exceeded
# Silence is golden
# ...
# (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff)
[CAUSE]
Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"),
we always reserve space no matter if it's COW or not.
Such behavior change is mostly for performance, and reverting it is not
a good idea anyway.
For preallcoated extent, we reserve qgroup data space for it already,
and since we also reserve data space for qgroup at buffered write time,
it needs twice the space for us to write into preallocated space.
This leads to the -EDQUOT in buffered write routine.
And we can't follow the same solution, unlike data/meta space check,
qgroup reserved space is shared between data/metadata.
The EDQUOT can happen at the metadata reservation, so doing NODATACOW
check after qgroup reservation failure is not a solution.
[FIX]
To solve the problem, we don't return -EDQUOT directly, but every time
we got a -EDQUOT, we try to flush qgroup space:
- Flush all inodes of the root
NODATACOW writes will free the qgroup reserved at run_dealloc_range().
However we don't have the infrastructure to only flush NODATACOW
inodes, here we flush all inodes anyway.
- Wait for ordered extents
This would convert the preallocated metadata space into per-trans
metadata, which can be freed in later transaction commit.
- Commit transaction
This will free all per-trans metadata space.
Also we don't want to trigger flush multiple times, so here we introduce
a per-root wait list and a new root status, to ensure only one thread
starts the flushing.
Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 260db43cd2f556677f6ae818ba09f997eed81004 ]
Delete repeated words in fs/btrfs/.
{to, the, a, and old}
and change "into 2 part" to "into 2 parts".
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit aefd7f7065567a4666f42c0fc8cdb379d2e036bf upstream.
Syzbot managed to trigger this assert while performing its fuzzing.
Turns out it's better to have those asserts turned into full-fledged
checks so that in case buggy btrfs images are mounted the users gets
an error and mounting is stopped. Alternatively with CONFIG_BTRFS_ASSERT
disabled such image would have been erroneously allowed to be mounted.
Reported-by: syzbot+a6bf271c02e4fe66b4e4@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add uuids to the messages ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bbc37d6e475eee8ffa2156ec813efc6bbb43c06d upstream.
If a transaction aborts it can cause a memory leak of the pages array of
a block group's io_ctl structure. The following steps explain how that can
happen:
1) Transaction N is committing, currently in state TRANS_STATE_UNBLOCKED
and it's about to start writing out dirty extent buffers;
2) Transaction N + 1 already started and another task, task A, just called
btrfs_commit_transaction() on it;
3) Block group B was dirtied (extents allocated from it) by transaction
N + 1, so when task A calls btrfs_start_dirty_block_groups(), at the
very beginning of the transaction commit, it starts writeback for the
block group's space cache by calling btrfs_write_out_cache(), which
allocates the pages array for the block group's io_ctl with a call to
io_ctl_init(). Block group A is added to the io_list of transaction
N + 1 by btrfs_start_dirty_block_groups();
4) While transaction N's commit is writing out the extent buffers, it gets
an IO error and aborts transaction N, also setting the file system to
RO mode;
5) Task A has already returned from btrfs_start_dirty_block_groups(), is at
btrfs_commit_transaction() and has set transaction N + 1 state to
TRANS_STATE_COMMIT_START. Immediately after that it checks that the
filesystem was turned to RO mode, due to transaction N's abort, and
jumps to the "cleanup_transaction" label. After that we end up at
btrfs_cleanup_one_transaction() which calls btrfs_cleanup_dirty_bgs().
That helper finds block group B in the transaction's io_list but it
never releases the pages array of the block group's io_ctl, resulting in
a memory leak.
In fact at the point when we are at btrfs_cleanup_dirty_bgs(), the pages
array points to pages that were already released by us at
__btrfs_write_out_cache() through the call to io_ctl_drop_pages(). We end
up freeing the pages array only after waiting for the ordered extent to
complete through btrfs_wait_cache_io(), which calls io_ctl_free() to do
that. But in the transaction abort case we don't wait for the space cache's
ordered extent to complete through a call to btrfs_wait_cache_io(), so
that's why we end up with a memory leak - we wait for the ordered extent
to complete indirectly by shutting down the work queues and waiting for
any jobs in them to complete before returning from close_ctree().
We can solve the leak simply by freeing the pages array right after
releasing the pages (with the call to io_ctl_drop_pages()) at
__btrfs_write_out_cache(), since we will never use it anymore after that
and the pages array points to already released pages at that point, which
is currently not a problem since no one will use it after that, but not a
good practice anyway since it can easily lead to use-after-free issues.
So fix this by freeing the pages array right after releasing the pages at
__btrfs_write_out_cache().
This issue can often be reproduced with test case generic/475 from fstests
and kmemleak can detect it and reports it with the following trace:
unreferenced object 0xffff9bbf009fa600 (size 512):
comm "fsstress", pid 38807, jiffies 4298504428 (age 22.028s)
hex dump (first 32 bytes):
00 a0 7c 4d 3d ed ff ff 40 a0 7c 4d 3d ed ff ff ..|M=...@.|M=...
80 a0 7c 4d 3d ed ff ff c0 a0 7c 4d 3d ed ff ff ..|M=.....|M=...
backtrace:
[<00000000f4b5cfe2>] __kmalloc+0x1a8/0x3e0
[<0000000028665e7f>] io_ctl_init+0xa7/0x120 [btrfs]
[<00000000a1f95b2d>] __btrfs_write_out_cache+0x86/0x4a0 [btrfs]
[<00000000207ea1b0>] btrfs_write_out_cache+0x7f/0xf0 [btrfs]
[<00000000af21f534>] btrfs_start_dirty_block_groups+0x27b/0x580 [btrfs]
[<00000000c3c23d44>] btrfs_commit_transaction+0xa6f/0xe70 [btrfs]
[<000000009588930c>] create_subvol+0x581/0x9a0 [btrfs]
[<000000009ef2fd7f>] btrfs_mksubvol+0x3fb/0x4a0 [btrfs]
[<00000000474e5187>] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs]
[<00000000708ee349>] btrfs_ioctl_snap_create_v2+0xb0/0xf0 [btrfs]
[<00000000ea60106f>] btrfs_ioctl+0x12c/0x3130 [btrfs]
[<000000005c923d6d>] __x64_sys_ioctl+0x83/0xb0
[<0000000043ace2c9>] do_syscall_64+0x33/0x80
[<00000000904efbce>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 851fd730a743e072badaf67caf39883e32439431 upstream.
