1278 Commits

Author SHA1 Message Date
Stanislav Fomichev
89357aa97b bpf: Prevent decl_tag from being referenced in func_proto arg
[ Upstream commit f17472d4599697d701aa239b4c475a506bccfd19 ]

Syzkaller managed to hit another decl_tag issue:

  btf_func_proto_check kernel/bpf/btf.c:4506 [inline]
  btf_check_all_types kernel/bpf/btf.c:4734 [inline]
  btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763
  btf_parse kernel/bpf/btf.c:5042 [inline]
  btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709
  bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342
  __sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034
  __do_sys_bpf kernel/bpf/syscall.c:5093 [inline]
  __se_sys_bpf kernel/bpf/syscall.c:5091 [inline]
  __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091
  do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48

This seems similar to commit ea68376c8bed ("bpf: prevent decl_tag from being
referenced in func_proto") but for the argument.

Reported-by: syzbot+8dd0551dda6020944c5d@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221123035422.872531-2-sdf@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:37 +01:00
Andrii Nakryiko
d70fa0a6ce bpf: propagate precision in ALU/ALU64 operations
[ Upstream commit a3b666bfa9c9edc05bca62a87abafe0936bd7f97 ]

When processing ALU/ALU64 operations (apart from BPF_MOV, which is
handled correctly already; and BPF_NEG and BPF_END are special and don't
have source register), if destination register is already marked
precise, this causes problem with potentially missing precision tracking
for the source register. E.g., when we have r1 >>= r5 and r1 is marked
precise, but r5 isn't, this will lead to r5 staying as imprecise. This
is due to the precision backtracking logic stopping early when it sees
r1 is already marked precise. If r1 wasn't precise, we'd keep
backtracking and would add r5 to the set of registers that need to be
marked precise. So there is a discrepancy here which can lead to invalid
and incompatible states matched due to lack of precision marking on r5.
If r1 wasn't precise, precision backtracking would correctly mark both
r1 and r5 as precise.

This is simple to fix, though. During the forward instruction simulation
pass, for arithmetic operations of `scalar <op>= scalar` form (where
<op> is ALU or ALU64 operations), if destination register is already
precise, mark source register as precise. This applies only when both
involved registers are SCALARs. `ptr += scalar` and `scalar += ptr`
cases are already handled correctly.

This does have (negative) effect on some selftest programs and few
Cilium programs.  ~/baseline-tmp-results.csv are veristat results with
this patch, while ~/baseline-results.csv is without it. See post
scriptum for instructions on how to make Cilium programs testable with
veristat. Correctness has a price.

$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/baseline-tmp-results.csv | grep -v '+0'
File                     Program               Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
-----------------------  --------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
bpf_cubic.bpf.linked1.o  bpf_cubic_cong_avoid              997             1700      +703 (+70.51%)                62                90        +28 (+45.16%)
test_l4lb.bpf.linked1.o  balancer_ingress                 4559             5469      +910 (+19.96%)               118               126          +8 (+6.78%)
-----------------------  --------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

$ ./veristat -C -e file,prog,verdict,insns,states ~/baseline-results-cilium.csv ~/baseline-tmp-results-cilium.csv | grep -v '+0'
File           Program                         Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
-------------  ------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6             4448             5261      +813 (+18.28%)               234               247         +13 (+5.56%)
bpf_host.o     tail_nodeport_nat_ipv6_egress              3396             3446        +50 (+1.47%)               201               203          +2 (+1.00%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6             4448             5261      +813 (+18.28%)               234               247         +13 (+5.56%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6             4448             5261      +813 (+18.28%)               234               247         +13 (+5.56%)
bpf_xdp.o      tail_lb_ipv4                              71736            73442      +1706 (+2.38%)              4295              4370         +75 (+1.75%)
-------------  ------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

P.S. To make Cilium ([0]) programs libbpf-compatible and thus
veristat-loadable, apply changes from topmost commit in [1], which does
minimal changes to Cilium source code, mostly around SEC() annotations
and BPF map definitions.

  [0] https://github.com/cilium/cilium/
  [1] https://github.com/anakryiko/cilium/commits/libbpf-friendliness

Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:02 +01:00
Lee Jones
215c146b40 bpf: Ensure correct locking around vulnerable function find_vpid()
[ Upstream commit 83c10cc362d91c0d8d25e60779ee52fdbbf3894d ]

The documentation for find_vpid() clearly states:

  "Must be called with the tasklist_lock or rcu_read_lock() held."

Presently we do neither for find_vpid() instance in bpf_task_fd_query().
Add proper rcu_read_lock/unlock() to fix the issue.

Fixes: 41bdc4b40ed6f ("bpf: introduce bpf subcommand BPF_TASK_FD_QUERY")
Signed-off-by: Lee Jones <lee@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220912133855.1218900-1-lee@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:22:24 +02:00
Lorenz Bauer
e0bab93245 bpf: btf: fix truncated last_member_type_id in btf_struct_resolve
[ Upstream commit a37a32583e282d8d815e22add29bc1e91e19951a ]

When trying to finish resolving a struct member, btf_struct_resolve
saves the member type id in a u16 temporary variable. This truncates
the 32 bit type id value if it exceeds UINT16_MAX.

As a result, structs that have members with type ids > UINT16_MAX and
which need resolution will fail with a message like this:

    [67414] STRUCT ff_device size=120 vlen=12
        effect_owners type_id=67434 bits_offset=960 Member exceeds struct_size

Fix this by changing the type of last_member_type_id to u32.

Fixes: a0791f0df7d2 ("bpf: fix BTF limits")
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/r/20220910110120.339242-1-oss@lmb.io
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:22:24 +02:00
John Fastabend
7c1134c7da bpf: Verifer, adjust_scalar_min_max_vals to always call update_reg_bounds()
commit 294f2fc6da27620a506e6c050241655459ccd6bd upstream.

Currently, for all op verification we call __red_deduce_bounds() and
__red_bound_offset() but we only call __update_reg_bounds() in bitwise
ops. However, we could benefit from calling __update_reg_bounds() in
BPF_ADD, BPF_SUB, and BPF_MUL cases as well.

For example, a register with state 'R1_w=invP0' when we subtract from
it,

 w1 -= 2

Before coerce we will now have an smin_value=S64_MIN, smax_value=U64_MAX
and unsigned bounds umin_value=0, umax_value=U64_MAX. These will then
be clamped to S32_MIN, U32_MAX values by coerce in the case of alu32 op
as done in above example. However tnum will be a constant because the
ALU op is done on a constant.

Without update_reg_bounds() we have a scenario where tnum is a const
but our unsigned bounds do not reflect this. By calling update_reg_bounds
after coerce to 32bit we further refine the umin_value to U64_MAX in the
alu64 case or U32_MAX in the alu32 case above.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158507151689.15666.566796274289413203.stgit@john-Precision-5820-Tower
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 12:57:51 +02:00
Eric Dumazet
4f1d21c77b bpf: Make sure mac_header was set before using it
commit 0326195f523a549e0a9d7fd44c70b26fd7265090 upstream.

Classic BPF has a way to load bytes starting from the mac header.

Some skbs do not have a mac header, and skb_mac_header()
in this case is returning a pointer that 65535 bytes after
skb->head.

Existing range check in bpf_internal_load_pointer_neg_helper()
was properly kicking and no illegal access was happening.

New sanity check in skb_mac_header() is firing, so we need
to avoid it.

WARNING: CPU: 1 PID: 28990 at include/linux/skbuff.h:2785 skb_mac_header include/linux/skbuff.h:2785 [inline]
WARNING: CPU: 1 PID: 28990 at include/linux/skbuff.h:2785 bpf_internal_load_pointer_neg_helper+0x1b1/0x1c0 kernel/bpf/core.c:74
Modules linked in:
CPU: 1 PID: 28990 Comm: syz-executor.0 Not tainted 5.19.0-rc4-syzkaller-00865-g4874fb9484be #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/29/2022
RIP: 0010:skb_mac_header include/linux/skbuff.h:2785 [inline]
RIP: 0010:bpf_internal_load_pointer_neg_helper+0x1b1/0x1c0 kernel/bpf/core.c:74
Code: ff ff 45 31 f6 e9 5a ff ff ff e8 aa 27 40 00 e9 3b ff ff ff e8 90 27 40 00 e9 df fe ff ff e8 86 27 40 00 eb 9e e8 2f 2c f3 ff <0f> 0b eb b1 e8 96 27 40 00 e9 79 fe ff ff 90 41 57 41 56 41 55 41
RSP: 0018:ffffc9000309f668 EFLAGS: 00010216
RAX: 0000000000000118 RBX: ffffffffffeff00c RCX: ffffc9000e417000
RDX: 0000000000040000 RSI: ffffffff81873f21 RDI: 0000000000000003
RBP: ffff8880842878c0 R08: 0000000000000003 R09: 000000000000ffff
R10: 000000000000ffff R11: 0000000000000001 R12: 0000000000000004
R13: ffff88803ac56c00 R14: 000000000000ffff R15: dffffc0000000000
FS: 00007f5c88a16700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fdaa9f6c058 CR3: 000000003a82c000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
____bpf_skb_load_helper_32 net/core/filter.c:276 [inline]
bpf_skb_load_helper_32+0x191/0x220 net/core/filter.c:264

Fixes: f9aefd6b2aa3 ("net: warn if mac header was not set")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220707123900.945305-1-edumazet@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-29 17:14:16 +02:00
Yuntao Wang
e804587ecd bpf: Fix incorrect memory charge cost calculation in stack_map_alloc()
commit b45043192b3e481304062938a6561da2ceea46a6 upstream.