[BUG]
When a lot of subvolumes are created, there is a user report about
transaction aborted:
BTRFS: Transaction aborted (error -24)
WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
Call Trace:
create_pending_snapshots+0x82/0xa0 [btrfs]
btrfs_commit_transaction+0x275/0x8c0 [btrfs]
btrfs_mksubvol+0x4b9/0x500 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0x11a4/0x2da0 [btrfs]
do_vfs_ioctl+0xa9/0x640
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 33f2f83f3d5250e9 ]---
BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
BTRFS info (device sda1): forced readonly
BTRFS warning (device sda1): Skipping commit of aborted transaction.
BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown
[CAUSE]
The error is EMFILE (Too many files open) and comes from the anonymous
block device allocation. The ids are in a shared pool of size 1<<20.
The ids are assigned to live subvolumes, ie. the root structure exists
in memory (eg. after creation or after the root appears in some path).
The pool could be exhausted if the numbers are not reclaimed fast
enough, after subvolume deletion or if other system component uses the
anon block devices.
[WORKAROUND]
Since it's not possible to completely solve the problem, we can only
minimize the time the id is allocated to a subvolume root.
Firstly, we can reduce the use of anon_dev by trees that are not
subvolume roots, like data reloc tree.
This patch will do extra check on root objectid, to skip roots that
don't need anon_dev. Currently it's only data reloc tree and orphan
roots.
Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 75ec1db8717a8f0a9d9c8d033e542fdaa7b73898 upstream.
In my EIO stress testing I noticed I was getting forced to rescan the
uuid tree pretty often, which was weird. This is because my error
injection stuff would sometimes inject an error after log replay but
before we loaded the UUID tree. If log replay committed the transaction
it wouldn't have updated the uuid tree generation, but the tree was
valid and didn't change, so there's no reason to not update the
generation here.
Fix this by setting the BTRFS_FS_UPDATE_UUID_TREE_GEN bit immediately
after reading all the fs roots if the uuid tree generation matches the
fs generation. Then any transaction commits that happen during mount
won't screw up our uuid tree state, forcing us to do needless uuid
rescans.
Fixes: 70f801754728 ("Btrfs: check UUID tree during mount if required")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f0cc2cd70164efe8f75c5d99560f0f69969c72e4 upstream.
During unmount we can have a job from the delayed inode items work queue
still running, that can lead to at least two bad things:
1) A crash, because the worker can try to create a transaction just
after the fs roots were freed;
2) A transaction leak, because the worker can create a transaction
before the fs roots are freed and just after we committed the last
transaction and after we stopped the transaction kthread.
A stack trace example of the crash:
[79011.691214] kernel BUG at lib/radix-tree.c:982!
[79011.692056] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[79011.693180] CPU: 3 PID: 1394 Comm: kworker/u8:2 Tainted: G W 5.6.0-rc2-btrfs-next-54 #2
(...)
[79011.696789] Workqueue: btrfs-delayed-meta btrfs_work_helper [btrfs]
[79011.697904] RIP: 0010:radix_tree_tag_set+0xe7/0x170
(...)
[79011.702014] RSP: 0018:ffffb3c84a317ca0 EFLAGS: 00010293
[79011.702949] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[79011.704202] RDX: ffffb3c84a317cb0 RSI: ffffb3c84a317ca8 RDI: ffff8db3931340a0
[79011.705463] RBP: 0000000000000005 R08: 0000000000000005 R09: ffffffff974629d0
[79011.706756] R10: ffffb3c84a317bc0 R11: 0000000000000001 R12: ffff8db393134000
[79011.708010] R13: ffff8db3931340a0 R14: ffff8db393134068 R15: 0000000000000001
[79011.709270] FS: 0000000000000000(0000) GS:ffff8db3b6a00000(0000) knlGS:0000000000000000
[79011.710699] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[79011.711710] CR2: 00007f22c2a0a000 CR3: 0000000232ad4005 CR4: 00000000003606e0
[79011.712958] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[79011.714205] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[79011.715448] Call Trace:
[79011.715925] record_root_in_trans+0x72/0xf0 [btrfs]
[79011.716819] btrfs_record_root_in_trans+0x4b/0x70 [btrfs]
[79011.717925] start_transaction+0xdd/0x5c0 [btrfs]
[79011.718829] btrfs_async_run_delayed_root+0x17e/0x2b0 [btrfs]
[79011.719915] btrfs_work_helper+0xaa/0x720 [btrfs]
[79011.720773] process_one_work+0x26d/0x6a0
[79011.721497] worker_thread+0x4f/0x3e0
[79011.722153] ? process_one_work+0x6a0/0x6a0
[79011.722901] kthread+0x103/0x140
[79011.723481] ? kthread_create_worker_on_cpu+0x70/0x70
[79011.724379] ret_from_fork+0x3a/0x50
(...)