This is a backport of the original upstream patch for 5.4/5.10.

The original upstream patch has been applied to 5.4/5.10 branches, which
simply removed the line:

  cost += n_buckets * (value_size + sizeof(struct stack_map_bucket));

This is correct for upstream branch but incorrect for 5.4/5.10 branches,
as the 5.4/5.10 branches do not have the commit 370868107bf6 ("bpf:
Eliminate rlimit-based memory accounting for stackmap maps"), so the
bpf_map_charge_init() function has not been removed.

Currently the bpf_map_charge_init() function in 5.4/5.10 branches takes a
wrong memory charge cost, the

  attr->max_entries * (sizeof(struct stack_map_bucket) + (u64)value_size))

part is missing, let's fix it.

Cc: <stable@vger.kernel.org> # 5.4.y
Cc: <stable@vger.kernel.org> # 5.10.y
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-22 14:11:02 +02:00
Yuntao Wang
93c0f9d78d bpf: Fix excessive memory allocation in stack_map_alloc()
[ Upstream commit b45043192b3e481304062938a6561da2ceea46a6 ]

The 'n_buckets * (value_size + sizeof(struct stack_map_bucket))' part of the
allocated memory for 'smap' is never used after the memlock accounting was
removed, thus get rid of it.

[ Note, Daniel:

Commit b936ca643ade ("bpf: rework memlock-based memory accounting for maps")
moved `cost += n_buckets * (value_size + sizeof(struct stack_map_bucket))`
up and therefore before the bpf_map_area_alloc() allocation, sigh. In a later
step commit c85d69135a91 ("bpf: move memory size checks to bpf_map_charge_init()"),
and the overflow checks of `cost >= U32_MAX - PAGE_SIZE` moved into
bpf_map_charge_init(). And then 370868107bf6 ("bpf: Eliminate rlimit-based
memory accounting for stackmap maps") finally removed the bpf_map_charge_init().
Anyway, the original code did the allocation same way as /after/ this fix. ]

Fixes: b936ca643ade ("bpf: rework memlock-based memory accounting for maps")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220407130423.798386-1-ytcoode@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-14 18:11:32 +02:00
Daniel Borkmann
c230f6ba10 bpf: Add kconfig knob for disabling unpriv bpf by default
commit 08389d888287c3823f80b0216766b71e17f0aba5 upstream.

Add a kconfig knob which allows for unprivileged bpf to be disabled by default.
If set, the knob sets /proc/sys/kernel/unprivileged_bpf_disabled to value of 2.

This still allows a transition of 2 -> {0,1} through an admin. Similarly,
this also still keeps 1 -> {1} behavior intact, so that once set to permanently
disabled, it cannot be undone aside from a reboot.

We've also added extra2 with max of 2 for the procfs handler, so that an admin
still has a chance to toggle between 0 <-> 2.

Either way, as an additional alternative, applications can make use of CAP_BPF
that we added a while ago.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/74ec548079189e4e4dffaeb42b8987bb3c852eee.1620765074.git.daniel@iogearbox.net
[fllinden@amazon.com: backported to 5.4]
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-16 12:52:49 +01:00
Bui Quang Minh
f6f1d19114 bpf: Fix integer overflow in argument calculation for bpf_map_area_alloc
commit 7dd5d437c258bbf4cc15b35229e5208b87b8b4e0 upstream.

In 32-bit architecture, the result of sizeof() is a 32-bit integer so
the expression becomes the multiplication between 2 32-bit integer which
can potentially leads to integer overflow. As a result,
bpf_map_area_alloc() allocates less memory than needed.

Fix this by casting 1 operand to u64.

Fixes: 0d2c4f964050 ("bpf: Eliminate rlimit-based memory accounting for sockmap and sockhash maps")
Fixes: 99c51064fb06 ("devmap: Use bpf_map_area_alloc() for allocating hash buckets")
Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references")
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210613143440.71975-1-minhquangbui99@gmail.com
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-17 10:12:24 +01:00
Maxim Mikityanskiy
4174bd4221 bpf: Fix the off-by-two error in range markings
commit 2fa7d94afc1afbb4d702760c058dc2d7ed30f226 upstream.

The first commit cited below attempts to fix the off-by-one error that
appeared in some comparisons with an open range. Due to this error,
arithmetically equivalent pieces of code could get different verdicts
from the verifier, for example (pseudocode):

  // 1. Passes the verifier:
  if (data + 8 > data_end)
      return early
  read *(u64 *)data, i.e. [data; data+7]

  // 2. Rejected by the verifier (should still pass):
  if (data + 7 >= data_end)
      return early
  read *(u64 *)data, i.e. [data; data+7]

The attempted fix, however, shifts the range by one in a wrong
direction, so the bug not only remains, but also such piece of code
starts failing in the verifier:

  // 3. Rejected by the verifier, but the check is stricter than in #1.
  if (data + 8 >= data_end)
      return early
  read *(u64 *)data, i.e. [data; data+7]

The change performed by that fix converted an off-by-one bug into
off-by-two. The second commit cited below added the BPF selftests
written to ensure than code chunks like #3 are rejected, however,
they should be accepted.

This commit fixes the off-by-two error by adjusting new_range in the
right direction and fixes the tests by changing the range into the
one that should actually fail.

Fixes: fb2a311a31d3 ("bpf: fix off by one for range markings with L{T, E} patterns")
Fixes: b37242c773b2 ("bpf: add test cases to bpf selftests to cover all access tests")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211130181607.593149-1-maximmi@nvidia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-14 14:48:59 +01:00
Lorenz Bauer
de649ec7ad bpf: Prevent increasing bpf_jit_limit above max
[ Upstream commit fadb7ff1a6c2c565af56b4aacdd086b067eed440 ]

Restrict bpf_jit_limit to the maximum supported by the arch's JIT.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211014142554.53120-4-lmb@cloudflare.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-17 09:48:20 +01:00
Tatsuhiko Yasumatsu
b14f28126c bpf: Fix integer overflow in prealloc_elems_and_freelist()
[ Upstream commit 30e29a9a2bc6a4888335a6ede968b75cd329657a ]

In prealloc_elems_and_freelist(), the multiplication to calculate the
size passed to bpf_map_area_alloc() could lead to an integer overflow.
As a result, out-of-bounds write could occur in pcpu_freelist_populate()
as reported by KASAN:

[...]
[   16.968613] BUG: KASAN: slab-out-of-bounds in pcpu_freelist_populate+0xd9/0x100
[   16.969408] Write of size 8 at addr ffff888104fc6ea0 by task crash/78
[   16.970038]
[   16.970195] CPU: 0 PID: 78 Comm: crash Not tainted 5.15.0-rc2+ #1
[   16.970878] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[   16.972026] Call Trace:
[   16.972306]  dump_stack_lvl+0x34/0x44
[   16.972687]  print_address_description.constprop.0+0x21/0x140
[   16.973297]  ? pcpu_freelist_populate+0xd9/0x100
[   16.973777]  ? pcpu_freelist_populate+0xd9/0x100
[   16.974257]  kasan_report.cold+0x7f/0x11b
[   16.974681]  ? pcpu_freelist_populate+0xd9/0x100
[   16.975190]  pcpu_freelist_populate+0xd9/0x100
[   16.975669]  stack_map_alloc+0x209/0x2a0
[   16.976106]  __sys_bpf+0xd83/0x2ce0
[...]

The possibility of this overflow was originally discussed in [0], but
was overlooked.

Fix the integer overflow by changing elem_size to u64 from u32.

  [0] https://lore.kernel.org/bpf/728b238e-a481-eb50-98e9-b0f430ab01e7@gmail.com/

Fixes: 557c0c6e7df8 ("bpf: convert stackmap to pre-allocation")
Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210930135545.173698-1-th.yasumatsu@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-10-13 10:08:18 +02:00
Bixuan Cui
93937596e0 bpf: Add oversize check before call kvcalloc()
[ Upstream commit 0e6491b559704da720f6da09dd0a52c4df44c514 ]

Commit 7661809d493b ("mm: don't allow oversized kvmalloc() calls") add the
oversize check. When the allocation is larger than what kmalloc() supports,
the following warning triggered:

WARNING: CPU: 0 PID: 8408 at mm/util.c:597 kvmalloc_node+0x108/0x110 mm/util.c:597
Modules linked in:
CPU: 0 PID: 8408 Comm: syz-executor221 Not tainted 5.14.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:kvmalloc_node+0x108/0x110 mm/util.c:597
Call Trace:
 kvmalloc include/linux/mm.h:806 [inline]
 kvmalloc_array include/linux/mm.h:824 [inline]
 kvcalloc include/linux/mm.h:829 [inline]
 check_btf_line kernel/bpf/verifier.c:9925 [inline]
 check_btf_info kernel/bpf/verifier.c:10049 [inline]
 bpf_check+0xd634/0x150d0 kernel/bpf/verifier.c:13759
 bpf_prog_load kernel/bpf/syscall.c:2301 [inline]
 __sys_bpf+0x11181/0x126e0 kernel/bpf/syscall.c:4587
 __do_sys_bpf kernel/bpf/syscall.c:4691 [inline]
 __se_sys_bpf kernel/bpf/syscall.c:4689 [inline]
 __x64_sys_bpf+0x78/0x90 kernel/bpf/syscall.c:4689
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Reported-by: syzbot+f3e749d4c662818ae439@syzkaller.appspotmail.com
Signed-off-by: Bixuan Cui <cuibixuan@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210911005557.45518-1-cuibixuan@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-30 10:09:25 +02:00
Daniel Borkmann
ae968e270f bpf: Fix pointer arithmetic mask tightening under state pruning
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream.