The following diagram shows a sequence of steps that lead to the crash
during ummount of the filesystem:
CPU 1 CPU 2 CPU 3
btrfs_punch_hole()
btrfs_btree_balance_dirty()
btrfs_balance_delayed_items()
--> sees
fs_info->delayed_root->items
with value 200, which is greater
than
BTRFS_DELAYED_BACKGROUND (128)
and smaller than
BTRFS_DELAYED_WRITEBACK (512)
btrfs_wq_run_delayed_node()
--> queues a job for
fs_info->delayed_workers to run
btrfs_async_run_delayed_root()
btrfs_async_run_delayed_root()
--> job queued by CPU 1
--> starts picking and running
delayed nodes from the
prepare_list list
close_ctree()
btrfs_delete_unused_bgs()
btrfs_commit_super()
btrfs_join_transaction()
--> gets transaction N
btrfs_commit_transaction(N)
--> set transaction state
to TRANTS_STATE_COMMIT_START
btrfs_first_prepared_delayed_node()
--> picks delayed node X through
the prepared_list list
btrfs_run_delayed_items()
btrfs_first_delayed_node()
--> also picks delayed node X
but through the node_list
list
__btrfs_commit_inode_delayed_items()
--> runs all delayed items from
this node and drops the
node's item count to 0
through call to
btrfs_release_delayed_inode()
--> finishes running any remaining
delayed nodes
--> finishes transaction commit
--> stops cleaner and transaction threads
btrfs_free_fs_roots()
--> frees all roots and removes them
from the radix tree
fs_info->fs_roots_radix
btrfs_join_transaction()
start_transaction()
btrfs_record_root_in_trans()
record_root_in_trans()
radix_tree_tag_set()
--> crashes because
the root is not in
the radix tree
anymore
If the worker is able to call btrfs_join_transaction() before the unmount
task frees the fs roots, we end up leaking a transaction and all its
resources, since after the call to btrfs_commit_super() and stopping the
transaction kthread, we don't expect to have any transaction open anymore.
When this situation happens the worker has a delayed node that has no
more items to run, since the task calling btrfs_run_delayed_items(),
which is doing a transaction commit, picks the same node and runs all
its items first.
We can not wait for the worker to complete when running delayed items
through btrfs_run_delayed_items(), because we call that function in
several phases of a transaction commit, and that could cause a deadlock
because the worker calls btrfs_join_transaction() and the task doing the
transaction commit may have already set the transaction state to
TRANS_STATE_COMMIT_DOING.
Also it's not possible to get into a situation where only some of the
items of a delayed node are added to the fs/subvolume tree in the current
transaction and the remaining ones in the next transaction, because when
running the items of a delayed inode we lock its mutex, effectively
waiting for the worker if the worker is running the items of the delayed
node already.
Since this can only cause issues when unmounting a filesystem, fix it in
a simple way by waiting for any jobs on the delayed workers queue before
calling btrfs_commit_supper() at close_ctree(). This works because at this
point no one can call btrfs_btree_balance_dirty() or
btrfs_balance_delayed_items(), and if we end up waiting for any worker to
complete, btrfs_commit_super() will commit the transaction created by the
worker.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1e90315149f3fe148e114a5de86f0196d1c21fa5 upstream.
btrfs_assert_delayed_root_empty() will check if the delayed root is
completely empty, but this is a filesystem-wide check. On cleanup we
may have allowed other transactions to begin, for whatever reason, and
thus the delayed root is not empty.
So remove this check from cleanup_one_transation(). This however can
stay in btrfs_cleanup_transaction(), because it checks only after all of
the transactions have been properly cleaned up, and thus is valid.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 315bf8ef914f31d51d084af950703aa1e09a728c upstream.
While running my error injection script I hit a panic when we tried to
clean up the fs_root when freeing the fs_root. This is because
fs_info->fs_root == PTR_ERR(-EIO), which isn't great. Fix this by
setting fs_info->fs_root = NULL; if we fail to read the root.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 81f7eb00ff5bb8326e82503a32809421d14abb8a upstream.
We clean up the delayed references when we abort a transaction but we
leave the pending qgroup extent records behind, leaking memory.
This patch destroys the extent records when we destroy the delayed refs
and makes sure ensure they're gone before releasing the transaction.
Fixes: 3368d001ba5d ("btrfs: qgroup: Record possible quota-related extent for qgroup.")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
[ Rebased to latest upstream, remove to_qgroup() helper, use
rbtree_postorder_for_each_entry_safe() wrapper ]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e8294f2f6aa6208ed0923aa6d70cea3be178309a upstream.
There's no logged information about tree-log replay although this is
something that points to previous unclean unmount. Other filesystems
report that as well.
Suggested-by: Chris Murphy <lists@colorremedies.com>
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4e19443da1941050b346f8fc4c368aa68413bc88 ]
Sometimes when running generic/475 we would trip the
WARN_ON(cache->reserved) check when free'ing the block groups on umount.
This is because sometimes we don't commit the transaction because of IO
errors and thus do not cleanup the tree logs until at umount time.
These blocks are still reserved until they are cleaned up, but they
aren't cleaned up until _after_ we do the free block groups work. Fix
this by moving the free after free'ing the fs roots, that way all of the
tree logs are cleaned up and we have a properly cleaned fs. A bunch of
loops of generic/475 confirmed this fixes the problem.
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4273eaff9b8d5e141113a5bdf9628c02acf3afe5 ]
We don't need int argument bool shall do in free_root_pointers(). And
rename the argument as it confused two people.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7227ff4de55d931bbdc156c8ef0ce4f100c78a5b upstream.
There is a race between adding and removing elements to the tree mod log
list and rbtree that can lead to use-after-free problems.
Consider the following example that explains how/why the problems happens:
1) Task A has mod log element with sequence number 200. It currently is
the only element in the mod log list;
2) Task A calls btrfs_put_tree_mod_seq() because it no longer needs to
access the tree mod log. When it enters the function, it initializes
'min_seq' to (u64)-1. Then it acquires the lock 'tree_mod_seq_lock'
before checking if there are other elements in the mod seq list.