In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we
narrowed the offset mask for unprivileged pointer arithmetic in order to
mitigate a corner case where in the speculative domain it is possible to
advance, for example, the map value pointer by up to value_size-1 out-of-
bounds in order to leak kernel memory via side-channel to user space.

The verifier's state pruning for scalars leaves one corner case open
where in the first verification path R_x holds an unknown scalar with an
aux->alu_limit of e.g. 7, and in a second verification path that same
register R_x, here denoted as R_x', holds an unknown scalar which has
tighter bounds and would thus satisfy range_within(R_x, R_x') as well as
tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3:
Given the second path fits the register constraints for pruning, the final
generated mask from aux->alu_limit will remain at 7. While technically
not wrong for the non-speculative domain, it would however be possible
to craft similar cases where the mask would be too wide as in 7fedb63a8307.

One way to fix it is to detect the presence of unknown scalar map pointer
arithmetic and force a deeper search on unknown scalars to ensure that
we do not run into a masking mismatch.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[OP: adjusted context in include/linux/bpf_verifier.h for 5.4]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-15 09:47:39 +02:00
Lorenz Bauer
a0a4778fea bpf: verifier: Allocate idmap scratch in verifier env
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream.

func_states_equal makes a very short lived allocation for idmap,
probably because it's too large to fit on the stack. However the
function is called quite often, leading to a lot of alloc / free
churn. Replace the temporary allocation with dedicated scratch
space in struct bpf_verifier_env.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree.xilinx@gmail.com>
Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[OP: adjusted context for 5.4]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-15 09:47:38 +02:00
Daniel Borkmann
f5893af270 bpf: Fix leakage due to insufficient speculative store bypass mitigation
commit 2039f26f3aca5b0e419b98f65dd36481337b86ee upstream.

Spectre v4 gadgets make use of memory disambiguation, which is a set of
techniques that execute memory access instructions, that is, loads and
stores, out of program order; Intel's optimization manual, section 2.4.4.5:

  A load instruction micro-op may depend on a preceding store. Many
  microarchitectures block loads until all preceding store addresses are
  known. The memory disambiguator predicts which loads will not depend on
  any previous stores. When the disambiguator predicts that a load does
  not have such a dependency, the load takes its data from the L1 data
  cache. Eventually, the prediction is verified. If an actual conflict is
  detected, the load and all succeeding instructions are re-executed.

af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate
this attack by sanitizing the memory locations through preemptive "fast"
(low latency) stores of zero prior to the actual "slow" (high latency) store
of a pointer value such that upon dependency misprediction the CPU then
speculatively executes the load of the pointer value and retrieves the zero
value instead of the attacker controlled scalar value previously stored at
that location, meaning, subsequent access in the speculative domain is then
redirected to the "zero page".

The sanitized preemptive store of zero prior to the actual "slow" store is
done through a simple ST instruction based on r10 (frame pointer) with
relative offset to the stack location that the verifier has been tracking
on the original used register for STX, which does not have to be r10. Thus,
there are no memory dependencies for this store, since it's only using r10
and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency
operation.

However, a recent attack demonstrated that this mitigation is not sufficient
since the preemptive store of zero could also be turned into a "slow" store
and is thus bypassed as well:

  [...]
  // r2 = oob address (e.g. scalar)
  // r7 = pointer to map value
  31: (7b) *(u64 *)(r10 -16) = r2
  // r9 will remain "fast" register, r10 will become "slow" register below
  32: (bf) r9 = r10
  // JIT maps BPF reg to x86 reg:
  //  r9  -> r15 (callee saved)
  //  r10 -> rbp
  // train store forward prediction to break dependency link between both r9
  // and r10 by evicting them from the predictor's LRU table.
  33: (61) r0 = *(u32 *)(r7 +24576)
  34: (63) *(u32 *)(r7 +29696) = r0
  35: (61) r0 = *(u32 *)(r7 +24580)
  36: (63) *(u32 *)(r7 +29700) = r0
  37: (61) r0 = *(u32 *)(r7 +24584)
  38: (63) *(u32 *)(r7 +29704) = r0
  39: (61) r0 = *(u32 *)(r7 +24588)
  40: (63) *(u32 *)(r7 +29708) = r0
  [...]
  543: (61) r0 = *(u32 *)(r7 +25596)
  544: (63) *(u32 *)(r7 +30716) = r0
  // prepare call to bpf_ringbuf_output() helper. the latter will cause rbp
  // to spill to stack memory while r13/r14/r15 (all callee saved regs) remain
  // in hardware registers. rbp becomes slow due to push/pop latency. below is
  // disasm of bpf_ringbuf_output() helper for better visual context:
  //
  // ffffffff8117ee20: 41 54                 push   r12
  // ffffffff8117ee22: 55                    push   rbp
  // ffffffff8117ee23: 53                    push   rbx
  // ffffffff8117ee24: 48 f7 c1 fc ff ff ff  test   rcx,0xfffffffffffffffc
  // ffffffff8117ee2b: 0f 85 af 00 00 00     jne    ffffffff8117eee0 <-- jump taken
  // [...]
  // ffffffff8117eee0: 49 c7 c4 ea ff ff ff  mov    r12,0xffffffffffffffea
  // ffffffff8117eee7: 5b                    pop    rbx
  // ffffffff8117eee8: 5d                    pop    rbp
  // ffffffff8117eee9: 4c 89 e0              mov    rax,r12
  // ffffffff8117eeec: 41 5c                 pop    r12
  // ffffffff8117eeee: c3                    ret
  545: (18) r1 = map[id:4]
  547: (bf) r2 = r7
  548: (b7) r3 = 0
  549: (b7) r4 = 4
  550: (85) call bpf_ringbuf_output#194288
  // instruction 551 inserted by verifier    \
  551: (7a) *(u64 *)(r10 -16) = 0            | /both/ are now slow stores here
  // storing map value pointer r7 at fp-16   | since value of r10 is "slow".
  552: (7b) *(u64 *)(r10 -16) = r7           /
  // following "fast" read to the same memory location, but due to dependency
  // misprediction it will speculatively execute before insn 551/552 completes.
  553: (79) r2 = *(u64 *)(r9 -16)
  // in speculative domain contains attacker controlled r2. in non-speculative
  // domain this contains r7, and thus accesses r7 +0 below.
  554: (71) r3 = *(u8 *)(r2 +0)
  // leak r3

As can be seen, the current speculative store bypass mitigation which the
verifier inserts at line 551 is insufficient since /both/, the write of
the zero sanitation as well as the map value pointer are a high latency
instruction due to prior memory access via push/pop of r10 (rbp) in contrast
to the low latency read in line 553 as r9 (r15) which stays in hardware
registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally,
fp-16 can still be r2.

Initial thoughts to address this issue was to track spilled pointer loads
from stack and enforce their load via LDX through r10 as well so that /both/
the preemptive store of zero /as well as/ the load use the /same/ register
such that a dependency is created between the store and load. However, this
option is not sufficient either since it can be bypassed as well under
speculation. An updated attack with pointer spill/fills now _all_ based on
r10 would look as follows:

  [...]
  // r2 = oob address (e.g. scalar)
  // r7 = pointer to map value
  [...]
  // longer store forward prediction training sequence than before.
  2062: (61) r0 = *(u32 *)(r7 +25588)
  2063: (63) *(u32 *)(r7 +30708) = r0
  2064: (61) r0 = *(u32 *)(r7 +25592)
  2065: (63) *(u32 *)(r7 +30712) = r0
  2066: (61) r0 = *(u32 *)(r7 +25596)
  2067: (63) *(u32 *)(r7 +30716) = r0
  // store the speculative load address (scalar) this time after the store
  // forward prediction training.
  2068: (7b) *(u64 *)(r10 -16) = r2
  // preoccupy the CPU store port by running sequence of dummy stores.
  2069: (63) *(u32 *)(r7 +29696) = r0
  2070: (63) *(u32 *)(r7 +29700) = r0
  2071: (63) *(u32 *)(r7 +29704) = r0
  2072: (63) *(u32 *)(r7 +29708) = r0
  2073: (63) *(u32 *)(r7 +29712) = r0
  2074: (63) *(u32 *)(r7 +29716) = r0
  2075: (63) *(u32 *)(r7 +29720) = r0
  2076: (63) *(u32 *)(r7 +29724) = r0
  2077: (63) *(u32 *)(r7 +29728) = r0
  2078: (63) *(u32 *)(r7 +29732) = r0
  2079: (63) *(u32 *)(r7 +29736) = r0
  2080: (63) *(u32 *)(r7 +29740) = r0
  2081: (63) *(u32 *)(r7 +29744) = r0
  2082: (63) *(u32 *)(r7 +29748) = r0
  2083: (63) *(u32 *)(r7 +29752) = r0
  2084: (63) *(u32 *)(r7 +29756) = r0
  2085: (63) *(u32 *)(r7 +29760) = r0
  2086: (63) *(u32 *)(r7 +29764) = r0
  2087: (63) *(u32 *)(r7 +29768) = r0
  2088: (63) *(u32 *)(r7 +29772) = r0
  2089: (63) *(u32 *)(r7 +29776) = r0
  2090: (63) *(u32 *)(r7 +29780) = r0
  2091: (63) *(u32 *)(r7 +29784) = r0
  2092: (63) *(u32 *)(r7 +29788) = r0
  2093: (63) *(u32 *)(r7 +29792) = r0
  2094: (63) *(u32 *)(r7 +29796) = r0
  2095: (63) *(u32 *)(r7 +29800) = r0
  2096: (63) *(u32 *)(r7 +29804) = r0
  2097: (63) *(u32 *)(r7 +29808) = r0
  2098: (63) *(u32 *)(r7 +29812) = r0
  // overwrite scalar with dummy pointer; same as before, also including the
  // sanitation store with 0 from the current mitigation by the verifier.
  2099: (7a) *(u64 *)(r10 -16) = 0         | /both/ are now slow stores here
  2100: (7b) *(u64 *)(r10 -16) = r7        | since store unit is still busy.
  // load from stack intended to bypass stores.
  2101: (79) r2 = *(u64 *)(r10 -16)
  2102: (71) r3 = *(u8 *)(r2 +0)
  // leak r3
  [...]

Looking at the CPU microarchitecture, the scheduler might issue loads (such
as seen in line 2101) before stores (line 2099,2100) because the load execution
units become available while the store execution unit is still busy with the
sequence of dummy stores (line 2069-2098). And so the load may use the prior
stored scalar from r2 at address r10 -16 for speculation. The updated attack
may work less reliable on CPU microarchitectures where loads and stores share
execution resources.

This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf:
Prevent memory disambiguation attack") is insufficient. Moreover, the detection
of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been
written to a given stack slot where a pointer value is now to be stored does
not have sufficient coverage as precondition for the mitigation either; for
several reasons outlined as follows:

 1) Stack content from prior program runs could still be preserved and is
    therefore not "random", best example is to split a speculative store
    bypass attack between tail calls, program A would prepare and store the
    oob address at a given stack slot and then tail call into program B which
    does the "slow" store of a pointer to the stack with subsequent "fast"
    read. From program B PoV such stack slot type is STACK_INVALID, and
    therefore also must be subject to mitigation.

 2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr)
    condition, for example, the previous content of that memory location could
    also be a pointer to map or map value. Without the fix, a speculative
    store bypass is not mitigated in such precondition and can then lead to
    a type confusion in the speculative domain leaking kernel memory near
    these pointer types.

While brainstorming on various alternative mitigation possibilities, we also
stumbled upon a retrospective from Chrome developers [0]:

  [...] For variant 4, we implemented a mitigation to zero the unused memory
  of the heap prior to allocation, which cost about 1% when done concurrently
  and 4% for scavenging. Variant 4 defeats everything we could think of. We
  explored more mitigations for variant 4 but the threat proved to be more
  pervasive and dangerous than we anticipated. For example, stack slots used
  by the register allocator in the optimizing compiler could be subject to
  type confusion, leading to pointer crafting. Mitigating type confusion for
  stack slots alone would have required a complete redesign of the backend of
  the optimizing compiler, perhaps man years of work, without a guarantee of
  completeness. [...]

>From BPF side, the problem space is reduced, however, options are rather
limited. One idea that has been explored was to xor-obfuscate pointer spills
to the BPF stack:

  [...]
  // preoccupy the CPU store port by running sequence of dummy stores.
  [...]
  2106: (63) *(u32 *)(r7 +29796) = r0
  2107: (63) *(u32 *)(r7 +29800) = r0
  2108: (63) *(u32 *)(r7 +29804) = r0
  2109: (63) *(u32 *)(r7 +29808) = r0
  2110: (63) *(u32 *)(r7 +29812) = r0
  // overwrite scalar with dummy pointer; xored with random 'secret' value
  // of 943576462 before store ...
  2111: (b4) w11 = 943576462
  2112: (af) r11 ^= r7
  2113: (7b) *(u64 *)(r10 -16) = r11
  2114: (79) r11 = *(u64 *)(r10 -16)
  2115: (b4) w2 = 943576462
  2116: (af) r2 ^= r11
  // ... and restored with the same 'secret' value with the help of AX reg.
  2117: (71) r3 = *(u8 *)(r2 +0)
  [...]

While the above would not prevent speculation, it would make data leakage
infeasible by directing it to random locations. In order to be effective
and prevent type confusion under speculation, such random secret would have
to be regenerated for each store. The additional complexity involved for a
tracking mechanism that prevents jumps such that restoring spilled pointers
would not get corrupted is not worth the gain for unprivileged. Hence, the
fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC
instruction which the x86 JIT translates into a lfence opcode. Inserting the
latter in between the store and load instruction is one of the mitigations
options [1]. The x86 instruction manual notes:

  [...] An LFENCE that follows an instruction that stores to memory might
  complete before the data being stored have become globally visible. [...]

The latter meaning that the preceding store instruction finished execution
and the store is at minimum guaranteed to be in the CPU's store queue, but
it's not guaranteed to be in that CPU's L1 cache at that point (globally
visible). The latter would only be guaranteed via sfence. So the load which
is guaranteed to execute after the lfence for that local CPU would have to
rely on store-to-load forwarding. [2], in section 2.3 on store buffers says:

  [...] For every store operation that is added to the ROB, an entry is
  allocated in the store buffer. This entry requires both the virtual and
  physical address of the target. Only if there is no free entry in the store
  buffer, the frontend stalls until there is an empty slot available in the
  store buffer again. Otherwise, the CPU can immediately continue adding
  subsequent instructions to the ROB and execute them out of order. On Intel
  CPUs, the store buffer has up to 56 entries. [...]

One small upside on the fix is that it lifts constraints from af86ca4e3088
where the sanitize_stack_off relative to r10 must be the same when coming
from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX
or BPF_ST instruction. This happens either when we store a pointer or data
value to the BPF stack for the first time, or upon later pointer spills.
The former needs to be enforced since otherwise stale stack data could be
leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST |
BPF_NOSPEC mapping is currently optimized away, but others could emit a
speculation barrier as well if necessary. For real-world unprivileged
programs e.g. generated by LLVM, pointer spill/fill is only generated upon
register pressure and LLVM only tries to do that for pointers which are not
used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC
sanitation for the STACK_INVALID case when the first write to a stack slot
occurs e.g. upon map lookup. In future we might refine ways to mitigate
the latter cost.

  [0] https://arxiv.org/pdf/1902.05178.pdf
  [1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
  [2] https://arxiv.org/pdf/1905.05725.pdf

Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack")
Fixes: f7cf25b2026d ("bpf: track spill/fill of constants")
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[OP: - apply check_stack_write_fixed_off() changes in check_stack_write()
     - replace env->bypass_spec_v4 -> env->allow_ptr_leaks]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-15 09:47:38 +02:00
Daniel Borkmann
e80c3533c3 bpf: Introduce BPF nospec instruction for mitigating Spectre v4
commit f5e81d1117501546b7be050c5fbafa6efd2c722c upstream.

In case of JITs, each of the JIT backends compiles the BPF nospec instruction
/either/ to a machine instruction which emits a speculation barrier /or/ to
/no/ machine instruction in case the underlying architecture is not affected
by Speculative Store Bypass or has different mitigations in place already.

This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence'
instruction for mitigation. In case of arm64, we rely on the firmware mitigation
as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled,
it works for all of the kernel code with no need to provide any additional
instructions here (hence only comment in arm64 JIT). Other archs can follow
as needed. The BPF nospec instruction is specifically targeting Spectre v4
since i) we don't use a serialization barrier for the Spectre v1 case, and
ii) mitigation instructions for v1 and v4 might be different on some archs.

The BPF nospec is required for a future commit, where the BPF verifier does
annotate intermediate BPF programs with speculation barriers.

Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[OP: - adjusted context for 5.4
     - apply riscv changes to /arch/riscv/net/bpf_jit_comp.c]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-15 09:47:38 +02:00
Andrey Ignatov
e37eeaf950 bpf: Fix possible out of bound write in narrow load handling
[ Upstream commit d7af7e497f0308bc97809cc48b58e8e0f13887e1 ]

Fix a verifier bug found by smatch static checker in [0].

This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.

When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that

	cnt >= ARRAY_SIZE(insn_buf)

And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.

Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.

The full report [0] is below:

kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array

kernel/bpf/verifier.c
    12282
    12283 			insn->off = off & ~(size_default - 1);
    12284 			insn->code = BPF_LDX | BPF_MEM | size_code;
    12285 		}
    12286
    12287 		target_size = 0;
    12288 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
    12289 					 &target_size);
    12290 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.

    12291 		    (ctx_field_size && !target_size)) {
    12292 			verbose(env, "bpf verifier is misconfigured\n");
    12293 			return -EINVAL;
    12294 		}
    12295
    12296 		if (is_narrower_load && size < target_size) {
    12297 			u8 shift = bpf_ctx_narrow_access_offset(
    12298 				off, size, size_default) * 8;
    12299 			if (ctx_field_size <= 4) {
    12300 				if (shift)
    12301 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
                                                         ^^^^^
increment beyond end of array

    12302 									insn->dst_reg,
    12303 									shift);
--> 12304 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
                                                 ^^^^^
out of bounds write

    12305 								(1 << size * 8) - 1);
    12306 			} else {
    12307 				if (shift)
    12308 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
    12309 									insn->dst_reg,
    12310 									shift);
    12311 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
                                        ^^^^^^^^^^^^^^^
Same.

    12312 								(1ULL << size * 8) - 1);
    12313 			}
    12314 		}
    12315
    12316 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
    12317 		if (!new_prog)
    12318 			return -ENOMEM;
    12319
    12320 		delta += cnt - 1;
    12321
    12322 		/* keep walking new program and skip insns we just inserted */
    12323 		env->prog = new_prog;
    12324 		insn      = new_prog->insnsi + i + delta;
    12325 	}
    12326
    12327 	return 0;
    12328 }

[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/

v1->v2:
- clarify that problem was only seen by static checker but not in prod;

Fixes: 46f53a65d2de ("bpf: Allow narrow loads with offset > 0")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210820163935.1902398-1-rdna@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15 09:47:36 +02:00
He Fengqing
004778bf39 bpf: Fix potential memleak and UAF in the verifier.
[ Upstream commit 75f0fc7b48ad45a2e5736bcf8de26c8872fe8695 ]

In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to
insert new instructions, then use adjust_insn_aux_data() to adjust
insn_aux_data. If the old env->prog have no enough room for new inserted
instructions, we use bpf_prog_realloc to construct new_prog and free the
old env->prog.