Since the list it empty, 'min_seq' remains set to (u64)-1. Then it
unlocks the lock 'tree_mod_seq_lock';
3) Before task A acquires the lock 'tree_mod_log_lock', task B adds
itself to the mod seq list through btrfs_get_tree_mod_seq() and gets a
sequence number of 201;
4) Some other task, name it task C, modifies a btree and because there
elements in the mod seq list, it adds a tree mod elem to the tree
mod log rbtree. That node added to the mod log rbtree is assigned
a sequence number of 202;
5) Task B, which is doing fiemap and resolving indirect back references,
calls btrfs get_old_root(), with 'time_seq' == 201, which in turn
calls tree_mod_log_search() - the search returns the mod log node
from the rbtree with sequence number 202, created by task C;
6) Task A now acquires the lock 'tree_mod_log_lock', starts iterating
the mod log rbtree and finds the node with sequence number 202. Since
202 is less than the previously computed 'min_seq', (u64)-1, it
removes the node and frees it;
7) Task B still has a pointer to the node with sequence number 202, and
it dereferences the pointer itself and through the call to
__tree_mod_log_rewind(), resulting in a use-after-free problem.
This issue can be triggered sporadically with the test case generic/561
from fstests, and it happens more frequently with a higher number of
duperemove processes. When it happens to me, it either freezes the VM or
it produces a trace like the following before crashing:
[ 1245.321140] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[ 1245.321200] CPU: 1 PID: 26997 Comm: pool Not tainted 5.5.0-rc6-btrfs-next-52 #1
[ 1245.321235] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[ 1245.321287] RIP: 0010:rb_next+0x16/0x50
[ 1245.321307] Code: ....
[ 1245.321372] RSP: 0018:ffffa151c4d039b0 EFLAGS: 00010202
[ 1245.321388] RAX: 6b6b6b6b6b6b6b6b RBX: ffff8ae221363c80 RCX: 6b6b6b6b6b6b6b6b
[ 1245.321409] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff8ae221363c80
[ 1245.321439] RBP: ffff8ae20fcc4688 R08: 0000000000000002 R09: 0000000000000000
[ 1245.321475] R10: ffff8ae20b120910 R11: 00000000243f8bb1 R12: 0000000000000038
[ 1245.321506] R13: ffff8ae221363c80 R14: 000000000000075f R15: ffff8ae223f762b8
[ 1245.321539] FS: 00007fdee1ec7700(0000) GS:ffff8ae236c80000(0000) knlGS:0000000000000000
[ 1245.321591] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1245.321614] CR2: 00007fded4030c48 CR3: 000000021da16003 CR4: 00000000003606e0
[ 1245.321642] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1245.321668] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 1245.321706] Call Trace:
[ 1245.321798] __tree_mod_log_rewind+0xbf/0x280 [btrfs]
[ 1245.321841] btrfs_search_old_slot+0x105/0xd00 [btrfs]
[ 1245.321877] resolve_indirect_refs+0x1eb/0xc60 [btrfs]
[ 1245.321912] find_parent_nodes+0x3dc/0x11b0 [btrfs]
[ 1245.321947] btrfs_check_shared+0x115/0x1c0 [btrfs]
[ 1245.321980] ? extent_fiemap+0x59d/0x6d0 [btrfs]
[ 1245.322029] extent_fiemap+0x59d/0x6d0 [btrfs]
[ 1245.322066] do_vfs_ioctl+0x45a/0x750
[ 1245.322081] ksys_ioctl+0x70/0x80
[ 1245.322092] ? trace_hardirqs_off_thunk+0x1a/0x1c
[ 1245.322113] __x64_sys_ioctl+0x16/0x20
[ 1245.322126] do_syscall_64+0x5c/0x280
[ 1245.322139] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 1245.322155] RIP: 0033:0x7fdee3942dd7
[ 1245.322177] Code: ....
[ 1245.322258] RSP: 002b:00007fdee1ec6c88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[ 1245.322294] RAX: ffffffffffffffda RBX: 00007fded40210d8 RCX: 00007fdee3942dd7
[ 1245.322314] RDX: 00007fded40210d8 RSI: 00000000c020660b RDI: 0000000000000004
[ 1245.322337] RBP: 0000562aa89e7510 R08: 0000000000000000 R09: 00007fdee1ec6d44
[ 1245.322369] R10: 0000000000000073 R11: 0000000000000246 R12: 00007fdee1ec6d48
[ 1245.322390] R13: 00007fdee1ec6d40 R14: 00007fded40210d0 R15: 00007fdee1ec6d50
[ 1245.322423] Modules linked in: ....
[ 1245.323443] ---[ end trace 01de1e9ec5dff3cd ]---
Fix this by ensuring that btrfs_put_tree_mod_seq() computes the minimum
sequence number and iterates the rbtree while holding the lock
'tree_mod_log_lock' in write mode. Also get rid of the 'tree_mod_seq_lock'
lock, since it is now redundant.
Fixes: bd989ba359f2ac ("Btrfs: add tree modification log functions")
Fixes: 097b8a7c9e48e2 ("Btrfs: join tree mod log code with the code holding back delayed refs")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a0cac0ec961f0d42828eeef196ac2246a2f07659 ]
Commit 9e0af2376434 ("Btrfs: fix task hang under heavy compressed
write") worked around the issue that a recycled work item could get a
false dependency on the original work item due to how the workqueue code
guarantees non-reentrancy. It did so by giving different work functions
to different types of work.
However, the fixes in the previous few patches are more complete, as
they prevent a work item from being recycled at all (except for a tiny
window that the kernel workqueue code handles for us). This obsoletes
the previous fix, so we don't need the unique helpers for correctness.
The only other reason to keep them would be so they show up in stack
traces, but they always seem to be optimized to a tail call, so they
don't show up anyways. So, let's just get rid of the extra indirection.
While we're here, rename normal_work_helper() to the more informative
btrfs_work_helper().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9be490f1e15c34193b1aae17da58e14dd9f55a95 ]
Currently, end_workqueue_fn() frees the end_io_wq entry (which embeds
the work item) and then calls bio_endio(). This is another potential
instance of the bug in "btrfs: don't prematurely free work in
run_ordered_work()".