There have two errors here. First, if adjust_insn_aux_data() return
ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data()
return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has
been freed in bpf_prog_realloc, but we will use it in bpf_check().

So in this patch, we make the adjust_insn_aux_data() never fails. In
bpf_patch_insn_data(), we first pre-malloc memory for the new
insn_aux_data, then call bpf_patch_insn_single() to insert new
instructions, at last call adjust_insn_aux_data() to adjust
insn_aux_data.

Fixes: 8041902dae52 ("bpf: adjust insn_aux_data when patching insns")
Signed-off-by: He Fengqing <hefengqing@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15 09:47:30 +02:00
Andrii Nakryiko
38adbf21f3 bpf: Fix cast to pointer from integer of different size warning
commit 2dedd7d2165565bafa89718eaadfc5d1a7865f66 upstream.

Fix "warning: cast to pointer from integer of different size" when
casting u64 addr to void *.

Fixes: a23740ec43ba ("bpf: Track contents of read-only maps as scalars")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191011172053.2980619-1-andriin@fb.com
Cc: Rafael David Tinoco <rafaeldtinoco@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03 10:08:16 +02:00
Andrii Nakryiko
812ee47ad7 bpf: Track contents of read-only maps as scalars
commit a23740ec43ba022dbfd139d0fe3eff193216272b upstream.

Maps that are read-only both from BPF program side and user space side
have their contents constant, so verifier can track referenced values
precisely and use that knowledge for dead code elimination, branch
pruning, etc. This patch teaches BPF verifier how to do this.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191009201458.2679171-2-andriin@fb.com
Signed-off-by: Rafael David Tinoco <rafaeldtinoco@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03 10:08:15 +02:00
Ilya Leoshkevich
1fe038030c bpf: Clear zext_dst of dead insns
[ Upstream commit 45c709f8c71b525b51988e782febe84ce933e7e0 ]

"access skb fields ok" verifier test fails on s390 with the "verifier
bug. zext_dst is set, but no reg is defined" message. The first insns
of the test prog are ...

   0:	61 01 00 00 00 00 00 00 	ldxw %r0,[%r1+0]
   8:	35 00 00 01 00 00 00 00 	jge %r0,0,1
  10:	61 01 00 08 00 00 00 00 	ldxw %r0,[%r1+8]

... and the 3rd one is dead (this does not look intentional to me, but
this is a separate topic).

sanitize_dead_code() converts dead insns into "ja -1", but keeps
zext_dst. When opt_subreg_zext_lo32_rnd_hi32() tries to parse such
an insn, it sees this discrepancy and bails. This problem can be seen
only with JITs whose bpf_jit_needs_zext() returns true.

Fix by clearning dead insns' zext_dst.

The commits that contributed to this problem are:

1. 5aa5bd14c5f8 ("bpf: add initial suite for selftests"), which
   introduced the test with the dead code.
2. 5327ed3d44b7 ("bpf: verifier: mark verified-insn with
   sub-register zext flag"), which introduced the zext_dst flag.
3. 83a2881903f3 ("bpf: Account for BPF_FETCH in
   insn_has_def32()"), which introduced the sanity check.
4. 9183671af6db ("bpf: Fix leakage under speculation on
   mispredicted branches"), which bisect points to.

It's best to fix this on stable branches that contain the second one,
since that's the point where the inconsistency was introduced.

Fixes: 5327ed3d44b7 ("bpf: verifier: mark verified-insn with sub-register zext flag")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210812151811.184086-2-iii@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-26 08:36:17 -04:00
Daniel Borkmann
fd568de580 bpf: Fix leakage under speculation on mispredicted branches
commit 9183671af6dbf60a1219371d4ed73e23f43b49db upstream

The verifier only enumerates valid control-flow paths and skips paths that
are unreachable in the non-speculative domain. And so it can miss issues
under speculative execution on mispredicted branches.

For example, a type confusion has been demonstrated with the following
crafted program:

  // r0 = pointer to a map array entry
  // r6 = pointer to readable stack slot
  // r9 = scalar controlled by attacker
  1: r0 = *(u64 *)(r0) // cache miss
  2: if r0 != 0x0 goto line 4
  3: r6 = r9
  4: if r0 != 0x1 goto line 6
  5: r9 = *(u8 *)(r6)
  6: // leak r9

Since line 3 runs iff r0 == 0 and line 5 runs iff r0 == 1, the verifier
concludes that the pointer dereference on line 5 is safe. But: if the
attacker trains both the branches to fall-through, such that the following
is speculatively executed ...

  r6 = r9
  r9 = *(u8 *)(r6)
  // leak r9

... then the program will dereference an attacker-controlled value and could
leak its content under speculative execution via side-channel. This requires
to mistrain the branch predictor, which can be rather tricky, because the
branches are mutually exclusive. However such training can be done at
congruent addresses in user space using different branches that are not
mutually exclusive. That is, by training branches in user space ...

  A:  if r0 != 0x0 goto line C
  B:  ...
  C:  if r0 != 0x0 goto line D
  D:  ...

... such that addresses A and C collide to the same CPU branch prediction
entries in the PHT (pattern history table) as those of the BPF program's
lines 2 and 4, respectively. A non-privileged attacker could simply brute
force such collisions in the PHT until observing the attack succeeding.

Alternative methods to mistrain the branch predictor are also possible that
avoid brute forcing the collisions in the PHT. A reliable attack has been
demonstrated, for example, using the following crafted program:

  // r0 = pointer to a [control] map array entry
  // r7 = *(u64 *)(r0 + 0), training/attack phase
  // r8 = *(u64 *)(r0 + 8), oob address
  // [...]
  // r0 = pointer to a [data] map array entry
  1: if r7 == 0x3 goto line 3
  2: r8 = r0
  // crafted sequence of conditional jumps to separate the conditional
  // branch in line 193 from the current execution flow
  3: if r0 != 0x0 goto line 5
  4: if r0 == 0x0 goto exit
  5: if r0 != 0x0 goto line 7
  6: if r0 == 0x0 goto exit
  [...]
  187: if r0 != 0x0 goto line 189
  188: if r0 == 0x0 goto exit
  // load any slowly-loaded value (due to cache miss in phase 3) ...
  189: r3 = *(u64 *)(r0 + 0x1200)
  // ... and turn it into known zero for verifier, while preserving slowly-
  // loaded dependency when executing:
  190: r3 &= 1
  191: r3 &= 2
  // speculatively bypassed phase dependency
  192: r7 += r3
  193: if r7 == 0x3 goto exit
  194: r4 = *(u8 *)(r8 + 0)
  // leak r4

As can be seen, in training phase (phase != 0x3), the condition in line 1
turns into false and therefore r8 with the oob address is overridden with
the valid map value address, which in line 194 we can read out without
issues. However, in attack phase, line 2 is skipped, and due to the cache
miss in line 189 where the map value is (zeroed and later) added to the
phase register, the condition in line 193 takes the fall-through path due
to prior branch predictor training, where under speculation, it'll load the
byte at oob address r8 (unknown scalar type at that point) which could then
be leaked via side-channel.

One way to mitigate these is to 'branch off' an unreachable path, meaning,
the current verification path keeps following the is_branch_taken() path
and we push the other branch to the verification stack. Given this is
unreachable from the non-speculative domain, this branch's vstate is
explicitly marked as speculative. This is needed for two reasons: i) if
this path is solely seen from speculative execution, then we later on still
want the dead code elimination to kick in in order to sanitize these
instructions with jmp-1s, and ii) to ensure that paths walked in the
non-speculative domain are not pruned from earlier walks of paths walked in
the speculative domain. Additionally, for robustness, we mark the registers
which have been part of the conditional as unknown in the speculative path
given there should be no assumptions made on their content.

The fix in here mitigates type confusion attacks described earlier due to
i) all code paths in the BPF program being explored and ii) existing
verifier logic already ensuring that given memory access instruction
references one specific data structure.

An alternative to this fix that has also been looked at in this scope was to
mark aux->alu_state at the jump instruction with a BPF_JMP_TAKEN state as
well as direction encoding (always-goto, always-fallthrough, unknown), such
that mixing of different always-* directions themselves as well as mixing of
always-* with unknown directions would cause a program rejection by the
verifier, e.g. programs with constructs like 'if ([...]) { x = 0; } else
{ x = 1; }' with subsequent 'if (x == 1) { [...] }'. For unprivileged, this
would result in only single direction always-* taken paths, and unknown taken
paths being allowed, such that the former could be patched from a conditional
jump to an unconditional jump (ja). Compared to this approach here, it would
have two downsides: i) valid programs that otherwise are not performing any
pointer arithmetic, etc, would potentially be rejected/broken, and ii) we are
required to turn off path pruning for unprivileged, where both can be avoided
in this work through pushing the invalid branch to the verification stack.

The issue was originally discovered by Adam and Ofek, and later independently
discovered and reported as a result of Benedict and Piotr's research work.

Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation")
Reported-by: Adam Morrison <mad@cs.tau.ac.il>
Reported-by: Ofek Kirzner <ofekkir@gmail.com>
Reported-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[OP: use allow_ptr_leaks instead of bypass_spec_v1]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-08 09:04:08 +02:00
Daniel Borkmann
d2f790327f bpf: Do not mark insn as seen under speculative path verification
commit fe9a5ca7e370e613a9a75a13008a3845ea759d6e upstream

... in such circumstances, we do not want to mark the instruction as seen given
the goal is still to jmp-1 rewrite/sanitize dead code, if it is not reachable
from the non-speculative path verification. We do however want to verify it for
safety regardless.

With the patch as-is all the insns that have been marked as seen before the
patch will also be marked as seen after the patch (just with a potentially
different non-zero count). An upcoming patch will also verify paths that are
unreachable in the non-speculative domain, hence this extension is needed.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[OP: - env->pass_cnt is not used in 5.4, so adjust sanitize_mark_insn_seen()
       to assign "true" instead
     - drop sanitize_insn_aux_data() comment changes, as the function is not
       present in 5.4]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-08 09:04:08 +02:00
Daniel Borkmann
283d742988 bpf: Inherit expanded/patched seen count from old aux data
commit d203b0fd863a2261e5d00b97f3d060c4c2a6db71 upstream

Instead of relying on current env->pass_cnt, use the seen count from the
old aux data in adjust_insn_aux_data(), and expand it to the new range of
patched instructions. This change is valid given we always expand 1:n
with n>=1, so what applies to the old/original instruction needs to apply
for the replacement as well.

Not relying on env->pass_cnt is a prerequisite for a later change where we
want to avoid marking an instruction seen when verified under speculative
execution path.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[OP: declare old_data as bool instead of u32 (struct bpf_insn_aux_data.seen
     is bool in 5.4)]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-08 09:04:08 +02:00
Daniel Borkmann
e217aadc9b bpf: Fix up register-based shifts in interpreter to silence KUBSAN
[ Upstream commit 28131e9d933339a92f78e7ab6429f4aaaa07061c ]

syzbot reported a shift-out-of-bounds that KUBSAN observed in the
interpreter:

  [...]
  UBSAN: shift-out-of-bounds in kernel/bpf/core.c:1420:2
  shift exponent 255 is too large for 64-bit type 'long long unsigned int'
  CPU: 1 PID: 11097 Comm: syz-executor.4 Not tainted 5.12.0-rc2-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Call Trace:
   __dump_stack lib/dump_stack.c:79 [inline]
   dump_stack+0x141/0x1d7 lib/dump_stack.c:120
   ubsan_epilogue+0xb/0x5a lib/ubsan.c:148
   __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327
   ___bpf_prog_run.cold+0x19/0x56c kernel/bpf/core.c:1420
   __bpf_prog_run32+0x8f/0xd0 kernel/bpf/core.c:1735
   bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline]
   bpf_prog_run_pin_on_cpu include/linux/filter.h:624 [inline]
   bpf_prog_run_clear_cb include/linux/filter.h:755 [inline]
   run_filter+0x1a1/0x470 net/packet/af_packet.c:2031
   packet_rcv+0x313/0x13e0 net/packet/af_packet.c:2104
   dev_queue_xmit_nit+0x7c2/0xa90 net/core/dev.c:2387
   xmit_one net/core/dev.c:3588 [inline]
   dev_hard_start_xmit+0xad/0x920 net/core/dev.c:3609
   __dev_queue_xmit+0x2121/0x2e00 net/core/dev.c:4182
   __bpf_tx_skb net/core/filter.c:2116 [inline]
   __bpf_redirect_no_mac net/core/filter.c:2141 [inline]
   __bpf_redirect+0x548/0xc80 net/core/filter.c:2164
   ____bpf_clone_redirect net/core/filter.c:2448 [inline]
   bpf_clone_redirect+0x2ae/0x420 net/core/filter.c:2420
   ___bpf_prog_run+0x34e1/0x77d0 kernel/bpf/core.c:1523
   __bpf_prog_run512+0x99/0xe0 kernel/bpf/core.c:1737
   bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline]
   bpf_test_run+0x3ed/0xc50 net/bpf/test_run.c:50
   bpf_prog_test_run_skb+0xabc/0x1c50 net/bpf/test_run.c:582
   bpf_prog_test_run kernel/bpf/syscall.c:3127 [inline]
   __do_sys_bpf+0x1ea9/0x4f00 kernel/bpf/syscall.c:4406
   do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  [...]

Generally speaking, KUBSAN reports from the kernel should be fixed.
However, in case of BPF, this particular report caused concerns since
the large shift is not wrong from BPF point of view, just undefined.
In the verifier, K-based shifts that are >= {64,32} (depending on the
bitwidth of the instruction) are already rejected. The register-based
cases were not given their content might not be known at verification
time. Ideas such as verifier instruction rewrite with an additional
AND instruction for the source register were brought up, but regularly
rejected due to the additional runtime overhead they incur.

As Edward Cree rightly put it:

  Shifts by more than insn bitness are legal in the BPF ISA; they are
  implementation-defined behaviour [of the underlying architecture],
  rather than UB, and have been made legal for performance reasons.
  Each of the JIT backends compiles the BPF shift operations to machine
  instructions which produce implementation-defined results in such a
  case; the resulting contents of the register may be arbitrary but
  program behaviour as a whole remains defined.

  Guard checks in the fast path (i.e. affecting JITted code) will thus
  not be accepted.

  The case of division by zero is not truly analogous here, as division
  instructions on many of the JIT-targeted architectures will raise a
  machine exception / fault on division by zero, whereas (to the best
  of my knowledge) none will do so on an out-of-bounds shift.

Given the KUBSAN report only affects the BPF interpreter, but not JITs,
one solution is to add the ANDs with 63 or 31 into ___bpf_prog_run().
That would make the shifts defined, and thus shuts up KUBSAN, and the
compiler would optimize out the AND on any CPU that interprets the shift
amounts modulo the width anyway (e.g., confirmed from disassembly that
on x86-64 and arm64 the generated interpreter code is the same before
and after this fix).

The BPF interpreter is slow path, and most likely compiled out anyway
as distros select BPF_JIT_ALWAYS_ON to avoid speculative execution of
BPF instructions by the interpreter. Given the main argument was to
avoid sacrificing performance, the fact that the AND is optimized away
from compiler for mainstream archs helps as well as a solution moving
forward. Also add a comment on LSH/RSH/ARSH translation for JIT authors
to provide guidance when they see the ___bpf_prog_run() interpreter
code and use it as a model for a new JIT backend.

Reported-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com
Reported-by: Kurt Manucredo <fuzzybritches0@gmail.com>
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Co-developed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Tested-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com
Cc: Edward Cree <ecree.xilinx@gmail.com>
Link: https://lore.kernel.org/bpf/0000000000008f912605bd30d5d7@google.com
Link: https://lore.kernel.org/bpf/bac16d8d-c174-bdc4-91bd-bfa62b410190@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-19 08:53:11 +02:00
Daniel Borkmann
3173c7c807 bpf: No need to simulate speculative domain for immediates
commit a7036191277f9fa68d92f2071ddc38c09b1e5ee5 upstream.

In 801c6058d14a ("bpf: Fix leakage of uninitialized bpf stack under
speculation") we replaced masking logic with direct loads of immediates
if the register is a known constant. Given in this case we do not apply
any masking, there is also no reason for the operation to be truncated
under the speculative domain.

Therefore, there is also zero reason for the verifier to branch-off and
simulate this case, it only needs to do it for unknown but bounded scalars.
As a side-effect, this also enables few test cases that were previously
rejected due to simulation under zero truncation.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-28 13:10:26 +02:00
Daniel Borkmann
2b3cc41d50 bpf: Fix mask direction swap upon off reg sign change
commit bb01a1bba579b4b1c5566af24d95f1767859771e upstream.

Masking direction as indicated via mask_to_left is considered to be
calculated once and then used to derive pointer limits. Thus, this
needs to be placed into bpf_sanitize_info instead so we can pass it
to sanitize_ptr_alu() call after the pointer move. Piotr noticed a
corner case where the off reg causes masking direction change which
then results in an incorrect final aux->alu_limit.

Fixes: 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask")
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-28 13:10:26 +02:00
Daniel Borkmann
2768f99622 bpf: Wrap aux data inside bpf_sanitize_info container
commit 3d0220f6861d713213b015b582e9f21e5b28d2e0 upstream.

Add a container structure struct bpf_sanitize_info which holds
the current aux info, and update call-sites to sanitize_ptr_alu()
to pass it in. This is needed for passing in additional state
later on.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-28 13:10:26 +02:00
Daniel Borkmann
8ba25a9ef9 bpf: Fix leakage of uninitialized bpf stack under speculation
commit 801c6058d14a82179a7ee17a4b532cac6fad067f upstream.

The current implemented mechanisms to mitigate data disclosure under
speculation mainly address stack and map value oob access from the
speculative domain. However, Piotr discovered that uninitialized BPF
stack is not protected yet, and thus old data from the kernel stack,
potentially including addresses of kernel structures, could still be
extracted from that 512 bytes large window. The BPF stack is special
compared to map values since it's not zero initialized for every
program invocation, whereas map values /are/ zero initialized upon
their initial allocation and thus cannot leak any prior data in either
domain. In the non-speculative domain, the verifier ensures that every
stack slot read must have a prior stack slot write by the BPF program
to avoid such data leaking issue.

However, this is not enough: for example, when the pointer arithmetic
operation moves the stack pointer from the last valid stack offset to
the first valid offset, the sanitation logic allows for any intermediate
offsets during speculative execution, which could then be used to
extract any restricted stack content via side-channel.