In particular, the endio call may depend on other work items. For
example, btrfs_end_dio_bio() can call btrfs_subio_endio_read() ->
__btrfs_correct_data_nocsum() -> dio_read_error() ->
submit_dio_repair_bio(), which submits a bio that is also completed
through a end_workqueue_fn() work item. However,
__btrfs_correct_data_nocsum() waits for the newly submitted bio to
complete, thus it depends on another work item.
This example currently usually works because we use different workqueue
helper functions for BTRFS_WQ_ENDIO_DATA and BTRFS_WQ_ENDIO_DIO_REPAIR.
However, it may deadlock with stacked filesystems and is fragile
overall. The proper fix is to free the work item at the very end of the
work function, so let's do that.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
The patch 32b593bfcb58 ("Btrfs: remove no longer used function to run
delayed refs asynchronously") removed the async delayed refs but the
thread has been created, without any use. Remove it to avoid resource
consumption.
Fixes: 32b593bfcb58 ("Btrfs: remove no longer used function to run delayed refs asynchronously")
CC: stable@vger.kernel.org # 5.2+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is used only for the readahead machinery. It makes no
sense to keep it external to reada.c file. Place it above its sole
caller and make it static. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is prep work for moving all of the block group cache code into its
own file.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
In the 5.3 merge window, commit 7c7e301406d0a9 ("btrfs: sysfs: Replace
default_attrs in ktypes with groups"), we started using the member
"defaults_groups" for the kobject type "btrfs_raid_ktype". That leads
to a series of warnings when running some test cases of fstests, such
as btrfs/027, btrfs/124 and btrfs/176. The traces produced by those
warnings are like the following:
[116648.059212] kernfs: can not remove 'total_bytes', no directory
[116648.060112] WARNING: CPU: 3 PID: 28500 at fs/kernfs/dir.c:1504 kernfs_remove_by_name_ns+0x75/0x80
(...)
[116648.066482] CPU: 3 PID: 28500 Comm: umount Tainted: G W 5.3.0-rc3-btrfs-next-54 #1
(...)
[116648.069376] RIP: 0010:kernfs_remove_by_name_ns+0x75/0x80
(...)
[116648.072385] RSP: 0018:ffffabfd0090bd08 EFLAGS: 00010282
[116648.073437] RAX: 0000000000000000 RBX: ffffffffc0c11998 RCX: 0000000000000000
[116648.074201] RDX: ffff9fff603a7a00 RSI: ffff9fff603978a8 RDI: ffff9fff603978a8
[116648.074956] RBP: ffffffffc0b9ca2f R08: 0000000000000000 R09: 0000000000000001
[116648.075708] R10: ffff9ffe1f72e1c0 R11: 0000000000000000 R12: ffffffffc0b94120
[116648.076434] R13: ffffffffb3d9b4e0 R14: 0000000000000000 R15: dead000000000100
[116648.077143] FS: 00007f9cdc78a2c0(0000) GS:ffff9fff60380000(0000) knlGS:0000000000000000
[116648.077852] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[116648.078546] CR2: 00007f9fc4747ab4 CR3: 00000005c7832003 CR4: 00000000003606e0
[116648.079235] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[116648.079907] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[116648.080585] Call Trace:
[116648.081262] remove_files+0x31/0x70
[116648.081929] sysfs_remove_group+0x38/0x80
[116648.082596] sysfs_remove_groups+0x34/0x70
[116648.083258] kobject_del+0x20/0x60
[116648.083933] btrfs_free_block_groups+0x405/0x430 [btrfs]
[116648.084608] close_ctree+0x19a/0x380 [btrfs]
[116648.085278] generic_shutdown_super+0x6c/0x110
[116648.085951] kill_anon_super+0xe/0x30
[116648.086621] btrfs_kill_super+0x12/0xa0 [btrfs]
[116648.087289] deactivate_locked_super+0x3a/0x70
[116648.087956] cleanup_mnt+0xb4/0x160
[116648.088620] task_work_run+0x7e/0xc0
[116648.089285] exit_to_usermode_loop+0xfa/0x100
[116648.089933] do_syscall_64+0x1cb/0x220
[116648.090567] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[116648.091197] RIP: 0033:0x7f9cdc073b37
(...)
[116648.100046] ---[ end trace 22e24db328ccadf8 ]---
[116648.100618] ------------[ cut here ]------------
[116648.101175] kernfs: can not remove 'used_bytes', no directory
[116648.101731] WARNING: CPU: 3 PID: 28500 at fs/kernfs/dir.c:1504 kernfs_remove_by_name_ns+0x75/0x80
(...)
[116648.105649] CPU: 3 PID: 28500 Comm: umount Tainted: G W 5.3.0-rc3-btrfs-next-54 #1
(...)
[116648.107461] RIP: 0010:kernfs_remove_by_name_ns+0x75/0x80
(...)
[116648.109336] RSP: 0018:ffffabfd0090bd08 EFLAGS: 00010282
[116648.109979] RAX: 0000000000000000 RBX: ffffffffc0c119a0 RCX: 0000000000000000
[116648.110625] RDX: ffff9fff603a7a00 RSI: ffff9fff603978a8 RDI: ffff9fff603978a8
[116648.111283] RBP: ffffffffc0b9ca41 R08: 0000000000000000 R09: 0000000000000001
[116648.111940] R10: ffff9ffe1f72e1c0 R11: 0000000000000000 R12: ffffffffc0b94120
[116648.112603] R13: ffffffffb3d9b4e0 R14: 0000000000000000 R15: dead000000000100
[116648.113268] FS: 00007f9cdc78a2c0(0000) GS:ffff9fff60380000(0000) knlGS:0000000000000000
[116648.113939] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[116648.114607] CR2: 00007f9fc4747ab4 CR3: 00000005c7832003 CR4: 00000000003606e0
[116648.115286] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[116648.115966] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[116648.116649] Call Trace:
[116648.117326] remove_files+0x31/0x70
[116648.117997] sysfs_remove_group+0x38/0x80
[116648.118671] sysfs_remove_groups+0x34/0x70
[116648.119342] kobject_del+0x20/0x60
[116648.120022] btrfs_free_block_groups+0x405/0x430 [btrfs]
[116648.120707] close_ctree+0x19a/0x380 [btrfs]
[116648.121396] generic_shutdown_super+0x6c/0x110
[116648.122057] kill_anon_super+0xe/0x30
[116648.122702] btrfs_kill_super+0x12/0xa0 [btrfs]
[116648.123335] deactivate_locked_super+0x3a/0x70
[116648.123961] cleanup_mnt+0xb4/0x160
[116648.124586] task_work_run+0x7e/0xc0
[116648.125210] exit_to_usermode_loop+0xfa/0x100
[116648.125830] do_syscall_64+0x1cb/0x220
[116648.126463] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[116648.127080] RIP: 0033:0x7f9cdc073b37
(...)