Given for unprivileged stack pointer arithmetic the use of unknown
but bounded scalars is generally forbidden, we can simply turn the
register-based arithmetic operation into an immediate-based arithmetic
operation without the need for masking. This also gives the benefit
of reducing the needed instructions for the operation. Given after
the work in 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic
mask"), the aux->alu_limit already holds the final immediate value for
the offset register with the known scalar. Thus, a simple mov of the
immediate to AX register with using AX as the source for the original
instruction is sufficient and possible now in this case.

Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-07 10:51:37 +02:00
Daniel Borkmann
53e0db429b bpf: Fix masking negation logic upon negative dst register
commit b9b34ddbe2076ade359cd5ce7537d5ed019e9807 upstream.

The negation logic for the case where the off_reg is sitting in the
dst register is not correct given then we cannot just invert the add
to a sub or vice versa. As a fix, perform the final bitwise and-op
unconditionally into AX from the off_reg, then move the pointer from
the src to dst and finally use AX as the source for the original
pointer arithmetic operation such that the inversion yields a correct
result. The single non-AX mov in between is possible given constant
blinding is retaining it as it's not an immediate based operation.

Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-07 10:51:37 +02:00
Daniel Borkmann
ef4e68f0af bpf: Tighten speculative pointer arithmetic mask
commit 7fedb63a8307dda0ec3b8969a3b233a1dd7ea8e0 upstream.

This work tightens the offset mask we use for unprivileged pointer arithmetic
in order to mitigate a corner case reported by Piotr and Benedict where in
the speculative domain it is possible to advance, for example, the map value
pointer by up to value_size-1 out-of-bounds in order to leak kernel memory
via side-channel to user space.

Before this change, the computed ptr_limit for retrieve_ptr_limit() helper
represents largest valid distance when moving pointer to the right or left
which is then fed as aux->alu_limit to generate masking instructions against
the offset register. After the change, the derived aux->alu_limit represents
the largest potential value of the offset register which we mask against which
is just a narrower subset of the former limit.

For minimal complexity, we call sanitize_ptr_alu() from 2 observation points
in adjust_ptr_min_max_vals(), that is, before and after the simulated alu
operation. In the first step, we retieve the alu_state and alu_limit before
the operation as well as we branch-off a verifier path and push it to the
verification stack as we did before which checks the dst_reg under truncation,
in other words, when the speculative domain would attempt to move the pointer
out-of-bounds.

In the second step, we retrieve the new alu_limit and calculate the absolute
distance between both. Moreover, we commit the alu_state and final alu_limit
via update_alu_sanitation_state() to the env's instruction aux data, and bail
out from there if there is a mismatch due to coming from different verification
paths with different states.

Reported-by: Piotr Krysiuk <piotras@gmail.com>
Reported-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Benedict Schlueter <benedict.schlueter@rub.de>
[fllinden@amazon.com: backported to 5.4]
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-02 11:05:04 +02:00
Daniel Borkmann
4dc6e55e28 bpf: Move sanitize_val_alu out of op switch
commit f528819334881fd622fdadeddb3f7edaed8b7c9b upstream.

Add a small sanitize_needed() helper function and move sanitize_val_alu()
out of the main opcode switch. In upcoming work, we'll move sanitize_ptr_alu()
as well out of its opcode switch so this helps to streamline both.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[fllinden@amazon.com: backported to 5.4]
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-02 11:05:04 +02:00
Daniel Borkmann
876d1cec93 bpf: Refactor and streamline bounds check into helper
commit 073815b756c51ba9d8384d924c5d1c03ca3d1ae4 upstream.

Move the bounds check in adjust_ptr_min_max_vals() into a small helper named
sanitize_check_bounds() in order to simplify the former a bit.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[fllinden@amazon.com: backport to 5.4]
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-02 11:05:04 +02:00
Daniel Borkmann
4158e5fea3 bpf: Improve verifier error messages for users
commit a6aaece00a57fa6f22575364b3903dfbccf5345d upstream.

Consolidate all error handling and provide more user-friendly error messages
from sanitize_ptr_alu() and sanitize_val_alu().

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[fllinden@amazon.com: backport to 5.4]
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-02 11:05:03 +02:00
Daniel Borkmann
15de0c537b bpf: Rework ptr_limit into alu_limit and add common error path
commit b658bbb844e28f1862867f37e8ca11a8e2aa94a3 upstream.

Small refactor with no semantic changes in order to consolidate the max
ptr_limit boundary check.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-02 11:05:03 +02:00
Daniel Borkmann
f7fbedc909 bpf: Ensure off_reg has no mixed signed bounds for all types
commit 24c109bb1537c12c02aeed2d51a347b4d6a9b76e upstream.

The mixed signed bounds check really belongs into retrieve_ptr_limit()
instead of outside of it in adjust_ptr_min_max_vals(). The reason is
that this check is not tied to PTR_TO_MAP_VALUE only, but to all pointer
types that we handle in retrieve_ptr_limit() and given errors from the latter
propagate back to adjust_ptr_min_max_vals() and lead to rejection of the
program, it's a better place to reside to avoid anything slipping through
for future types. The reason why we must reject such off_reg is that we
otherwise would not be able to derive a mask, see details in 9d7eceede769
("bpf: restrict unknown scalars of mixed signed bounds for unprivileged").

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[fllinden@amazon.com: backport to 5.4]
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-02 11:05:03 +02:00
Daniel Borkmann
4a163b1c70 bpf: Move off_reg into sanitize_ptr_alu
commit 6f55b2f2a1178856c19bbce2f71449926e731914 upstream.

Small refactor to drag off_reg into sanitize_ptr_alu(), so we later on can
use off_reg for generalizing some of the checks for all pointer types.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-02 11:05:03 +02:00
Piotr Krysiuk
4e4c85404a bpf: Add sanity check for upper ptr_limit
commit 1b1597e64e1a610c7a96710fc4717158e98a08b3 upstream.

Given we know the max possible value of ptr_limit at the time of retrieving
the latter, add basic assertions, so that the verifier can bail out if
anything looks odd and reject the program. Nothing triggered this so far,
but it also does not hurt to have these.

Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-20 10:39:46 +01:00
Piotr Krysiuk
524471df8f bpf: Simplify alu_limit masking for pointer arithmetic
commit b5871dca250cd391885218b99cc015aca1a51aea upstream.

Instead of having the mov32 with aux->alu_limit - 1 immediate, move this
operation to retrieve_ptr_limit() instead to simplify the logic and to
allow for subsequent sanity boundary checks inside retrieve_ptr_limit().
This avoids in future that at the time of the verifier masking rewrite
we'd run into an underflow which would not sign extend due to the nature
of mov32 instruction.

Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-20 10:39:46 +01:00
Piotr Krysiuk
2da0540739 bpf: Fix off-by-one for area size in creating mask to left
commit 10d2bb2e6b1d8c4576c56a748f697dbeb8388899 upstream.

retrieve_ptr_limit() computes the ptr_limit for registers with stack and
map_value type. ptr_limit is the size of the memory area that is still
valid / in-bounds from the point of the current position and direction
of the operation (add / sub). This size will later be used for masking
the operation such that attempting out-of-bounds access in the speculative
domain is redirected to remain within the bounds of the current map value.

When masking to the right the size is correct, however, when masking to
the left, the size is off-by-one which would lead to an incorrect mask
and thus incorrect arithmetic operation in the non-speculative domain.
Piotr found that if the resulting alu_limit value is zero, then the
BPF_MOV32_IMM() from the fixup_bpf_calls() rewrite will end up loading
0xffffffff into AX instead of sign-extending to the full 64 bit range,
and as a result, this allows abuse for executing speculatively out-of-
bounds loads against 4GB window of address space and thus extracting the
contents of kernel memory via side-channel.

Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-20 10:39:46 +01:00
Piotr Krysiuk
ea8fb45eaa bpf: Prohibit alu ops for pointer types not defining ptr_limit
commit f232326f6966cf2a1d1db7bc917a4ce5f9f55f76 upstream.

The purpose of this patch is to streamline error propagation and in particular
to propagate retrieve_ptr_limit() errors for pointer types that are not defining
a ptr_limit such that register-based alu ops against these types can be rejected.

The main rationale is that a gap has been identified by Piotr in the existing
protection against speculatively out-of-bounds loads, for example, in case of
ctx pointers, unprivileged programs can still perform pointer arithmetic. This
can be abused to execute speculatively out-of-bounds loads without restrictions
and thus extract contents of kernel memory.

Fix this by rejecting unprivileged programs that attempt any pointer arithmetic
on unprotected pointer types. The two affected ones are pointer to ctx as well
as pointer to map. Field access to a modified ctx' pointer is rejected at a
later point in time in the verifier, and 7c6967326267 ("bpf: Permit map_ptr
arithmetic with opcode add and offset 0") only relevant for root-only use cases.
Risk of unprivileged program breakage is considered very low.

Fixes: 7c6967326267 ("bpf: Permit map_ptr arithmetic with opcode add and offset 0")
Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation")
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-20 10:39:46 +01:00
Marco Elver
4dcfd93603 bpf_lru_list: Read double-checked variable once without lock
[ Upstream commit 6df8fb83301d68ea0a0c0e1cbcc790fcc333ed12 ]

For double-checked locking in bpf_common_lru_push_free(), node->type is
read outside the critical section and then re-checked under the lock.
However, concurrent writes to node->type result in data races.

For example, the following concurrent access was observed by KCSAN:

  write to 0xffff88801521bc22 of 1 bytes by task 10038 on cpu 1:
   __bpf_lru_node_move_in        kernel/bpf/bpf_lru_list.c:91
   __local_list_flush            kernel/bpf/bpf_lru_list.c:298
   ...
  read to 0xffff88801521bc22 of 1 bytes by task 10043 on cpu 0:
   bpf_common_lru_push_free      kernel/bpf/bpf_lru_list.c:507
   bpf_lru_push_free             kernel/bpf/bpf_lru_list.c:555
   ...