[116648.135923] ---[ end trace 22e24db328ccadf9 ]---
These happen because, during the unmount path, we call kobject_del() for
raid kobjects that are not fully initialized, meaning that we set their
ktype (as btrfs_raid_ktype) through link_block_group() but we didn't set
their parent kobject, which is done through btrfs_add_raid_kobjects().
We have this split raid kobject setup since commit 75cb379d263521
("btrfs: defer adding raid type kobject until after chunk relocation") in
order to avoid triggering reclaim during contextes where we can not
(either we are holding a transaction handle or some lock required by
the transaction commit path), so that we do the calls to kobject_add(),
which triggers GFP_KERNEL allocations, through btrfs_add_raid_kobjects()
in contextes where it is safe to trigger reclaim. That change expected
that a new raid kobject can only be created either when mounting the
filesystem or after raid profile conversion through the relocation path.
However, we can have new raid kobject created in other two cases at least:
1) During device replace (or scrub) after adding a device a to the
filesystem. The replace procedure (and scrub) do calls to
btrfs_inc_block_group_ro() which can allocate a new block group
with a new raid profile (because we now have more devices). This
can be triggered by test cases btrfs/027 and btrfs/176.
2) During a degraded mount trough any write path. This can be triggered
by test case btrfs/124.
Fixing this by adding extra calls to btrfs_add_raid_kobjects(), not only
makes things more complex and fragile, can also introduce deadlocks with
reclaim the following way:
1) Calling btrfs_add_raid_kobjects() at btrfs_inc_block_group_ro() or
anywhere in the replace/scrub path will cause a deadlock with reclaim
because if reclaim happens and a transaction commit is triggered,
the transaction commit path will block at btrfs_scrub_pause().
2) During degraded mounts it is essentially impossible to figure out where
to add extra calls to btrfs_add_raid_kobjects(), because allocation of
a block group with a new raid profile can happen anywhere, which means
we can't safely figure out which contextes are safe for reclaim, as
we can either hold a transaction handle or some lock needed by the
transaction commit path.
So it is too complex and error prone to have this split setup of raid
kobjects. So fix the issue by consolidating the setup of the kobjects in a
single place, at link_block_group(), and setup a nofs context there in
order to prevent reclaim being triggered by the memory allocations done
through the call chain of kobject_add().
Besides fixing the sysfs warnings during kobject_del(), this also ensures
the sysfs directories for the new raid profiles end up created and visible
to users (a bug that existed before the 5.3 commit 7c7e301406d0a9
("btrfs: sysfs: Replace default_attrs in ktypes with groups")).
Fixes: 75cb379d263521 ("btrfs: defer adding raid type kobject until after chunk relocation")
Fixes: 7c7e301406d0a9 ("btrfs: sysfs: Replace default_attrs in ktypes with groups")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Send always operates on read-only trees and always expected that while it
is in progress, nothing changes in those trees. Due to that expectation
and the fact that send is a read-only operation, it operates on commit
roots and does not hold transaction handles. However relocation can COW
nodes and leafs from read-only trees, which can cause unexpected failures
and crashes (hitting BUG_ONs). while send using a node/leaf, it gets
COWed, the transaction used to COW it is committed, a new transaction
starts, the extent previously used for that node/leaf gets allocated,
possibly for another tree, and the respective extent buffer' content
changes while send is still using it. When this happens send normally
fails with EIO being returned to user space and messages like the
following are found in dmesg/syslog:
[ 3408.699121] BTRFS error (device sdc): parent transid verify failed on 58703872 wanted 250 found 253
[ 3441.523123] BTRFS error (device sdc): did not find backref in send_root. inode=63211, offset=0, disk_byte=5222825984 found extent=5222825984
Other times, less often, we hit a BUG_ON() because an extent buffer that
send is using used to be a node, and while send is still using it, it
got COWed and got reused as a leaf while send is still using, producing
the following trace:
[ 3478.466280] ------------[ cut here ]------------
[ 3478.466282] kernel BUG at fs/btrfs/ctree.c:1806!
[ 3478.466965] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI
[ 3478.467635] CPU: 0 PID: 2165 Comm: btrfs Not tainted 5.0.0-btrfs-next-46 #1
[ 3478.468311] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[ 3478.469681] RIP: 0010:read_node_slot+0x122/0x130 [btrfs]
(...)