Fix the data races where node->type is read outside the critical section
(for double-checked locking) by marking the access with READ_ONCE() as
well as ensuring the variable is only accessed once.

Fixes: 3a08c2fd7634 ("bpf: LRU List")
Reported-by: syzbot+3536db46dfa58c573458@syzkaller.appspotmail.com
Reported-by: syzbot+516acdb03d3e27d91bcd@syzkaller.appspotmail.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210209112701.3341724-1-elver@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-04 10:26:16 +01:00
Daniel Borkmann
185c2266c1 bpf: Fix truncation handling for mod32 dst reg wrt zero
commit 9b00f1b78809309163dda2d044d9e94a3c0248a3 upstream.

Recently noticed that when mod32 with a known src reg of 0 is performed,
then the dst register is 32-bit truncated in verifier:

  0: R1=ctx(id=0,off=0,imm=0) R10=fp0
  0: (b7) r0 = 0
  1: R0_w=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0
  1: (b7) r1 = -1
  2: R0_w=inv0 R1_w=inv-1 R10=fp0
  2: (b4) w2 = -1
  3: R0_w=inv0 R1_w=inv-1 R2_w=inv4294967295 R10=fp0
  3: (9c) w1 %= w0
  4: R0_w=inv0 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
  4: (b7) r0 = 1
  5: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
  5: (1d) if r1 == r2 goto pc+1
   R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
  6: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
  6: (b7) r0 = 2
  7: R0_w=inv2 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
  7: (95) exit
  7: R0=inv1 R1=inv(id=0,umin_value=4294967295,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2=inv4294967295 R10=fp0
  7: (95) exit

However, as a runtime result, we get 2 instead of 1, meaning the dst
register does not contain (u32)-1 in this case. The reason is fairly
straight forward given the 0 test leaves the dst register as-is:

  # ./bpftool p d x i 23
   0: (b7) r0 = 0
   1: (b7) r1 = -1
   2: (b4) w2 = -1
   3: (16) if w0 == 0x0 goto pc+1
   4: (9c) w1 %= w0
   5: (b7) r0 = 1
   6: (1d) if r1 == r2 goto pc+1
   7: (b7) r0 = 2
   8: (95) exit

This was originally not an issue given the dst register was marked as
completely unknown (aka 64 bit unknown). However, after 468f6eafa6c4
("bpf: fix 32-bit ALU op verification") the verifier casts the register
output to 32 bit, and hence it becomes 32 bit unknown. Note that for
the case where the src register is unknown, the dst register is marked
64 bit unknown. After the fix, the register is truncated by the runtime
and the test passes:

  # ./bpftool p d x i 23
   0: (b7) r0 = 0
   1: (b7) r1 = -1
   2: (b4) w2 = -1
   3: (16) if w0 == 0x0 goto pc+2
   4: (9c) w1 %= w0
   5: (05) goto pc+1
   6: (bc) w1 = w1
   7: (b7) r0 = 1
   8: (1d) if r1 == r2 goto pc+1
   9: (b7) r0 = 2
  10: (95) exit

Semantics also match with {R,W}x mod{64,32} 0 -> {R,W}x. Invalid div
has always been {R,W}x div{64,32} 0 -> 0. Rewrites are as follows:

  mod32:                            mod64:

  (16) if w0 == 0x0 goto pc+2       (15) if r0 == 0x0 goto pc+1
  (9c) w1 %= w0                     (9f) r1 %= r0
  (05) goto pc+1
  (bc) w1 = w1

Fixes: 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-26 10:10:26 +01:00
Bui Quang Minh
7e3a6b8205 bpf: Check for integer overflow when using roundup_pow_of_two()
[ Upstream commit 6183f4d3a0a2ad230511987c6c362ca43ec0055f ]

On 32-bit architecture, roundup_pow_of_two() can return 0 when the argument
has upper most bit set due to resulting 1UL << 32. Add a check for this case.

Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE")
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210127063653.3576-1-minhquangbui99@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-17 10:35:16 +01:00
Daniel Borkmann
78e2f71b89 bpf: Fix 32 bit src register truncation on div/mod
commit e88b2c6e5a4d9ce30d75391e4d950da74bb2bd90 upstream.

While reviewing a different fix, John and I noticed an oddity in one of the
BPF program dumps that stood out, for example:

  # bpftool p d x i 13
   0: (b7) r0 = 808464450
   1: (b4) w4 = 808464432
   2: (bc) w0 = w0
   3: (15) if r0 == 0x0 goto pc+1
   4: (9c) w4 %= w0
  [...]

In line 2 we noticed that the mov32 would 32 bit truncate the original src
register for the div/mod operation. While for the two operations the dst
register is typically marked unknown e.g. from adjust_scalar_min_max_vals()
the src register is not, and thus verifier keeps tracking original bounds,
simplified:

  0: R1=ctx(id=0,off=0,imm=0) R10=fp0
  0: (b7) r0 = -1
  1: R0_w=invP-1 R1=ctx(id=0,off=0,imm=0) R10=fp0
  1: (b7) r1 = -1
  2: R0_w=invP-1 R1_w=invP-1 R10=fp0
  2: (3c) w0 /= w1
  3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP-1 R10=fp0
  3: (77) r1 >>= 32
  4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP4294967295 R10=fp0
  4: (bf) r0 = r1
  5: R0_w=invP4294967295 R1_w=invP4294967295 R10=fp0
  5: (95) exit
  processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0

Runtime result of r0 at exit is 0 instead of expected -1. Remove the
verifier mov32 src rewrite in div/mod and replace it with a jmp32 test
instead. After the fix, we result in the following code generation when
having dividend r1 and divisor r6:

  div, 64 bit:                             div, 32 bit:

   0: (b7) r6 = 8                           0: (b7) r6 = 8
   1: (b7) r1 = 8                           1: (b7) r1 = 8
   2: (55) if r6 != 0x0 goto pc+2           2: (56) if w6 != 0x0 goto pc+2
   3: (ac) w1 ^= w1                         3: (ac) w1 ^= w1
   4: (05) goto pc+1                        4: (05) goto pc+1
   5: (3f) r1 /= r6                         5: (3c) w1 /= w6
   6: (b7) r0 = 0                           6: (b7) r0 = 0
   7: (95) exit                             7: (95) exit

  mod, 64 bit:                             mod, 32 bit:

   0: (b7) r6 = 8                           0: (b7) r6 = 8
   1: (b7) r1 = 8                           1: (b7) r1 = 8
   2: (15) if r6 == 0x0 goto pc+1           2: (16) if w6 == 0x0 goto pc+1
   3: (9f) r1 %= r6                         3: (9c) w1 %= w6
   4: (b7) r0 = 0                           4: (b7) r0 = 0
   5: (95) exit                             5: (95) exit

x86 in particular can throw a 'divide error' exception for div
instruction not only for divisor being zero, but also for the case
when the quotient is too large for the designated register. For the
edx:eax and rdx:rax dividend pair it is not an issue in x86 BPF JIT
since we always zero edx (rdx). Hence really the only protection
needed is against divisor being zero.

Fixes: 68fda450a7df ("bpf: fix 32-bit divide by zero")
Co-developed-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-13 13:52:56 +01:00
Loris Reiff
02531b5549 bpf, cgroup: Fix problematic bounds check
[ Upstream commit f4a2da755a7e1f5d845c52aee71336cee289935a ]

Since ctx.optlen is signed, a larger value than max_value could be
passed, as it is later on used as unsigned, which causes a WARN_ON_ONCE
in the copy_to_user.

Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks")
Signed-off-by: Loris Reiff <loris.reiff@liblor.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20210122164232.61770-2-loris.reiff@liblor.ch
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-10 09:25:27 +01:00
Loris Reiff
9146fffc5d bpf, cgroup: Fix optlen WARN_ON_ONCE toctou
[ Upstream commit bb8b81e396f7afbe7c50d789e2107512274d2a35 ]

A toctou issue in `__cgroup_bpf_run_filter_getsockopt` can trigger a
WARN_ON_ONCE in a check of `copy_from_user`.

`*optlen` is checked to be non-negative in the individual getsockopt
functions beforehand. Changing `*optlen` in a race to a negative value
will result in a `copy_from_user(ctx.optval, optval, ctx.optlen)` with
`ctx.optlen` being a negative integer.

Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks")
Signed-off-by: Loris Reiff <loris.reiff@liblor.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20210122164232.61770-1-loris.reiff@liblor.ch
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-10 09:25:27 +01:00
Mircea Cirjaliu
bd4793843c bpf: Fix helper bpf_map_peek_elem_proto pointing to wrong callback
commit 301a33d51880619d0c5a581b5a48d3a5248fa84b upstream.

I assume this was obtained by copy/paste. Point it to bpf_map_peek_elem()
instead of bpf_map_pop_elem(). In practice it may have been less likely
hit when under JIT given shielded via 84430d4232c3 ("bpf, verifier: avoid
retpoline for map push/pop/peek operation").

Fixes: f1a2e44a3aec ("bpf: add queue and stack maps")
Signed-off-by: Mircea Cirjaliu <mcirjaliu@bitdefender.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Mauricio Vasquez <mauriciovasquezbernal@gmail.com>
Link: https://lore.kernel.org/bpf/AM7PR02MB6082663DFDCCE8DA7A6DD6B1BBA30@AM7PR02MB6082.eurprd02.prod.outlook.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-23 15:57:56 +01:00