[ 3478.471758] RSP: 0018:ffffa437826bfaa0 EFLAGS: 00010246
[ 3478.472457] RAX: ffff961416ed7000 RBX: 000000000000003d RCX: 0000000000000002
[ 3478.473151] RDX: 000000000000003d RSI: ffff96141e387408 RDI: ffff961599b30000
[ 3478.473837] RBP: ffffa437826bfb8e R08: 0000000000000001 R09: ffffa437826bfb8e
[ 3478.474515] R10: ffffa437826bfa70 R11: 0000000000000000 R12: ffff9614385c8708
[ 3478.475186] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 3478.475840] FS: 00007f8e0e9cc8c0(0000) GS:ffff9615b6a00000(0000) knlGS:0000000000000000
[ 3478.476489] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3478.477127] CR2: 00007f98b67a056e CR3: 0000000005df6005 CR4: 00000000003606f0
[ 3478.477762] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 3478.478385] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 3478.479003] Call Trace:
[ 3478.479600] ? do_raw_spin_unlock+0x49/0xc0
[ 3478.480202] tree_advance+0x173/0x1d0 [btrfs]
[ 3478.480810] btrfs_compare_trees+0x30c/0x690 [btrfs]
[ 3478.481388] ? process_extent+0x1280/0x1280 [btrfs]
[ 3478.481954] btrfs_ioctl_send+0x1037/0x1270 [btrfs]
[ 3478.482510] _btrfs_ioctl_send+0x80/0x110 [btrfs]
[ 3478.483062] btrfs_ioctl+0x13fe/0x3120 [btrfs]
[ 3478.483581] ? rq_clock_task+0x2e/0x60
[ 3478.484086] ? wake_up_new_task+0x1f3/0x370
[ 3478.484582] ? do_vfs_ioctl+0xa2/0x6f0
[ 3478.485075] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[ 3478.485552] do_vfs_ioctl+0xa2/0x6f0
[ 3478.486016] ? __fget+0x113/0x200
[ 3478.486467] ksys_ioctl+0x70/0x80
[ 3478.486911] __x64_sys_ioctl+0x16/0x20
[ 3478.487337] do_syscall_64+0x60/0x1b0
[ 3478.487751] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 3478.488159] RIP: 0033:0x7f8e0d7d4dd7
(...)
[ 3478.489349] RSP: 002b:00007ffcf6fb4908 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[ 3478.489742] RAX: ffffffffffffffda RBX: 0000000000000105 RCX: 00007f8e0d7d4dd7
[ 3478.490142] RDX: 00007ffcf6fb4990 RSI: 0000000040489426 RDI: 0000000000000005
[ 3478.490548] RBP: 0000000000000005 R08: 00007f8e0d6f3700 R09: 00007f8e0d6f3700
[ 3478.490953] R10: 00007f8e0d6f39d0 R11: 0000000000000202 R12: 0000000000000005
[ 3478.491343] R13: 00005624e0780020 R14: 0000000000000000 R15: 0000000000000001
(...)
[ 3478.493352] ---[ end trace d5f537302be4f8c8 ]---
Another possibility, much less likely to happen, is that send will not
fail but the contents of the stream it produces may not be correct.
To avoid this, do not allow send and relocation (balance) to run in
parallel. In the long term the goal is to allow for both to be able to
run concurrently without any problems, but that will take a significant
effort in development and testing.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_csum_data() relied on the crc32c() wrapper around the
crypto framework for calculating the CRCs.
As we have our own crypto_shash structure in the fs_info now, we can
directly call into the crypto framework without going trough the wrapper.
This way we can even remove the btrfs_csum_data() and btrfs_csum_final()
wrappers.
The module dependency on crc32c is preserved via MODULE_SOFTDEP("pre:
crc32c"), which was previously provided by LIBCRC32C config option doing
the same.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add boilerplate code for directly including the crypto framework. This
helps us flipping the switch for new algorithms.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have already checked for a valid checksum type before
calling btrfs_check_super_csum(), it can be simplified even further.
While at it get rid of the implicit size assumption of the resulting
checksum as well.
This is a preparation for changing all checksum functionality to use the
crypto layer later.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have factorerd out the superblock checksum type validation,
we can check for supported superblock checksum types before doing the
actual validation of the superblock read from disk.
This leads the path to further simplifications of
btrfs_check_super_csum() later on.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs is only supporting CRC32C as checksumming algorithm. As
this is about to change provide a function to validate the checksum type
in the superblock against all possible algorithms.
This makes adding new algorithms easier as there are fewer places to
adjust when adding new algorithms.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The raid_attr table is now 7 * 56 = 392 bytes long, consisting of just
small numbers so we don't have to use ints. New size is 7 * 32 = 224,
saving 3 cachelines.
Signed-off-by: David Sterba <dsterba@suse.com>
fs_info::mapping_tree is the physical<->logical mapping tree and uses
the same underlying structure as extents, but is embedded to another
structure. There are no other members and this indirection is useless.
No functional change.
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, there's only check for fast crc32c implementation on X86,
based on the CPU flags. This is used to decide if checksumming should be
offloaded to worker threads or can be calculated by the caller.
As there are more architectures that implement a faster version of
crc32c (ARM, SPARC, s390, MIPS, PowerPC), also there are specialized hw
cards.
The detection is based on driver name, all generic C implementations
contain 'generic', while the specialized versions do not. Alternatively
the priority could be used, but this is not currently provided by the
crypto API.
The flag is set per-filesystem at mount time and used for the offloading
decisions.
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlzR0AAQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpo0MD/47D1kBK9rGzkAwIz1Jkh1Qy/ITVaDJzmHJ
UP5uncQsgKFLKMR1LbRcrWtmk2MwFDNULGbteHFeCYE1ypCrTgpWSp5+SJluKd1Q
hma9krLSAXO9QiSaZ4jafshXFIZxz6IjakOW8c9LrT80Ze47yh7AxiLwDafcp/Jj
x6NW790qB7ENDtfarDkZk14NCS8HGLRHO5B21LB+hT0Kfbh0XZaLzJdj7Mck1wPA
VT8hL9mPuA++AjF7Ra4kUjwSakgmajTa3nS2fpkwTYdztQfas7x5Jiv7FWxrrelb
qbabkNkWKepcHAPEiZR7o53TyfCucGeSK/jG+dsJ9KhNp26kl1ci3frl5T6PfVMP
SPPDjsKIHs+dqFrU9y5rSGhLJqewTs96hHthnLGxyF67+5sRb5+YIy+dcqgiyc/b
TUVyjCD6r0cO2q4v9VhwnhOyeBUA9Rwbu8nl7JV5Q45uG7qI4BC39l1jfubMNDPO
GLNGUUzb6ER7z6lYINjRSF2Jhejsx8SR9P7jhpb1Q7k/VvDDxO1T4FpwvqWFz9+s
Gn+s6//+cA6LL+42eZkQjvwF2CUNE7TaVT8zdb+s5HP1RQkZToqUnsQCGeRTrFni
RqWXfW9o9+awYRp431417oMdX/LvLGq9+ZtifRk9DqDcowXevTaf0W2RpplWSuiX
RcCuPeLAVg==
=Ot0g
-----END PGP SIGNATURE-----
Merge tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"Nothing major in this series, just fixes and improvements all over the
map. This contains:
- Series of fixes for sed-opal (David, Jonas)
- Fixes and performance tweaks for BFQ (via Paolo)
- Set of fixes for bcache (via Coly)
- Set of fixes for md (via Song)
- Enabling multi-page for passthrough requests (Ming)
- Queue release fix series (Ming)
- Device notification improvements (Martin)
- Propagate underlying device rotational status in loop (Holger)
- Removal of mtip32xx trim support, which has been disabled for years
(Christoph)
- Improvement and cleanup of nvme command handling (Christoph)
- Add block SPDX tags (Christoph)
- Cleanup/hardening of bio/bvec iteration (Christoph)
- A few NVMe pull requests (Christoph)
- Removal of CONFIG_LBDAF (Christoph)
- Various little fixes here and there"
* tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block: (164 commits)
block: fix mismerge in bvec_advance
block: don't drain in-progress dispatch in blk_cleanup_queue()
blk-mq: move cancel of hctx->run_work into blk_mq_hw_sysfs_release
blk-mq: always free hctx after request queue is freed
blk-mq: split blk_mq_alloc_and_init_hctx into two parts
blk-mq: free hw queue's resource in hctx's release handler
blk-mq: move cancel of requeue_work into blk_mq_release
blk-mq: grab .q_usage_counter when queuing request from plug code path
block: fix function name in comment
nvmet: protect discovery change log event list iteration
nvme: mark nvme_core_init and nvme_core_exit static
nvme: move command size checks to the core
nvme-fabrics: check more command sizes
nvme-pci: check more command sizes
nvme-pci: remove an unneeded variable initialization
nvme-pci: unquiesce admin queue on shutdown
nvme-pci: shutdown on timeout during deletion
nvme-pci: fix psdt field for single segment sgls
nvme-multipath: don't print ANA group state by default
nvme-multipath: split bios with the ns_head bio_set before submitting
...
We only have two callers that need the integer loop iterator, and they
can easily maintain it themselves.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When diagnosing a slowdown of generic/224 I noticed we were not doing
anything when calling into shrink_delalloc(). This is because all
writes in 224 are O_DIRECT, not delalloc, and thus our delalloc_bytes
counter is 0, which short circuits most of the work inside of
shrink_delalloc(). However O_DIRECT writes still consume metadata
resources and generate ordered extents, which we can still wait on.
Fix this by tracking outstanding DIO write bytes, and use this as well
as the delalloc bytes counter to decide if we need to lookup and wait on
any ordered extents. If we have more DIO writes than delalloc bytes
we'll go ahead and wait on any ordered extents regardless of our flush
state as flushing delalloc is likely to not gain us anything.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ use dio instead of odirect in identifiers ]
Signed-off-by: David Sterba <dsterba@suse.com>
None of the implementers of the submit_bio_hook use the bio_offset
parameter, simply remove it. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btree submit hook queues the async csum and forwards the bio_offset
parameter passed to btree_submit_bio_hook. This is redundant since
btree_submit_bio_start calls btree_csum_one_bio which doesn't use the
offset at all. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function always uses the btree inode's io_tree. Stop taking the
tree as a function argument and instead access it internally from
read_extent_buffer_pages. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only possible 'private_data' that is passed to this function is
actually an inode. Make that explicit by changing the signature of the
call back. No functional changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are at least 2 reports about a memory bit flip sneaking into
on-disk data.
Currently we only have a relaxed check triggered at
btrfs_mark_buffer_dirty() time, as it's not mandatory and only for
CONFIG_BTRFS_FS_CHECK_INTEGRITY enabled build, it doesn't help users to
detect such problem.
This patch will address the hole by triggering comprehensive check on
tree blocks before writing it back to disk.
The design points are:
- Timing of the check: Tree block write hook
This timing is chosen to reduce the overhead.
The comprehensive check should be as expensive as a checksum
calculation.
Doing full check at btrfs_mark_buffer_dirty() is too expensive for end
user.
- Loose empty leaf check
Originally for an empty leaf, tree-checker will report error if it's
not a tree root.
The problem for such check at write time is:
* False alert for tree root created in current transaction
In that case, the commit root still needs to be written to disk.
And since current root can differ from commit root, then it will
cause false alert.
This happens for log tree.
* False alert for relocated tree block
Relocated tree block can be written to disk due to memory pressure,
in that case an empty csum tree root can be written to disk and
cause false alert, since csum root node hasn't been updated.
Previous patch of removing comprehensive empty leaf owner check has
paved the way for this patch.
The example error output will be something like:
BTRFS critical (device dm-3): corrupt leaf: root=2 block=1350630375424 slot=68, bad key order, prev (10510212874240 169 0) current (1714119868416 169 0)
BTRFS error (device dm-3): block=1350630375424 write time tree block corruption detected
BTRFS: error (device dm-3) in btrfs_commit_transaction:2220: errno=-5 IO failure (Error while writing out transaction)
BTRFS info (device dm-3): forced readonly
BTRFS warning (device dm-3): Skipping commit of aborted transaction.
BTRFS: error (device dm-3) in cleanup_transaction:1839: errno=-5 IO failure
BTRFS info (device dm-3): delayed_refs has NO entry
Reported-by: Leonard Lausen <leonard@lausen.nl>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>